
JOURNAL OF
COMPUTING
AND SOCIAL
INFORMATICS

U N I V E R S I T I M A L A Y S I A S A R A W A K

F A C U L T Y O F C O M P U T E R S C I E N C E A N D
I N F O R M A T I O N T E C H N O L O G Y

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

Editorial Committee

Chief Editor Assoc Prof Dr Chiew Kang Leng, Universiti Malaysia
Sarawak

Managing Editor Dr Tiong Wei King, Universiti Malaysia Sarawak

Associate Editor Dr Wang Hui Hui, Universiti Malaysia Sarawak

Proofreader Dr Florence G. Kayad, Universiti Malaysia Sarawak,
Malaysia

Graphic & Layout Editor Ts. Syahrul Nizam Bin Junaini, Universiti Malaysia
Sarawak

Webmaster Wiermawaty Baizura Binti Awie, Universiti Malaysia
Sarawak

Advisory Board

Assoc Prof Dr Adrian Kliks, Poznan University of Technology, Poland

Prof Dr Farid Meziane, University of Derby, England
Prof Dr Josef Pieprzyk, Polish Academy of Sciences, Warsaw, Poland

Assoc Prof Kai R. Larsen, University of Colorado Boulder, United States
Prof Dr Zhou Liang, Shanghai Jiao Tong University, China

Reviewers

Assist Prof Dr Zahid Akhtar, Suny Polytechnic Institute, United State

Dr Shuhaida Mohamed Shuhidan, Universiti Teknologi Mara, Malaysia
Dr Noor Afiza Binti Mohd Ariffin, Universiti Putra Malaysia, Malaysia

Assoc Prof Ts Dr Robiah Yusof, Universiti Teknikal Malaysia Melaka, Malaysia
Assoc Prof Dr Noor Zaman Jhanjhi, Taylor’s University, Malaysia

Zulkifli bin Halim, Universiti Teknologi Mara, Malaysia
Ts Dr Zubaile Bin Abdullah, Universiti Tun Hussein Onn Malaysia, Malaysia

Dr Tim McIntosh, La Trobe University, Australia

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

Journal of Computing and Social Informatics

The Journal of Computing and Social Informatics (JCSI) is an international peer-
reviewed publication that focuses on the emerging areas of Computer Science
and the overarching impact of technologies on all aspects of our life at societal
level. This journal serves as a platform to promote the exchange of ideas with
researchers around the world.

Articles can be submitted via www.jcsi.unimas.my

Assoc Prof Dr Chiew Kang Leng

Chief Editor
Journal of Computing and Social Informatics
Faculty of Computer Science and Information Technology
Universiti Malaysia Sarawak
94300 Kota Samarahan
Sarawak, Malaysia

All articles published are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

Contents

Credit Risk Prediction for Peer-To-Peer Lending Platforms: An
Explainable Machine Learning Approach

Chong Pei Swee, Farid Meziane, Jane Labadin

 1

Trends and Future Directions in Automated Ransomware
Detection

Abayomi Jegede, Ayotinde Fadele, Monday Onoja, Gilbert Aimufua,
Ismaila Jesse Mazadu

 17

EEMDS: Efficient and Effective Malware Detection System with
Hybrid Model based on XceptionCNN and LightGBM Algorithm

Monday Onoja, Abayomi Jegede, Nachamada Blamah, Olawale Victor
Abimbola, Temidayo Oluwatosin Omotehinwa

 42

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 1

Credit Risk Prediction for Peer-To-Peer Lending
Platforms: An Explainable Machine Learning

Approach

1*Chong Pei Swee, 2Farid Meziane, and 3Jane Labadin
1, 3Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300

Kota Samarahan, Sarawak, Malaysia
2School of Computing and Engineering, University of Derby, UK

email: 1*chongpeiswee@gmail.com, 2F.Meziane@derby.ac.uk, 3ljane@unimas.my

*Corresponding author

Received: 23 Jun 2022 | Accepted: 30 August 2022 | Early access: 19 September 2022

Abstract - Small and medium enterprises face the challenge of obtaining start-up fund due to the strict rules
and conditions set by banks and financial institutions. The plight yields to the growth in popularity of online
peer-to-peer lending platforms which are an easier way to obtain loan as they have fewer rigid rules.
However, high flexibility of loan funding in peer-to-peer lending comes with high default probability of loan
funded to high-risk start-ups. An efficient model for evaluating credit risk of borrowers in peer-to-peer lending
platforms is important to encourage investors to fund loans and justify the rejection of unsuccessful
applications to satisfy financial regulators and increase transparency. This paper presents a supervised
machine learning model with logistic regression to address this issue and predicts the probability of default
of a loan funded to borrowers through peer-to-peer lending platforms. In addition, factors that affect the credit
levels of borrowers are identified and discussed. The research shows that the most important features that
affect probability of default are debt-to-income ratio, number of mortgage account, and Fair, Isaac and
Company Score.

Keywords: Credit Risk Evaluation, Peer-to-Peer Lending, Logistic Regression; Explainable Machine
Learning; Explainable AI.

1 Introduction
Peer-To-Peer (P2P) lending platforms are online services provided by financial institutions as an intermediary to
initiate loans for private individuals (Bachmann et al., 2011). Loans for borrowers are funded by multiple
investors, bound with agreed-upon terms and conditions, with profits generated from the interest made on the
loans as the borrowers are given a certain duration to pay back the loan and interest. The higher the investment
risk, the higher is the interest rate. Due to a reduction in loans to small businesses from banks, P2P lending has
gained popularity for personal, small business start-ups and SMEs loans as these tend to have high failing rate to
pay back their loans and with low credit scores. Indeed, P2P lending allows individuals and businesses to loan
money directly from investors or lenders without going through the strict requirements and criteria of traditional
banks and financial institutions. Although these platforms provide several instruments to assess and limit credit
risks, they do not guarantee the repayment of loans (Meyer, 2007).

The most common credit score for risks assessment is the “Fair, Isaac and Company” (FICO) score. The FICO
score is not suitable for P2P lending since these platforms are meant for relatively high-risk start-ups, and for
those that failed to secure loans from banks due to their low credit scores. Small and medium-sized enterprises
(SMEs) which are categorized as high-risk client by financial institution play an important role in many
economies, and to encourage their growth, a reliable and accurate clients’ credit risk evaluation is critical to build
confidence among investors so that more funds are available on P2P lending platforms. This paper presents a
supervised machine learning model that predicts the probability of default by considering more information related
to the clients rather than just evaluating their credit score using FICO. The focus will be on solving the credit

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 2

evaluation problem for P2P lending marketplace and determine important features that contribute to the
probability of default.

2 Literature Review
P2P lending has become an alternative to obtain loans from traditional financial institutions. Most of the middle-
income population lost their creditworthiness as borrowers to obtain loans from traditional financial institutions
after the financial crisis in 2008, causing P2P lending became the choice for getting a loan for many individuals
(Namvar, 2013). According to Emekter et al. (2014), the lack of a physical contact between lenders and borrowers
in an online P2P lending process has posed the problem of information asymmetry between lenders and borrowers.
Hence, having an efficient and accurate credit risk evaluation method to decrease the investment risk without
human intervention is critical to sustain the steady development of the P2P lending industry.

Setiawan et al. (2019) developed a P2P lending default loan classification model using data acquired from the
Lending Club through the application of Extremely Randomised Tree (ERT) and RF methods and optimised their
performance with Binary Particle Swarm Optimisation (BPSO) and SVM during the feature selection. BPSO is
the binary version for particle swarm optimisation (PSO), a branch of swarm intelligence, that iteratively optimises
the candidate solution by guiding it towards best known position and thus finally reaching to the best solution.
The evaluation of the models revealed that the average performance of ERT can outperform RF.

Emekter et al. (2014) carried out a binary Logistic Regression model for classifying default and non-default loans.
The forward stepwise iterative maximum likelihood method was implemented to determine variables that have
strong influence on the model and was analysed by backward stepwise of iterative maximum likelihood method.
Research stated that higher credit grade is associated with lower default risk. The researchers further evaluated
the selection bias by taking two different population samples, one contains data of the United States national
consumers, and another contains data of Lending Club consumers. Insignificant difference of default probability
for two sample indicates the consideration of data beyond the Lending Club platform is unnecessary.

High-dimensionality and imbalance class of dataset from P2P lending platform is always the challenge for making
accurate prediction of default probability. In research conducted by Zhou et al. (2019), gradient boosting decision
trees (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) were
integrated with heterogeneous ensemble learning technology to address the issue. The ensemble model of GBDT,
XGBoost and LightGBM outperformed individual classifiers of their own, proving the ability of ensemble
learning model to optimize prediction from a high dimension and imbalance dataset.

Dong et al. (2010) applied the logistic regression model with random coefficients (LRR) to develop credit
scorecard. A dataset with 1000 samples was divided into 10 subsets with 9 of the subsets used as training sets
while the remaining subset as the testing set. The random coefficients for 900 samples are generated using Gibbs
sampling within the Bayesian inference starting with estimated coefficient of logistic regression with fixed
coefficients (LRF). They performed empirical experiment to evaluate the prediction accuracy of LRF and LRR
with Percent Correctly Classified (PCC) method. The LRR has the overall accuracy of 74% which outperform
LRF with only 71% of overall accuracy. Dong et al. argue that the logistic regression is an optimal solution for
credit scoring model for financial industry in term of result interpretability.

Wang et al. (2015) had implemented lasso-logistic regression ensemble (LLRE) learning algorithm to predict
default probability based on a large imbalanced dataset. Researchers clustered the majority data into sub-groups
based on variables similarity and applied bagging method to minority data. Weighted average was computed for
aggregation of the ensemble model. Wang et. al. created the generated variables from the original variables by
partitioning them into specific intervals. The generated variables successfully reduced noise and non-linearity,
thus improving the performance of the Lasso-logistic regression model. LLRE outperforms all the compared
models (LLR, RF and the Classification and Regression Tree (CART)) in modelling imbalanced large dataset
with significantly higher average AUC value.

Coenen et al. (2021) evaluates performance of machine learning methods from different families, namely the
generalized linear models, support vector machines and gradient-boosted trees, under the context of spot factoring.
They estimated the risk for spot factoring in terms of payment overdue using the machine learning methods
mentioned earlier to achieve three tasks namely: binary classification of probability of default, prediction of days
of overdue, and risk ranking with pre-defined labels. They found that the regression method shows higher
consistency in getting high scores among all the method families in all the evaluation tasks.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 3

The interpretability of the model is the major concern for financial institution since they are asked to provide
evidence and reason for rejecting loan applications. Due to the regulation and transparency with regards to loan
applications, “black-box” machine learning models (e.g., deep learning, tree-based model, and SVM) may not be
a suitable approach for predicting the credit risk of borrowers. However, the logistic regression model provides
good transparency on the relationship between predictors and the process of decision making. It is easier for the
financial institution to interpret contributing factors to the default probability. An extension from default
probability prediction, the dynamic behavioural scoring model, which predicts when the borrowers are likely to
default (Wang et al., 2018), an advantage over classifications into default and non-default loans only. The logistic
regression model is capable to provide probability outcomes to indicate the degree of influence from the variables
on the loan default probability. Table 1 shows the summary of papers reviewed in this paper.

Table 1: Literature review summary.

Authors Machine Learning Model Summary
Setiawan et al.
(2019)

Extremely Randomised Tree
(ERT) and Random Forest (RF)

The evaluation of the models using Lending Club
data revealed that the average performance of ERT
can outperform RF.

Emekter et al.
(2014)

Binary Logistic Regression Selection bias evaluation with data of the United
States national loan consumers, and data of Lending
Club consumers shows insignificant difference of
default probability. Consideration of data beyond the
Lending Club platform is unnecessary.

Zhou et al.
(2019)

Gradient Boosting Decision Trees
(GBDT) with heterogeneous
ensemble learning technology

Ensemble learning model optimized prediction from
a high dimension and imbalance P2P lending
platform dataset.

Dong et al.
(2010)

Logistic Regression with Random
Coefficients (LRR) and Fixed
Coefficients (LRF)

The LRR outperformed LRF with higher overall
accuracy. Logistic regression is an optimal solution
for credit scoring model for financial industry in term
of result interpretability.

Wang et al.
(2015)

Lasso-logistic Regression
Ensemble Learning algorithm
(LLRE)

LLRE outperforms all the compared models of other
families to predict default probability from
imbalanced large dataset.

Coenen et al.
(2021)

Generalized Linear Models,
Support Vector Machines and
Gradient-boosted Trees

Regression method shows higher consistency in
getting high scores among all the method families in
all the evaluation tasks.

3 Methodology

3.1 Model Formulation

Evident from our literature review, the logistic regression method is used of which the model equates the logit
transform, the log-odds of the probability of a success, to the linear component as formulated in equation 1.

!"(!
!"#) = &$ + &#(# + &%(% + &&(&+. . . +&'(', (1)

where p is the probability of loan to default and thus, 1-p is the probability of non-default loan occurred. The
hypothesis function, is defined as: ℎ((() = +(, = 1 (⁄ ; &), representing the predicted probability of loan, Y, to
default corresponding to the loan information, x, as the independent variable and parametrised by β. In supervised
learning, Y represents the label column with the value 1, representing a default loan and 0 indicating a non-default
loan. Here, β represents the coefficients corresponding to each feature for fitting the model.

By rearranging equation (1), an expression for p is thus obtained as in equation (2):

0 = #
#)*!(#$%#&'&%#('(%#)')%...%#+'+) (2)

Equating ℎ((() and p, then our hypothesis function is simplified to:

ℎ((() =
1

1 + 1(-((3)

where βT is the vector of coefficients corresponding to the independent variables x. The parameters β, of a logistics

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 4

regression function, were estimated using the maximum likelihood method. Employing the likelihood function:

2(&; 3|() = ∏ (+.
#"+.

),. ⋅ (1 − 8-)...
-/# 1 (4)

where,

8- = *∑ '+
(.)#+0+1$

#)*∑ '+
(.)#.0+1$

,

leading to L (β; y | x) to be

9(1,. ∑ 1+
(.)(+0

+1$) ⋅ (1 + 1∑ 1+
(.)(+0

+1$)"..
.

-/#

.

Taking the logarithm of the likelihood function, resulting in

!(&) = ∑ 3-(∑ ('(-)&'4
'/$) − "- ⋅ !;<(1 + 1∑ 1+

(.)(+0
+1$).5

-/# (5)

To determine the critical point of the likelihood function, the partial derivative of the likelihood function with
respect to each βk, where k=1, 2, 3, …, K, are found and set them equal to zero. To simplify the process of finding
derivative, the logarithm of likelihood function, !(&) given in equation (5), is used.

3.2 Data

The dataset used is provided by the Lending Club, a peer-to-peer lending company from the United States of
America (USA). Dataset was made available on Kaggle, an online community of data scientists and machine
learning practitioners, by George (2018). The dataset contains approved loan records starting from year 2007 until
the year 2018. There is total of 2,260,701 records with 151 columns, each record labelled with corresponding loan
status which are 'Fully Paid', ‘Current’, 'Charged Off', 'In Grace Period', 'Late (31-120 days)', 'Late (16-30 days)',
'Default', 'Does not meet the credit policy. Status: Fully Paid' and 'Does not meet the credit policy. Status: Charged
Off'.

3.3 Model Design

Our machine learning process follows the flow depicted in Figure 1.

Figure 1: Machine learning process flow.

As part of data pre-processing, columns with more than 49% of missing data were removed from the dataset. Data
rows with missing value are labelled as default record (minority label) and the missing data is imputed with mean,
median or mode. In addition, columns which cause data leakage and column of biographical data are also removed.
Outliers are detected using box plot and are removed from the dataset. Data rows with loan status labelled as
‘current’ which do not indicate final status of loan are also removed. The labels are grouped into default or non-
default, with the values 1 and 0 respectively. 1, 345, 350 records with 25 columns were the size of the dataset used
in the experiments. Refer to Table A in appendix section for the description of columns selected. Once the dataset
was pre-processed then it was split in the ratio of 80% for training and 20% for testing. Stratified sampling was
implemented to ensure the default and non-default records were distributed evenly. There were 268,599 (19.96%)
default records and 1,076,751 (80.04%) non-default records. Under-sampling is applied to majority class, the non-

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 5

default class with NearMiss-3 algorithm. M number of closest majority samples for each minority samples are
kept. Then, majority samples with the largest average distance to k nearest-neighbours (the minority samples) are
selected. NearMiss-3 ensures each default sample is surrounded with non-default samples and those samples
which are more distinct are kept for model fitting. In model training, the 10-fold cross validation is implemented
for finding the best tuned parameters. The 80% of training dataset is partitioned into 10 blocks, and validation is
iterated for 10 times. For each iteration, 9 blocks are used as training sets and the remaining block is held out
from training and used as a test set. Data resampling in each iteration is done by randomly choosing 9 data blocks
from the original dataset and are combined into a training set for cross validation, while the remaining one block
is used as testing set.

For feature selection, a null hypothesis, h null, is used that stated that there is no relationship between the
independent variables and the dependent variable with 0.05 significance level. A significant level of 0.05 is chosen
based on the recommendation from Fisher (2022) where it is approximately twice the standard deviations from
the mean of normal distribution. Coefficients with p-values of more than 0.05 falling within the confidence level
are eliminate with backward elimination where significant test of the independent variables started with the full
model. Least significant variable is removed from the model until only the remaining independent variables that
have significant contribution to the dependent variable are left. This method can show the joint behaviour of all
variables in a full model, thus avoiding removal of variable which is less significant when it is include
independently into the model (Chowdhury & Turin, 2020). To avoid overfitting of the model, L2 regularisation
(also known as Ridge regularisation) was adopted. Ridge is a method which shrinks the weight of less important
coefficient towards zero without reaching the value zero.

Models trained using the best features selected is evaluated by plotting the Receiver Operating Characteristics
(ROC) curve. Recall, precision, and F1-score for default loan (minority class) are used to evaluate the model
performance and for fine-tuning decision threshold which gives the best model performance. Recall measures the
fraction of correctly classified positive sample (true positive). Precision measures the fraction of correct
predictions made among all the positive predictions. However, recall and precision are trade-off whereby the
increase of recall causes decreases in precision and vice versa. Therefore, F-measure or F1-score is used to
measure the harmonic mean of precision and recall. Logistic regression model with the highest F1-score will be
chosen and used in the model finalisation stage. The evaluation of the model is done using unseen data.

4 Implementation and Testing
In this section, Pearson correlation is applied to analyse the correlation between numerical features and remove
features which causes multicollinearity. Outliers for each numerical feature are removed based on the upper and
lower inner fences of the data distribution. Categorical features are encoded and transformed into dummy
variables. Missing values in the dataset are imputed with the corresponding median in the testing dataset. Medians
for imputing the missing values in both training and testing were computed from the training set alone to avoid
data leakage from the isolated testing set which causes the predictive model to know information of unseen dataset.
Standardisation is applied to all numerical columns in the dataset using the formula given in equation (6),

=6 = 7"8
9 . (6)

Rescaling the features using standardisation allows fair comparison of impacts of independent variables on the
dependent variable based on weight of coefficients. Table 2 shows the mean and variance for standardising each
feature.

Table 2: Mean and variance for feature scaling.

Features Mean (5 decimal place) Variance (5 decimal place)
loan_amt 14333.05653 69883770.0
annual_inc_log 4.81408 0.04229
dti 18.29155 67.23525
pub_rec 0.20219 0.25033
revol_bal_log 4.04207 0.12949
revol_util 54.71481 518.36330
mo_sin_old_il_acct 123.36687 1750.75500
mo_sin_old_rev_tl_op 167.76806 5898.07600
mort_acc 1.52570 3.037950
num_rev_accts 13.84327 44.18611
FICO_mean 694.16450 676.26580

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 6

The full dataset of 1,060,604 records and 47 columns (with dummy variables created from categorical variables)
was split in stratified fashion with respect to the label column (dependent variable) where 80% was taken as the
training dataset and the 20% was the testing dataset. Stratify splitting ensures both training and testing set have
the same ratio of default and non-default records. The distribution of records grouped with loan status is shown
in Table 3. Table 4 shows the distribution of under-sampled records using NearMiss-3.

Table 3: Number of records in training and testing dataset grouped with loan status.

Datasets Training Testing
Non-default 679,397 169,850
Default 169,086 42,271

Table 4: Number of records in training and testing dataset grouped with loan status.

Datasets Training Testing
Non-default 169,086 169,850
Default 169,086 42,271

Receiver-Operator-Characteristic (ROC) area-under-the-curve (AUC) was used as test score in the cross-
validation. Table 5 and Table 6 show the performance of the models fitted to imbalanced and under-sampled
balance dataset in 10-fold cross validation.

Table 5: Logistic regression model 10-fold cross-validation performance with Ridge regularisation of
10-5 ≤ λ ≤ 10-2

Magnitude of Penalty Term Mean Model Fitting Time
(s)

Mean ROC
AUC

Performance Ranking

0.00001 13.4482 0.6974 13
0.0000177828 7.9149 0.7002 10
0.0000316228 6.5548 0.7009 9
0.0000562341 7.0857 0.7043 6
0.0001 6.7144 0.7051 4
0.000177828 6.7424 0.7057 2
0.000316228 6.2994 0.7058 1
0.000562341 6.3834 0.7054 3
0.001 6.2227 0.7045 5
0.00177828 6.2059 0.7031 7
0.00316228 5.9686 0.7014 8
0.00562341 5.7796 0.6997 11
0.01 4.7390 0.6980 12

In Table 5, logistic regression model with λ=0.000316228 (actual value is 0.00031622776601683794) has the
best ROC AUC score of 0.7058.

Table 6: Logistic regression model 10-fold cross-validation performance with Ridge regularisation of 10-5 ≤ λ ≤
10-2

using NearMiss-3 under sampled training dataset.

Magnitude of Penalty
Term Mean Model Fitting Time (s) Mean ROC AUC Performance

Ranking
0.00001 6.3202 0.6719 11
0.0000177828 5.0328 0.6704 13
0.0000316228 4.0227 0.6715 12
0.0000562341 3.5477 0.6747 9
0.0001 3.2301 0.6733 10
0.000177828 2.9689 0.6747 8
0.000316228 2.7428 0.6771 6
0.000562341 2.4805 0.6761 7
0.001 2.3890 0.6779 3
0.00177828 2.4373 0.6781 1
0.00316228 2.5117 0.6779 2
0.00562341 2.3430 0.6777 4
0.01 2.1376 0.6774 5

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 7

In Table 6, logistic regression model with λ=0.00177828 (actual value is 0.0017782794100389228) has the best
ROC AUC score of 0.6781. L2 logistic regression model with the best performance penalty term, λ, is fitted to
complete imbalanced and balanced training sets. Logistic regression model is fitted to imbalanced training dataset
with λ=0.00031622776601683794 and is fitted to under-sampled training data with λ=0.0017782794100389228.

Figure 3: ROC AUC plot for logistic regression classifier of imbalanced dataset with threshold labels.

Figure 4: ROC AUC plot for logistic regression classifier of under-sampled dataset with threshold labels.

ROC curve shown in Figure 3 indicates that the threshold of 0.2 give reasonable classification result with high
TPR but relatively low FPR for the model trained with imbalanced dataset. Figure 4 shows that threshold of 0.5
is the best threshold for model fitted to balanced dataset. To further evaluate the choice of suitable decision
threshold, precision, recall and F1-score for default loan classification at each threshold was computed. F1-score
is used to find the harmonic mean of recall and precision. F1-score ranges from 0.0 to 1.0 where 1.0 for perfect
recall and precision. Figure 5 and Figure 6 show the changes of precision and recall against decision thresholds
for model fitted to imbalanced and balanced dataset.

Figure 5: Default class’s precision-recall curves of model trained with imbalanced data.

Figure 6: Precision-recall curves of model trained with under-sampled balance data.

High recall can trade off precision, therefore F1-score is used to seek balance between recall and precision. Thus,
threshold which gives the highest F1-score is preferred.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 8

Table 7: Default class’s precision, recall, and F1-score of model trained with imbalanced data.

Threshold Precision Recall F1-score
0.0 0.19928 1.00000 0.33233
0.1 0.24036 0.91649 0.38084
0.2 0.32084 0.62653 0.42437
0.3 0.40435 0.35242 0.37660
0.4 0.48275 0.16349 0.24426
0.5 0.57200 0.04369 0.08119
0.6 0.68000 0.00282 0.00561
0.7 1.00000 0.000047 0.000095

Result in Table 7 shows that logistic regression model fitted to imbalanced dataset gives the highest F1-score of
0.42437 with precision of 0.32084 and recall of 0.62653 at threshold of 0.2.

Table 8: Default class’s precision, recall, and F1-score of model trained with under-sampled balance data.

Threshold Precision Recall F1-score
0.0 0.19928 1.00000 0.33233
0.1 0.19960 0.99924 0.33274
0.2 0.20360 0.98306 0.33734
0.3 0.21480 0.92560 0.34868
0.4 0.23251 0.80736 0.36104
0.5 0.25702 0.62698 0.36458
0.6 0.29215 0.40586 0.33974
0.7 0.34672 0.17506 0.23265
0.8 0.45281 0.02418 0.04590

From Table 8, logistic regression model fitted to balanced dataset gives the highest default class’s F1-score of
0.36458. The respective default class’s precision is 0.25702 and 0.62698 for recall at threshold of 0.5.

5 Results and Discussion
Area under the Receiver-Operator-Characteristic (ROC) curve measures the ability of the classification model to
distinguish between two classes. The larger the area under the curve (AUC), the better the proposed model to
distinguish between the classes. The baseline of ROC curve is a straight diagonal line with AUC = 0.5, indicating
a random classifier which makes a random guess on the distinction between the two classes.

Figure 7: ROC AUC plot of model trained with imbalanced dataset.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 9

Figure 8: ROC AUC plot of model trained with under-sampled balance dataset.

Figure 7 depicts the model fitted to imbalanced dataset giving ROC AUC value of 0.706 whereas Figure 8 shows
the model fitted to balanced dataset giving the value of ROC AUC to be 0.624. The difference in the ROC AUC
values indicates that the model fitted to imbalanced dataset has better capability to differentiate between the
default and non-default classes than the model fitted to balanced dataset. However, ROC AUC measures the
overall classification performance of the model without considering the effect of majority class which cause the
algorithm to be bias towards the non-default class. Due to the large skewed class distribution, ROC may give
over-promising evaluation on an algorithm performance (Davis & Goadrich, 2006).

Precision-recall curve (PRC) is a better alternative of ROC for evaluating the performance of binary classifier on
an imbalanced dataset. Unlike fixed baseline of ROC, baseline of PRC changes with the ratio of positive (P) and
negative (N) class in the dataset. PRC baseline is defined as y = P/ (P+N) and AUC of no-skill classifier is identical
to y position of PRC baseline (Saito & Rehmsmeier, 2015).

Figure 9: Precision-recall curve of model fitted to imbalanced dataset.

Figure 10: Precision-recall curve of model fitted to balanced dataset.

Based on the results shown in Figure 9 and Figure 10, AUC of no-skill classifier is found to be 0.2. Both models
have AUC larger than the no-skill classifier which indicates they are not random classifier. Model fitted to the
imbalanced dataset has larger AUC of 0.372 than model fitted to balanced dataset with AUC of 0.290. Therefore,
the model fitted to an imbalanced dataset outperforms the model fitted to balanced dataset in distinguishing
between two classes.

A total of 212,121 samples of the Lending Club loan records from isolated testing dataset were used to make
predictions using two logistic regression models where one model is fitted to imbalanced dataset and the other
one fitted to balanced dataset. The testing set contains 169,850 non-default samples and 42,271 default samples.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 10

Figure 11: Comparison of default class’s precision, recall, and F1-score of logistic regression models
trained on imbalanced and under-sampled balance training dataset.

Based on the histogram shown in Figure 11, recalls of both models do not have significant difference where
0.626529 was found for imbalanced dataset and 0.626978 for balanced dataset. However, the model trained with
imbalanced dataset has both higher F1-score and precision than model trained with balanced dataset. The result
shows that NearMiss-3 under-sampling method does not improve the model performance on classifying default
and non-default loan. NearMiss-3 ensures positive and negative samples with significant difference are selected
while allowing positive samples to be surrounded by some majority samples. In exchange of keeping positive
samples surrounded by negative samples, overlapping of both classes occurs causing a decrement for positive
class precision. Precision evaluates fraction of exactly positive samples which are correctly classified as positive.
Although high recall allows classification model to become more sensitive to positive class, high precision is
important for avoiding misclassification of non-default loan and good clients. Hence, in comparison of the two
models, it is found that the model trained with imbalanced dataset has better performance evident from the higher
precision obtained and the evaluation of the F1-score. In feature selection, the logistic regression model fitted to
the imbalanced dataset is employed. The model has 47 independent variables with a constant variable, which is
the model intercept. Hypothesis testing with p-value computed from t-test is implemented to select statistically
significant features. Defining a null hypothesis, H0, of which the feature is insignificant to the default probability
of client, tested with p-values of the feature at significance level, α of 0.05. Backward elimination was
implemented for feature selection where the most insignificant feature is removed, and model is retrained with
the remaining features before the next significance test is carried out. The steps are repeated until no insignificant
features are left.

Figure 12: Changes of Recall, Precision, and F1-score in Backward Elimination.

Figure 12 shows positive class’ recall increased from 0.62653 to 0.63235 after the elimination of insignificant
categorical features. However, the precision decreases from 0.32084 to 0.31720 and the F1-score decreases from
0.42437 to 0.42248. Based on the three evaluation criteria, it was found that none have shown significant changes,
and thus, further support the hypothesis test for which employment length, loan purpose and home ownership are
insignificant to the probability of client to default in loan. The elimination of insignificant categorical features has
revealed that revolving account utilisation rate, “revol_util”, is insignificant with p-value of 0.866 which is larger
than 0.05 significance level. Elimination of revolving account utilisation rate from the model causes the recall to
drop from 0.63235 to 0.63221. There is also insignificant drop for precision and F1-score which changes from
0.31720 to 0.31718 and 0.42248 to 0.42242 respectively. Upon the implementation of the feature selection with
backward elimination, 19 features were selected.

In model finalisation phase, all data samples available are used for model fitting including those from testing set
which is isolated from model fitting previously. A list of new coefficients correspond to each feature is obtained.
Table 9 shows the coefficients obtained by fitting the logistic regression model to the full dataset.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 11

Table 9: Coefficients of logistic regression model fitted to complete dataset of Lending Club loan record from
year 2007 until the fourth quarter of year 2018.

The discourse on features is separated into two parts which are discussion on continuous numerical features and
the other on categorical features represented in dummy variables. All continuous numerical features are
standardised to obtain standardised regression coefficients which allow comparison of absolute values to
determine their relative importance in the logistic regression model. According to the absolute value of
standardised coefficients, the top three most important numerical features are found to be debt to income ratio,
total number of mortgage account and FICO score.

Debt-to-income ratio (DTI) with coefficient of 0.1942 has positive relation with the dependent variable which
indicates that the higher the DTI, the higher the chance of borrower to default on loan. DTI is the ratio calculated
by dividing monthly debt obligation with monthly gross income. Therefore, DTI reflects the ability of borrower
to secure a loan whereby high DTI indicates the borrower is less likely to afford extra debt with the current income.
Standardised coefficient of the total number of mortgage account is -0.1919 which defines borrower with more
mortgages has lower loan default rate. Mortgage is a secured loan with real asset as collateral, and the evaluation
on the ability of applicant to afford the real asset is used for mortgage application from financial institution, as it
is suspected that borrower with several mortgage indicates that their credit records are good enough to fulfil the
requirements of getting the mortgage loan. This explains the research outcome that the borrower with more
mortgage account has lower probability of default (POD) than those with less mortgage record. The third
important feature for predicting POD is the mean FICO score. Negative coefficient of -0.1782 indicates that
borrowers with high FICO score tends to pay off the loan. Formula behind FICO credit score is kept secret from
customers, but there are five key factors for FICO score credit report disclosed by FICO which are payment
history, account owed, credit history, credit mix, and new credit. According to a study carried out by Avery,
Brevoort and Canner (2012) on the effect of credit history length on credit score of foreign-born individuals in
U.S. made, short credit history has caused lower credit score in this population. The result supports the
consideration of length of credit history in FICO credit report where individual with longer credit history tends to
have better credit score.

Next, loan amount has positive coefficient of 0.1592 which indicates that loan of higher amount has greater POD.
The larger the amount loan offered by the Lending Club, the higher the interest charged which indicates higher
risk. Credit revolving balance is the next important independent variables for predicting POD with negative
coefficient of -0.1002. Revolving balance is the carried forward unpaid balance after each payment cycle of a
credit account. In general, higher debt owed leads to higher POD, but the occurrence of negative coefficient of
credit revolving balance shows that amount of debt owed does not directly reflect the POD of a borrower. It is
shown that the amount of outstanding credit balance is positively correlated to income and amount of real asset
owned by an individual (Kim & Devaney, 2001). High-income population have higher credit limit, hence rising

Features Coefficients, β Exp(β)
Intercept -2.3733 0.0932
Loan amount 0.1592 1.1726
Log-transformed borrowers’ annual income -0.0730 0.9296
Debt to income ratio 0.1942 1.2143
Public derogatory records 0.0160 1.0161
Log-transformed total credit revolving balance -0.1002 0.9047
Months since oldest bank instalment account opened -0.0271 0.9733
Months since oldest revolving account opened -0.0491 0.9521
Number of mortgage accounts -0.1919 0.8254
Number of revolving accounts 0.0435 1.0445
Mean FICO score -0.1782 0.8368
64 months payment term 0.5531 1.7386
Credit rating: Grade B 0.3205 1.3778
Credit rating: Grade C 0.7255 2.0658
Credit rating: Grade D 0.9880 2.6859
Credit rating: Grade E 1.1781 3.2482
Credit rating: Grade F 1.2641 3.5399
Credit rating: Grade G 1.2147 3.3693
Income source verified by borrower’s employer 0.1353 1.1449
Income source verified by Lending Club 0.1041 1.1097
Joint application -0.0811 0.9221

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 12

their purchasing power and increase the revolving balance subsequently. With the same reason, it explains the
finding that an increase in mortgage account implies a decrease in the probability of default, since better financial
status allow a person to afford more mortgages. In fact, one can have high debt amount but with large available
credit, whereas an individual who owes less debt may have less credit available or even max out credit card. Due
to this reason, credit scoring model such as FICO score will consider credit utilisation rate which provide more
informative debt to credit limit ratio. Number of months since oldest bank instalment account opened and number
of months since the oldest revolving account was opened, have negative coefficient of -0.0271 and -0.0491
respectively. These two coefficients are complementing to the fact that individuals with longer credit history have
better credit. Credit scoring models available in market always consider length of credit account since it is opened
and used, as well as average age of all account owned by a borrower for credit evaluation since all this information
reflect the attitude of the individual towards their credit. Among all numerical features, the number of public
derogatory records is the least important predictor for POD with positive coefficient of 0.0160. Public derogatory
records include tax liens, public bankruptcy record and any financial obligation which are not paid as agreed. It
is reasonable that individual with more public derogatory record tends to have bad credit history resulting in loan
repayment failure.

Discussion on categorical features is made by comparing how each dummy variables or category level contribute
to the probability of default. To measure the contribution of reference category to POD, only one categorical
variable remained in the model each time. POD of reference category is determined by intercept or constant of
the model while all numeric predictors remained zero. Since the logistic regression model calculates the log-odds
of loan default, equation (7) is used for the transformation to POD:

0 = #
#)*!#'-

 (7)

Table 10: Probability of default for each category in loan payment term.

Category Coefficients, β Exp(β) Probability of Default
Intercept (36 months) -1.7533 0.1732 0.1476
64 months 0.8733 2.3948 0.2932

Payment term (term) feature has two level of categories namely 36 months and 64 months. 36 months payment
term is the reference category and “term_code_1” indicates 64 months loan payment period. From Table 10, POD
of 36-months payment period is determined by intercept value. Loan with longer payment period, which is 64
months, has higher POD of 29.32% than loan with 36 months payment term (POD = 14.76%). The major loan
purpose in Lending Club is debt consolidation, which is a type of loan of combining 2 and more loans into single
mortgage. Delinquency of mortgage loan is closely related to income volatility even for high-income profile
(Diaz-Serrano, 2005). Since income volatility may increase over time, thus extending the loan payment period
can subsequently increase the risk of loan.

Table 11: Probability of default for each category in credit grade.

Category Coefficients, β Exp(β) Probability of Default
Intercept -2.2680 0.1035 0.0938
Grade B 0.3743 1.4540 0.1308
Grade C 0.8880 2.4302 0.2010
Grade D 1.2103 3.3545 0.2577
Grade E 1.5213 4.5782 0.3215
Grade F 1.6699 5.3116 0.3548
Grade G 1.5878 4.8930 0.3362

According to Table 11, the reference category, Grade A has the lowest POD of 9.38% and the POD are 13.08%,
20.1%, 25.77%, 32.15%, 35.48%, and 33.62% for grade B, C, D, E, F, and G respectively. Although Grade F is
having the higher POD than the worst credit rating of Grade G, but the risk of default increase as the risk goes
higher. It is reasonable to conjecture that Lending Club rating system is reliable reference for other financial
institution while evaluating borrower’s credit.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 13

Table 12: Probability of default for each category in income source verification status.

Category Coefficients, β Exp(β) Probability of Default
Intercept -1.6672 0.1888 0.1588
Source Verified, income source verified by
borrower’s employer

0.2205 1.2467 0.1905

Verified, income source verified by Lending Club 0.2542 1.2894 0.1958

According to the Table 12, loan without income source verification has the lowest POD of 15.88% while POD of
loan with “source verified” and “verified” are 19.05% and 19.58% respectively. The label “income source
verified” defines that Lending Club had contacted the borrower’s employer to verify his or her claim on the
amount of earning; “income verified” defines the situation when Lending Club verified that the earning amount
claimed by the borrower is within an acceptable range. According to Lending Club’s company data obtained by
Bloomberg, only 35.6% of income sources for application of popular loan types are verified in 2016 (Scully,
2017). As explained by Lending Club, verification of income is not applied to initial application which already
passed their screening model, and the applicant is considered by Lending Club as lower risk borrower. However,
Blackburn and Vermilyea (2012) found out that misstated income from borrower is one of the major causes for
default on mortgage loan. Thus, the low POD of unverified income is inappropriate to explain credit level of
borrower who does not passed Lending Club screening model.

Table 13: Probability of default for each category in loan application type.

Category Coefficients, β Exp(β) Probability of Default
Intercept -1.4981 0.2236 0.1827
Joint application -0.1387 0.8705 0.1629

Lending Club allows joint application for single loan. Lending Club considers information from one of the
applicants or both as factors to decide whether to approve or reject the loan. Both co-borrowers have the obligation
to pay loan payment once the loan is approved. From Table 13, POD of reference category, individual application
is 18.27% which is riskier than joint application with POD of 16.29%. Joint application for loan usually offered
to population with short and incomplete credit history especially to those in undeveloped region, and it is proven
to outperform individual application in term of repayment performance (Zhou & Wei, 2020).

The objectives of this research are to create a machine learning model which can predict probability of default
and classifies the client’s based on their ability to pay the loan. In this research, loan applicant with POD higher
or equal to 20% is classified as default while POD lower than 20% is classified as non-default class.

6 Conclusions and Recommendations

The objectives of this research were to create a less bias solution that not only define client’s credit through FICO
score, but also a comprehensive evaluation that considers other factors related to the client for predicting
probability of default (POD) using machine learning model. Logistic regression model fitted to imbalanced dataset
outperforms model fitted to balanced dataset. Evaluation using area under precision-recall curve validates the
model built for default loan classification is not a random classifier. Decision threshold value which achieves
maximum balance between model recall and precision is selected with the highest F1-score.

Top 3 important features that affect POD are debt-to-income ratio, number of mortgage account, and FICO score.
High debt-to-income ratio significantly contributes to the rise of POD. Revolving balance feature provides
evidence to support the fact that the amount of outstanding payment does not reflect credit of an individual.
However, high buying power due to high credit limit and good financial status can cause more revolving balance
owed by an individual. This suggests that the utilisation rate of credit account and debt-to-income ratio are better
evaluation factors for credit risk. The research result shows that FICO score is still an important factor for credit
evaluation in P2P lending platform. The number of months since oldest bank instalment account opened and the
number of months since oldest revolving account opened both have negative coefficient, which support the
consideration of credit history length as effective factor for credit evaluation. Both mortgage number and credit
history length explained the low credit score of inexperience borrower with short credit history and the reason
why financial institutions prefer to allocate more resource to experienced borrowers.

The result of our model suggests that lenders should take extra precaution while dealing with borrowers who are
having more public derogatory records and offering higher amount of loan is riskier. Besides, lenders should also
beware of longer loan term which can increase the risk due to uncertainty causes by borrower’s income volatility.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 14

Nevertheless, credit rating model from the Lending Club is proven to have significant contribution on determining
the risk of borrower in P2P lending platform, where the lower the grade of borrower the riskier he or she is. The
model suggests that income source claimed by borrowers should be further verified with their employers to avoid
misstate of income source which can increase the risk. Lack of credit score such as FICO score among SME
entrepreneurs also posed difficulties while applying for loan. Thus, joint application of loan with better repayment
performance is suggested as an alternative to offer loan to high-risk borrowers in online P2P lending platform.

Limitation of machine learning model proposed is that the model is fitted to imbalanced dataset. This causes the
decision threshold for classifying default loan is set low to 0.2 for achieving highest F1-score. Low threshold
value leads to higher false positive rate and causes loss of potential excellent borrowers. More appropriate
resampling method can be applied for creating balanced dataset. As suggested by Yen and Lee (n.d.), different
clusters in a dataset have their own characteristic where clusters with more majority samples than minority will
behave like majority class, and a cluster will pose characteristic of minority class if it has more minority class
samples. Under-sampling method based on clustering can be carried out to select majority class sample which
may help the machine learning algorithm to better classifying default and non-default loan. Moreover, dataset
from Lending Club contains loan records range from year 2007 until the fourth quarter of year 2018 which also
includes records during the 2008 US financial crisis. Thus, it is suggested to select subset of data for model training
based on economic situation such as economic downturn and economic upswing.

In conclusion, logistic regression model proposed provides human-interpretable information of how borrower’s
information and loan type affect the probability of default of loan on online P2P lending platform. Logistic
regression model ensures the transparency of decision-making for loan approval and rejection which satisfy the
requirement of Central Bank of Malaysia. it is hoped that the result obtained in this research can help local P2P
lending platform in Malaysia to improve their credit screening process, hence provide a reliable online financial
platform for both lenders and SME entrepreneurs.

Acknowledgement
The authors wish to thank Universiti Malaysia Sarawak for the facilities provided during the running of this
research project.

References
Avery, R. B., Brevoort, K. P., & Canner, G. (2012). Does Credit Scoring Produce a Disparate Impact? Real Estate

Economics, 40. doi:10.1111/j.1540-6229.2012.00348.x

Bachmann, A., Becker, A., Buerckner, D., Hilker, M., Kock, F., Lehmann, M., & Tiburtius, P. (2011). Online
Peer-to-Peer Lending – A Literature Review. Journal of Internet Banking and Commerce, 16(23).

Blackburn, M. L., & Vermilyea, T. (2012). The prevalence and impact of misstated incomes on mortgage loan
applications. Journal of Housing Economics, 21(2), 151–168. https://doi.org/10.1016/j.jhe.2012.04.003

Chowdhury, M. Z. I., & Turin, T. C. (2020). Variable selection strategies and its importance in clinical prediction
modelling. Family Medicine and Community Health, 8(1), e000262. https://doi.org/10.1136/fmch-2019-
000262

Coenen, L., Verbeke, W., & Guns, T. (2021). Machine learning methods for short-term probability of default: A
comparison of classification, regression and ranking methods. Journal of the Operational Research Society,
73(1), 191–206. https://doi.org/10.1080/01605682.2020.1865847

Davis, J., & Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the
23rd International Conference on Machine Learning - ICML ’06. https://doi.org/10.1145/1143844.1143874

Diaz-Serrano, L. (2005). Income volatility and residential mortgage delinquency across the EU. Journal of
Housing Economics, 14(3), 153–177. https://doi.org/10.1016/j.jhe.2005.07.003

Dong, G., Lai, K. K., & Yen, J. (2010). Credit scorecard based on logistic regression with random coefficients.
Procedia Computer Science, 1(1), 2463–2468. https://doi.org/10.1016/j.procs.2010.04.278

Emekter, R., Tu, Y., Jirasakuldech, B., & Lu, M. (2014). Evaluating credit risk and loan performance in online
Peer-to-Peer (P2P) lending. Applied Economics, 47(1), 54–70.
https://doi.org/10.1080/00036846.2014.962222

Fisher, R. A. (2022b). Statistical Methods for Research Workers, 12th Ed. Rev. (Twelfth Edition). Oliver and
Boyd.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 15

George, N. (2018). All Lending Club loan data 2007 through current Lending Club accepted and rejected loan
data. Kaggle. https://www.kaggle.com/wordsforthewise/lending-
club?select=accepted_2007_to_2018Q4.csv.gz

Kim, H., & Devaney, S. A. (2001). The Determinants of Outstanding Balances Among Credit Card Revolvers.
Journal of Financial Counseling and Planning, 12(1).

Meyer, T. (2007, July 10). Online P2P lending nibbles at banks’ loan business. Retrieved from
http://www.venturewoods.org/wp-content/uploads/2007/11/p2p-lending.pdf

Namvar, E. (2013). An Introduction to Peer to Peer Loans as Investments. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.2227181

Saito, T., & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than the ROC Plot When
Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3), e0118432.
https://doi.org/10.1371/journal.pone.0118432

Scully, M. (2017, June 14). Biggest online lenders don't always check key borrower data. Retrieved August 29,
2022, from https://www.bloomberg.com/news/articles/2017-06-14/biggest-online-lenders-don-t-always-
check-key-borrower-details

Setiawan, N., Suharjito, & Diana. (2019). A Comparison of Prediction Methods for Credit Default on Peer to Peer
Lending using Machine Learning. Procedia Computer Science, 157, 38–45.
https://doi.org/10.1016/j.procs.2019.08.139

Wang, H., Xu, Q., & Zhou, L. (2015). Large Unbalanced Credit Scoring Using Lasso-Logistic Regression
Ensemble. PLOS ONE, 10(2), e0117844. https://doi.org/10.1371/journal.pone.0117844

Wang, Z., Jiang, C., Ding, Y., Lyu, X., & Liu, Y. (2018). A Novel behavioral scoring model for estimating
probability of default over time in peer-to-peer lending. Electronic Commerce Research and Applications, 27,
74–82. https://doi.org/10.1016/j.elerap.2017.12.006

Yen, S. J., & Lee, Y. S. (2006). Under-Sampling Approaches for Improving Prediction of the Minority Class in
an Imbalanced Dataset. Intelligent Control and Automation, 731–740. https://doi.org/10.1007/978-3-540-
37256-1_89

Zhou, J., Li, W., Wang, J., Ding, S., & Xia, C. (2019). Default prediction in P2P lending from high-dimensional
data based on machine learning. Physica A: Statistical Mechanics and Its Applications, 534, 122370.
https://doi.org/10.1016/j.physa.2019.122370

Zhou, Y., & Wei, X. (2020). Joint liability loans in online peer-to-peer lending. Finance Research Letters, 32,
101076. https://doi.org/10.1016/j.frl.2018.12.024

Appendix
Table A: Description of attributes from Lending Club 2007 to 2018 fourth quarter approved loan dataset.

Attributes Description Datatype
annual_inc The self-reported annual income provided by the borrower

during registration.
float64

application_type
Indicates whether the loan is an individual application or a joint
application with two co-borrowers

Object

dti

A ratio calculated using the borrower’s total monthly debt
payments on the total debt obligations, excluding mortgage and
the requested LC loan, divided by the borrower’s self-reported
monthly income.

float64

emp_length
Employment length in years. Possible values are between 0 and
10 where 0 means less than one year and 10 means ten or more
years.

float64

fico_range_high Highest FICO score value. float64
fico_range_low lowest FICO score value. float64
grade LC assigned loan grade Object

home_ownership
The home ownership status provided by the borrower during
registration or obtained from the credit report.

Object

int_rate Interest Rate on the loan float64
loan_amnt The listed amount of the loan applied for by the borrower. float64

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 16

loan_status Current status of the loan Object
mo_sin_old_il_acct Months since oldest bank instalment account opened float64
mo_sin_old_rev_tl_op Months since oldest revolving account opened float64
mort_acc Number of mortgage accounts. float64
num_bc_tl Number of bankcard accounts float64
num_rev_accts Number of revolving accounts float64
open_acc The number of open credit lines in the borrower's credit file. float64
pub_rec Number of derogatory public records float64
pub_rec_bankruptcies Number of public record bankruptcies float64
purpose A category provided by the borrower for the loan request. Object
revol_util Revolving line utilisation rate, or the amount of credit the

borrower is using relative to all available revolving credit.
float64

tax_liens Number of tax liens float64
revol_bal Total credit revolving balance float64
term The number of payments on the loan. Values are in months and

can be either 36 or 60.
Object

verification_status Indicates if income was verified by LC, not verified, or if the
income source was verified

Object

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 17

Trends and Future Directions in Automated
Ransomware Detection

1,2*Abayomi Jegede, 3Ayotunde Fadele, 4Monday Onoja, 5Gilbert Aimufua and 6Ismaila Jesse

Mazadu
1Department of Computer Science, University of Jos, Nigeria

2Africa Centre of Excellence on Technology Enhanced Learning, National Open University of Nigeria, Abuja,
Nigeria

3Department of Computer Science, Federal College of Education Zaria, Nigeria
4Department of Mathematics and Computer Science, Federal University of Health Sciences, Otukpo, Nigeria

5Department of Computer Science, Nasarawa State University, Keffi
6Department of Computer Science, Federal University, Wukari, Nigeria

email: 1,2*jegedea@unijos.edu.ng, 3ayotundefadele@yahoo.com, 4mondiono@gmail.com,
5aimufuagio@yahoo.com, 6mazadujesse@gmail.com

*Corresponding author

Received: 21 August 2022 | Accepted: 24 October 2022 | Early access: 28 October 2022

Abstract - Ransomware attacks constitute major security threats to personal and corporate data and
information. A successful ransomware attack results in significant security and privacy violations with
attendant financial losses and reputational damages to owners of computer-based resources. This makes it
imperative for accurate, timely and reliable detection of ransomware. Several techniques have been proposed
for ransomware detection and each technique has its strengths and limitations. The aim of this paper is to
discuss the current trends and future directions in automated ransomware detection. The paper provides a
background discussion on ransomware as well as historical background and chronology of ransomware
attacks. It also provides a detailed and critical review of recent approaches to ransomware detection,
prevention, mitigation and recovery. A major strength of the paper is the presentation of the chronology of
ransomware attacks from its inception in 1989 to the latest attacks occurring in 2021. Another strength of the
study is that a large proportion of the studies reviewed were published between 2015 and 2022. This provides
readers with an up-to-date knowledge of the state-of-the-art in ransomware detection. It also provides insights
into advances in strategies for preventing, mitigating and recovering from ransomware attacks. Overall, this
paper presents researchers with open issues and possible research problems in ransomware detection,
prevention, mitigation and recovery.

Keywords: machine learning, deep learning, neural network, security, ransomware attack, ransomware
detection

 Introduction
Ransomware is malware that hijacks data or systems and prevents legitimate owners of such data or systems from
accessing them. Ransomware may encrypt data or lock the system using processes, tools and techniques which
make the locking or encryption difficult for a computer expert to reverse. It may also steal sensitive data from
victims’ computers and networks. Ransomware targets personal computers, business systems (including their data
and applications) and industrial control systems. It also attacks internet of things (IoT) spectrum sensors (Celdrán
et al., 2022). A ransomware attack uses private key encryption to deny a legitimate user access to his system or
data until he pays a ransom (money), usually in bitcoin (Richardson & North, 2017). Ransomware attacks may
also involve data exfiltration, whereby attackers copy sensitive files from compromised devices with a threat to
revel such files to the public if the owner fails to pay ransom. The malware spreads through email attachments,
malicious advertisements and by clicking a link to a malicious website. It locates the drives on the victim’s system
or network and encrypts the files in each drive to deny the legitimate owners’ access to such files (Morhurle &

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 18

Patil, 2017). The attacker also provides a file, (or files) which contains instructions for paying the ransom. The
decryption key is made available to the victim once the attacker confirms the payment of the ransom. Files infected
or encrypted by ransomware usually contain extensions such as .aaa, .micro, .encrypted, .ttt, .xyz, .zzz, .locky,
.crypt, .cryptolocker, .vault, or .petya. The extension of each file determines the type of ransomware that infected
the file. Examples of ransomware are Reveton, CryptoLocker, CryptoLocker.F and TorrentLocker, CryptoWall,
CryptoTear, Fusob and WannaCry (Andronio et al., 2017). Ransomware can be grouped into (1) crypto
ransomware, (2) locker ransomware and (3) scareware (Andronio et al., 2017). Figure 1 illustrates the operations
of policing (locker) ransomware and encrypting (crypto) ransomware (F-Secure Labs, 2013).

Figure 1: Encrypting ransomware vs. police ransomware operation flowchart

Crypto ransomware is the most common ransomware which attacks computer systems and networks. This
category of ransomware uses symmetric and/or asymmetric cryptographic algorithm to encrypt files and data.
Crypto ransomware renders encrypted data inaccessible even if the malicious software is removed from an
infected device or a compromised storage media is inserted into another device. The infected device can still
function and could be used to pay the ransom because the malware does not usually affect critical system files
(Savage et al., 2015). Locker ransomware, on the other hand, locks a computer or any other device and prevents
the owner from using it (Savage et al., 2015). Locker ransomware affects only the device, without rendering stored
data inaccessible. There is also no alteration to the data after the removal of the malicious software. The data can
often be recovered by inserting the infected storage device, such as a hard drive, into another system. This makes
locker ransomware unattractive for extorting money from victims of attack. A scareware exploits its victims by
displaying a warning on their computer screens that the systems have been infected and with a claim that a fake
antivirus advertised by the attacker could be used to remove the ransomware (Brewer, 2016). The repeated display
of the scareware alert prompts many innocent users to purchase and install the bogus antivirus. Other categories
of ransomware include human-operated ransomware (Microsoft Ignite, 2022) and fileless ransomware
(Crowdstrike, 2022a). Cyber criminals also use human-operated ransomware to penetrate networks or cloud
infrastructure, perform privilege escalation and launch attacks against critical data. It is an active attack which
targets an entire organization instead of a single system. Attackers usually leverage on incorrect security
configurations to penetrate an entire IT infrastructure, perform lateral movement and exploit vulnerabilities. This
results in unauthorized access to credentials of privileged users with the ultimate goal of launching ransomware
attacks against IT infrastructures which support critical business operations. Fileless ransomware, on the other
hand, uses native and legitimate system tools to launch attacks (Crowdstrike, 2022b). They are difficult to detect
because the attack does not require the installation of any code on a victim’s system. Hence, anti-ransomware
tools do not find any suspicious file to track during an attack. Human-operated ransomware and fileless
ransomware may be used to carry out file encryption, locking or data leak depending on the motive of an attacker.

Ransomware poses serious threats to files and devices used by businesses and individuals. It prevents innocent
victims from accessing infected files or compromised devices until they pay ransom usually in the form of bitcoin.
In many cases, hackers do not provide the decryption key even after a victim pays a ransom. At other times, an
attempt to decrypt files using the key provided by an attacker causes further harm to files stored on the system.
Technological innovations such as ransomware development kits, ransomware-as-a-service and bitcoins facilitate
the persistent increase in ransomware attacks against personal computers, networks and mobile devices (Zetter,

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 19

2015). Businesses and individuals suffer losses to the tune of hundreds of millions of dollars annually due to
ransomware attacks (Fitzpatrick et al., 2016). The huge amount of money which hackers make from ransomware
attacks fuels the frequent development of new versions of the malware. In fact, multiple versions of ransomware
have emerged each year since 2013. The evolution of different variants of ransomware which cannot be detected
by conventional antivirus and other intrusion detection systems, as well as the huge losses which ransomware
attacks inflict on individuals and businesses, highlight the need for innovative, efficient and reliable techniques
for effective detection, prevention and mitigation of ransomware attacks.

The paper is novel in the following areas. Firstly, it presents a much more detailed and comprehensive history and
chronology of ransomware than other related studies. A related work (Vehabovic et al., 2022) presents the history
of ransomware from 2012 to 2021, while our work covers ransomware’s history from its inception in 1989 to the
latest attacks in 2021. The other study also presents high-level classification of existing ransomware detection
methods into four broad categories, with few papers (about forty-seven) reviewed for all the categories, while our
paper surveyed almost twice this number and provides much more detailed review of each paper. A significant
number of the papers surveyed were published in 2022, unlike the other study which reviewed only a single 2022
paper. Secondly, our paper has a broader scope than the work of McIntosh et al. (2021), which focused primarily
on ransomware mitigation, and Oz et al. (2021), whose focus is only on defence/prevention. Our work covers
history, detection, defence/prevention, mitigation and recovery. Also, our paper provides an up-to-date review of
ransomware attacks by surveying several 2022 papers, while almost all the papers reviewed in McIntosh et al.
(2022), and Oz et al. (2021), were published before 2021. Finally, the focus of Dargahi et al. (2019) is completely
different from that of our work. The paper presents a taxonomy of crypto-ransomware features using cyber-kill-
chain, while the emphasis of our research is on history, detection, defence/prevention, mitigation and recovery.
The rest of our paper is divided into the following sections. Section 2 presents the methodology used for the study,
while Section 3 covers the historical background and chronology of ransomware attacks. Section 4 discusses the
state-of the-art in ransomware detection, while Section 5 is a review of some methods for preventing, mitigating
and recovering from ransomware attacks. Section 6 presents suggestions for future research, while Section 7 is
the conclusion of the study.

Stages in Ransomware Attack

Ransomware attack involves a number of phases. Figure 2 illustrates the flow of activities required to carry out
such an attack.

Figure 2: Phases of ransomware attack

An attacker uses exploitation and infection phase to identify vulnerabilities that can be used to launch an attack
against a victim computer. The attacker may use a malicious email attachment or an exploit kit for this purpose.
For example, the cryptolocker ransomware uses the Angler exploit kit to access and execute on victims’
computers. The Angler exploit kit can exploit common vulnerabilities in Adobe Flash and Internet Explorer. The
delivery and execution stage involves the installation and execution of the actual ransomware code on the victim’s
system once there are known vulnerabilities that can support the execution of the malicious payload. Once the file
malicious payload executes, it establishes connection with the attacker via the command-and-control mechanism
and continues to do further damage. Back-up spoliation involves identification and removal of the system’s back-
up files and folders to prevent restoration of infected files from back-up. This takes place few seconds after the
execution of the ransomware. This is to ensure that victims cannot retrieve compromised files without paying
ransom. For example, CryptoLocker and Locky uses vssadmin tool to execute a command that deletes the volume
shadow copies from Windows systems. Other variants of these ransomware can identify and delete files from
backup folders in order to make recovery a herculean task. File encryption occurs after the removal of backup
folders. The process involves a secure key exchange with the command-and-control server to generate encryption
keys that will be used to lock the files on the local system. Most modern ransomware variants use strong
encryption algorithms such as AES 256 or RSA 1024 which makes it difficult for victims to decrypt infected files.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 20

Ransomware variants such as SamSam performs file encryption locally (on victim systems) without any need to
access a command-and-control server via the Internet. Finally, the hacker notifies the victim of the attack and
presents instructions for payment of ransom. This occurs after the removal of the back-up files and encryption of
the main files. The victim is often asked to pay a ransom within a few days and failure to do so results in an
increase in the amount charged for ransom. The payment instructions are usually stored on the hard drive or in
the folders containing infected files. At other times, they are saved in specific locations on the hard disk. The
malicious executable file automatically deletes itself from the infected system to avoid recovery of useful forensic
evidence that would reconstruct the attack and protect against the malware.

 Methodology
The achievement of the overall objectives of the paper involved the following phases: data collection/information
gathering, data extraction/analysis, information synthesis and reporting. Figure 3 is the research process flow,
which illustrates the flow of activities involving the phases and the relationship between them.

Figure 3: Research process flow

Data collection was performed by selecting relevant and up-to-date journal and conference papers from reputable
databases such as IEEE, Springer, MDPI, Elsevier, IET and Archive.org. Other sources include university-based
journals, thesis/dissertations and blogs published by reputable organizations such as Microsoft, Crowdstrike,
Symantec and Techspot. The materials are then grouped into two main categories, namely, non-technical sources
and technical sources. Non-technical sources include materials containing general information on ransomware
and as such, provide reliable information for writing the sections on introduction and ransomware
history/chronology of attacks. Technical papers that proposed solutions for ransomware attacks are divided into
four groups: detection, prevention, mitigation and recovery. A paper is placed in a group depending on the nature
or purpose of solution it proposes. Papers that focus on detection are further subdivided into artificial intelligence
(AI)-based methods and non-artificial intelligence-based approaches. AI-based approaches are then classified into
machine learning methods, deep learning approaches and artificial neural networks approaches, while papers
which used non-AI approaches are grouped into packet and traffic analysis categories. Data extraction involved a
detailed analysis and summary of each technical paper by identifying the problem the paper addressed, its
objective(s), the method/technique used, achievements of the paper in terms of the results obtained, and limitations
of the study. Information synthesis was applied to identify similarities or relationships among papers in each group
and, if and how a study improved upon, or addressed the limitations of another work. The reporting phase placed
papers which addressed similar problems or used similar techniques in the same group, and presented their reviews
in the same paragraph. This provides a good flow of communication and enhances the readability of the paper. It
also provides readers with a clear understanding of the concepts discussed in the study.

 Historical Background and Chronology of Ransomware Attacks
Ransomware was first developed in 1989, when Dr. Joseph Popp created a malware called PC Cyborg or AIDS
trojan. The malware attacked systems by hiding all folders and encrypting files on the hard disk. The ransomware
spread via floppy disks and attackers used a script to request victims to send $189 to a post office box in Panama
in favour of PC Cyborg Corporation [6]. The infection prevented users from accessing their computers until
ransom was paid and attacks were reversed. The development of strong encryption algorithms has led to the
emergence of many variants of the AIDS trojan, which makes it difficult for victims to recover encrypted files
without paying ransom. The worst ransomware attack occurred in 2017 with the emergence of the WannaCry
Ransomware. This malware encrypts files or systems, and denies legitimate users’ access to files or entire devices.
A victim can access his files or system only after a ransom is paid and the attacker releases a decryption key. The
Wannacry ransomware affected more than 2 million victims cutting across health, business, education and

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 21

government sectors. WannaCry encrypts user data and leaves only two files consisting of the encrypted file and a
file containing instructions for payment of ransom. The second file also contains a threat that hijacked data will
be deleted if the victim fails to pay ransom. The ransomware opens an original file, reads its contents, creates the
encrypted version and closes the file (Scaife et al., 2016). India suffered the worst WannaCry ransomware attack
with Madhya Pradesh, Maharashtra and Delhi recording 32.63%, 18.84% and 8.76% of total attacks on the country
respectively (eScan, 2017). High net worth corporations like FedEx, Nissan, railway companies in Germany,
Russian Railways, Megafor Telefonica were also not spared. Many NHS organisations in United Kingdom were
severely hit. The attack also caused serious damages to computers belonging to universities and students in China.
Well-known internet service providers like RailTel and Vodafone were the most severely affected (Mohurle &
Patil, 2017).

Table 1 presents a chronology of major ransomware attacks. The table provides important information on
ransomware evolution based on the year a ransomware emerged, the name of the ransomware, its mode of attack,
how it spreads, encryption strategy and method used by victims to pay ra`nsom.

Table 1: Chronology of major ransomware attacks

Year Ransomware
Name

Attack mode Mode of spread encryption
strategy

Ransom
payment method

1989 AIDS Trojan Encryption of
file names

Infected floppy disk Symmetric
encryption

$189 postal order

2005 Trojan
PGPcoder

File encryption Spam email
attachment

Asymmetric RSA-
1024 encryption

N/A

2006 Trojan Cryzip Creates
password-
protected
archives of
infected files

Spam email
attachment

Password locking No payment;
malware code
includes password

Archievus Encryption of
My Documents
folder

Phishing emails Asymmetric RSA-
1024 encryption

Purchase of 30-
digit recovery
password

2007 Locker Display of
pornographic
image on the
machine

Phishing attack AES and RSA SMS text message
or calling a
premium-rate
phone number

2008 GPcode.AK File encryption
of subdirectory

Email phishing Asymmetric RSA-
1024 encryption

$100 to $200 in e-
gold or Liberty
Reserve

2011 60,000 new
samples

Varying attack
modes

Different modes of
spread

Varying encryption
and locking
methods

Anonymous
payment services

2012 Reveton Password
stealing

Clicking malicious
link

Malicious
JavaScript files

Around $300

Trojan.Randso
m.C

Device locking N/A N/A calling a
premium-rate
phone number to
reactivate
Windows license

2013 CyptoLocker File encryption Gameover ZeuS
banking Trojan
botnet;

public and private
cryptographic keys

Two Bitcoins (or
$100), CashU,
Ukash,

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 22

malicious email Paysafecard, and
MoneyPak

Locker File encryption Spam campaigns AES $150 via Perfect
Money or QIWI
Visa Virtual Card
number

2014 CryptoDefens
e

File encryption Spear phishing
email

RSA-2048 earned $34,000 in
its first month

CryptoWall File encryption Infected USB drive,
email, malicious
executables,
malicious websites

RSA-2048 more than
$1,000,000

2015 LockerPin Device locking

Encryption of
data and web
applications
files

Adult entertainment
app

AES $500

Linux.Encoder
.1

Exploits the flaw in
Magento shopping
cart software

AES and RSA Unspecified
amount in bitcoin

2016 Petya File overwriting
and full hard
disk encryption

MEDoc tax and
accounting software

Master boot record
(MBR) and file
encryption

$300

KeRanger File encryption Infected web link RSA

1 bitcoin

Xbot File encryption
and stealing
online banking
details

SMS messages N/A $100

2017 WannaCry File and device
encryption

Unknown Hybrid (AES and
RSA)

$300 in bitcoin

Bad Rabbit Device locking Drive-by-download
on infected
websites

Locks users’
devices when they
click on alicious
Adobe Flash
installer

$280 bitcoin

2018 GandCrab File encryption Infected phishing
email, Microsoft
Office macros,
VBScript and
ransomware-as-a-
service

Installs on a device
and encrypts user
files when they
access infected
email

$500-$600

Katyusha File encryption Malware trojan
encrypts and adds
‘Katyusha’
extension to
infected files

Infects networks
using EternaBlue
and DoublePulsar
exploits

0.5 bitcoin

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 23

Ryuk File encryption Massive spam
attacks and exploit
kits

Symmetric AES-
256 and asymmetric
RSA-2048
encryption

15-50 bitcoins

2019 Prolock/
PwndLocker

File
lock/encryption

Qakbot Trojan Asymmetric RSA-
2048 encryption

Bitcoin

LockerGoga File encryption
and file wiping

Logs users out of
systems, encrypts
files and deactivate
devices

Cryptographic
encryption and
deletion of infected
files

N/A

PewCrypt File encryption Spam email
messages

Symmetric 256-bit
Advanced
Encryption Scheme
(AES-256)

Free

Dharma v2019 File encryption Malicious email Symmetric AES-
256 algorithm

N/A

2020 Nefilim File encryption Remote desktop
protocol (RDP)
attack

AES-256
encryption for
victim’s files; RSA-
2048 algorithm to
encrypt the AES-
256 keys

Via email
communication

Ransomware
Name

Attack mode Mode of spread encryption strategy Ransom payment
method

Paradise
v2020

File encryption Spam message
containing internet
query attachments

RSA-1024 and
RSA-2048
algorithms

No ransom. Tools
are available to
retrieve encrypted
files

Maze File encryption Exploit kits such as
Fallout and Spelva

RSA and ChaCha20
stream cipher

$6m - $15m

REvil File
encryption/file
blocking

Phishing email and
malicious
attachment

AES or Salsa20 $70m in bitcoin

Tycoon Password
exploitation of
file servers and
domain
controllers

Insecure connection
to an RDP server
and a malicious
(trojanized) Java
Runtime
Environment

RSA N/A

NetWalker Full Windows
device
encryption

Network-wide
executable files and
VBS script
attachments in
Corona virus
phishing emails.

Salsa20 More than $30m
total ransom since
March 2021

2021 Dark side File encryption
and data
exfiltration

VPN password Lightweight
Salsa20 with RSA-
1024

75 bitcoin or
$4.4m

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 24

ReVil File
encryption/file
blocking

Vulnerability in
Microsoft
Exchange servers

AES or Salsa20 $50m in Monero
cryptocurrency
demanded

Phoenix
locker

File encryption
on desktop and
network shares

Spam emails RSA-2048
algorithm

$40m

ContiLocker File encryption
and data
exfiltration

Via unprotected
remote desktop
protocol (RDP) port

RSA-4096 and
AES-256-CBC

$2.6m

Avaddon File encryption,
data exfiltration
and DDoS

Malicious
JavaScript files

AES-256 $40,000 or its
equivalent in
bitcoin

The table shows that the development of ransomware and deployment of ransomware attacks have been on the
rise since 1989 when the first known ransomware emerged. Most ransomware attack involves encryption of files
and sub-directories. The devices can still function, but the infected files are inaccessible to legitimate users. A less
common form of attack involves blocking users from gaining access to their devices, even if the files stored on
such devices are accessible. New variants of malware have also emerged each year since 2013. This is because of
the availability of sophisticated tools that enable attackers to easily craft ransomware scripts as well as huge
amounts of money hackers make from ransom payment. Maze, REvil, Ryuk, Tycoon and NetWalker are currently
the five most dangerous ransomware attacks (Ransomware Attacks, 2021). Several factors enhance the growth of
ransomware and persistent increase in ransomware attacks. These include easy procurement of powerful
encryption (symmetric and asymmetric) algorithms, which enables attackers to easily craft a ransomware tailored
for a specific attack, or environment and availability of effective infection vectors such as spam email and
malvertising, which ensure that a ransomware spreads rapidly to as many users as possible (Adamov & Carlson,
2017). Other factors are easy accessibility of victims to cryptocurrency for ransom payments (including the ease
with which attackers can convert cryptocurrency to cash without any trace) and the availability of Ransomware
as a Service (RaaS) also enables unskilled and less knowledgeable attackers obtain customize ransomware and
track victims via a user interface (Gellegos-Segovia et al., 2017). The creators of RaaS earn a percentage of profits
from ransomware attacks launched via their platforms.

 Ransomware Detection
Research show that ransomware attacks are on the rise and have doubled in the first quarter of 2020 due to increase
in remote working culture imposed by COVID-19 pandemic. Many individuals who work from home do not
practice the same cybersecurity measures commonly imposed in the office environment. Also, most remote
workers use personal devices which are not adequately equipped with security mechanisms such as antimalware
packages, firewall, intrusion detection/prevention systems, password management tools and encryption software.
Ransomware leverages on new vulnerabilities found in systems and networks, using attacks focus on both small,
medium and big companies who imbibe the remote working culture. Apart from encrypting files and locking
devices, ransomware can also use sophisticated techniques to carry out data exfiltration. This resulting exposure
of sensitive information may lead to severe security concerns and privacy violations. This is addition to financial
losses and reputation damage suffered by victims. Ransomware attack against a health facility may result in loss
of life such as in the case of a Dusseldolf University hospital patient where an attack interrupted emergency
services and the hospital management had to send the patient to another hospital 17 miles away (Fingers, 2020).
The patient eventually died as a result of delay in treatment. Ransomware payment is also a means by which
attackers extort several millions of dollars from innocent victims every year (Symantec Corporation, 2016)
Ransomware attacks account for more than 41% of cyber insurance claims in 2020 and it is projected that total
losses which have organizations suffer from ransomware attacks may hit $20 billion at the end of 2020 (Potoroaca,
2020). The money which organizations use to pay ransom can be channeled to other productive ventures resulting
in the overall growth of the business. These concerns highlight the need for efficient and reliable methods for
ransomware detection, prevention, mitigation and recovery. Ransomware detection methods are generally
categorized into automated and manual. Automated approaches rely on the use of tools to detect and report
ransomware attacks. Such tools are usually software packages which may also possess the ability to block attacks.
Manual detection methods focus on regular inspection of files and devices for obvious signs of attacks. This
includes checking for changes in file extensions and whether authorized users can access files and devices. That

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 25

is, checking whether a malware attack has not modified files and authorized users have not been blocked from
accessing their devices and files. The flow of presentation in this section is illustrated in Figure 4.

4.1 Automated Ransomware Detection

Existing approaches for ransomware detection predominantly focus on system level monitoring, for instance, by
tracking the file system characteristics. Automated ransomware detection approaches can be divided into two
major categories namely, artificial intelligence (AI)-based methods and non-artificial intelligence (non-AI)-based
methods. AI-based methods commonly use techniques such as machine learning (ML), deep learning (DL) and
artificial neural network (ANN) for ransomware detection. Some tools apply variants of these techniques or a
hybrid approach using a combination of two or more techniques to address the menace of ransomware attacks.
Non-AI methods use approaches such as packet inspection and traffic analysis to detect ransomware. A major
strength of automated approaches is their ability to detect, block and recover from ransomware attack without
human intervention. The tools also possess high level accuracy and reliability in terms of ransomware detection,
prevention and recovery.

Figure 4: Flow of presentation on ransomware detection

4.1.1 Artificial Intelligence-Based Methods

Artificial intelligence-based methods use machine learning (such as behavioural techniques and static and
dynamic analysis), deep learning and artificial neural network to perform automated detection of ransomware
attacks.

4.1.1.1. Machine Learning Approaches

Machine learning (ML) is a branch of artificial intelligence which provides systems with the ability to learn from,
and detect patterns in existing data, while making decisions with little or no human intervention (Dontov, 2019).
It is a method commonly used to automate analytical model building. ML techniques enable computers to make
predictions based on patterns found in large datasets. The algorithms are able to adapt to changes and make
improvements as the size of the dataset increases. The ability of ML to make predictions based on file behaviour
as well as known and unknown datasets makes it a viable tool for detecting previously unknown ransomware
variants. However, machine learning techniques require a minimum of between 50 and 1,000 data points to make
reliable prediction. Few samples may result in overfitting and biased prediction. Also, training machine learning
algorithms require significant amount of time. File behaviour detection is the major application of machine
learning to ransomware detection. ML algorithms use specialized analysis (such as interactive debugging or post
mortem code execution analysis) to extract large amount of salient and discriminant information in order to learn
the behaviour of a legitimate or normal application. ML-based ransomware detection tools perform detailed
analysis of legitimate code execution and are able to identify malicious applications. Such tools make intelligent

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 26

decisions and prompts specific actions by leveraging on their ability to distinguish between normal and abnormal
program execution. The machine learning approaches explored in this study are behavioural techniques as well as
static and dynamic analysis.

Behavioural Techniques
A normal application behaviour is measured from both user perspective and resource perspective. A normal
behavioural baseline is established based on what represents normal or routine operations of a computer system
or network. Such operations may include logins, file access, user and file behaviors, resource utilization, and other
important signs of normal activity (Acronis International, 2021). The duration of the learning process depends on
the amount of data needed to establish a baseline to represent normal system behaviour. The tool identifies and
scrutinizes behavioural anomalies which do not fall within the normal behavioural pattern represented by the
baseline. (Juan et al., 2017) proposed a ransomware detection and prevention model for unstructured dataset
extracted from Ecuadorian control and regulatory institution (EcuCERT) logs. The approach uses machine
learning techniques to detect abnormal behavioral patterns associated with Microsoft Windows-based
ransomware. Feature selection was applied to the Log data to extract the most useful and discriminating
information that represents a ransomware threat. The extracted information represents the feature set which serves
as input for automatic learning algorithms. The algorithms use the input feature set to model abnormal behavioral
patterns in order provide timely and reliable detection of ransomware. There was an attempt to address the
limitations of signature-based methods in detecting ransomware attacks which evolve daily due to availability of
code obfuscation techniques and creation of new polymorphic variants (Shaukat & Ribeiro, 2018). This is
necessary because generic malware attack vectors do not adequately capture the specific behavioral patterns of
cryptographic ransomware and as such, not sufficient or reliable enough for ransomware detection. The proposed
approach known as RansomWall is a layered and hybrid mechanism based on the application of static and dynamic
analyses to generate a new set of features that model ransomware behavior. The approach uses a strong trap layer
for early detection of ransomware and is suitable for detecting zero-day attacks. An evaluation of RansomWall
and Gradient Tree Boosting Algorithm on 574 samples of 12 Microsoft Windows operating system-based
cryptographic ransomware produced 98.25% detection rate and very low (almost zero) false positives. It is also
able to detect 30 zero-day attack samples, with less than 10% detection rate compared to 60 VirusTotal security
engines. CryptoDrop was developed to provide early detection of ransomware based on suspicious file activity
(Scaife et al., 2016). It uses a set of behavioral features to terminate any process that alters a large amount of the
user’s data. CryptoDrop can integrate common ransomware features to support rapid detection with low false
positives. Experimental analysis shows that CryptoDrop is an efficient tool for ransomware detection and
prevention. It is able to prevent execution of ransomware files with a median loss of only 10 files out of almost
5,100 tested files. Overall, the approach leverages on behavioral analysis to minimize data loss due to ransomware
attacks. A limitation of CryptoDrop is its inability to determine the intent of attack indicated by changes in file
behaviour. An example is a situation where the tool cannot determine whether a set of documents is encrypted by
the user or ransomware. The system simply notifies the user who decides whether a suspicious activity is desirable
or not. CryptoDrop flags legitimate activities such as compression whose behavior is normal, expected, desirable,
and not actually invasive. It is necessary for future versions to possess the ability to distinguish legitimate bulk
transformation activities such as file compression from malicious attacks.

Table 2 presents a summary of previous studies on behavioural techniques for ransomware detection.

Table 2: Summary of related works (behavioural techniques)

Author Problem addressed Method used Result Limitation
Shaukat &
Ribeiro
(2018)

Ransomware
detection

Layered and hybrid
mechanism
(RansomWall)

Suitable for detecting
zero-day attacks

N/A

Scaife et
al. (2016)

Ransomware
detection

Evaluation of
RansomWall and
Gradient Tree
Boosting Algorithm
(CryptoDrop)

Median loss of only 10
files out of almost
5,100 tested files

Inability to
determine the
intent of attack
indicated by
changes in file
behavior

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 27

Makinde et
al. (2019)

To detect the
susceptibility of a real
network system to
ransomware attack

Machine Learning Correlation above 0.8 It simulated the
behaviour of few
users

Ahmad et
al. (2019)

To distinguish
members of the
Locky ransomware

Behavioural
ransomware
detection approach
(parallel classifiers)

Highly accurate
detection with low false
positive rate

N/A

Zahra &
Sha (2019)

Detecting Cryptowall
ransomware attack

Command and
control (C&C)
server black listing

Extracts TCP/IP header
from web proxy server
which serves as the
gateway to TCP/IP
traffic.

The model was not
implemented to
demonstrate its
accuracy and
effectiveness in
detecting
ransomware and
their modes of
attack against
different operating
system
environments

Singh et
al., (2022)

Detection of
previously unknown
ransomware families
and classification of
new ransomware
attacks

Examines access
privileges in process
memory to achieve
easy and accurate
detection of
ransomware

accuracy ranges
between 81.38% and
96.28%.

N/A

A variant of behavioural detection approaches used a machine learning baseline model for simulating and
predicting the individual network user behaviour pattern at the micro level in order to detect possible scenarios
that may indicate a vulnerability or an actual ransomware attack (Makinde et al., 2019). The goal was to detect
the susceptibility of a real network system to ransomware attack. A comparative evaluation of the results obtained
from the simulated network and the log data obtained from the server in the real-life network system indicates a
realistic model with a correlation above 0.8. A limitation of this approach is that it simulated the behaviour of few
users. Future works should focus on using tools for big data analytics to simulate the behaviour of a large number
of users. A more recent behavioural ransomware detection approach used two parallel classifiers to distinguish
members of the Locky ransomware family according to their types (Ahmad et al., 2019). The method focused on
early detection based on behavioural analysis of ransomware network traffic in order to prevent a ransomware
from connecting to command-and-control servers and executing harmful payloads. The study used a dedicated
network to collect network information and extract relevant features of network traffic. The extracted features of
the Locky ransomware family are processed by two independent (parallel) classifiers working on data at packet
and datagram levels. Experimental results show that the method is able to extract valid features and provides a
high level of effectiveness in tracking the activities of ransomware on the network. It also offers highly accurate
detection with low false positive rate. Zahra and Sha (2019) proposed a domain-specific framework for detecting
Cryptowall ransomware attack based on the communication and behavioral analysis of the ransomware in an IoT
environment using command and control (C&C) server black listing to detect ransomware attacks. The method
extracts TCP/IP header from web proxy server which serves as the gateway to TCP/IP traffic. It also extracts
source and destination IP addresses and compares them with blacklisted IP of Command-and-Control servers. A
ransomware is detected if the source or destination IP matches ransomware attack for IoT devices. However, the
model was not implemented to demonstrate its accuracy and effectiveness in detecting ransomware and their
modes of attack against different operating system environments. A very recent approach to behavioural-based
detection leverages on access privileges in process memory to achieve easy and accurate detection of ransomware
(Singh et al., 2022). The method can also detect previously unknown ransomware families and classify new
ransomware attacks using the access privileges a file or an application possesses and the area of memory it intends
to access. The helps to identify the behaviour of an executable, and detect its intent before it causes serious damage
to legitimate files and applications. Experimental results based on these multiple algorithms produced good
detection accuracy which ranges between 81.38% and 96.28%.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 28

Static and Dynamic Analysis
A novel detection technique based on static analysis extracts features directly from raw ransomware binaries using
frequent pattern mining (Khammas, 2020). It also uses Gain Ratio technique to select 1000 features for optimal
ransomware detection. Random forest classifier was used to analyze the impact of trees seed numbers on the
detection process. Experimental results show that the detection rate of proposed approach is 97.74%. Direct
extraction of raw ransomware binaries results in a remarkable increase in the speed of detection. An enhanced
approach to ransomware detection integrates dynamic analysis with machine learning (Hwang et al., 2020). It is
a hybrid ransomware detection model based on Markov model and Random Forest model. The approach uses
Windows API call sequence pattern to build a Markov model which extracts the unique features of ransomware.
This is followed by using Random Forest to model the remaining data in order minimize error rates. The two-
stage mixed detection technique achieved good detection rates with an overall accuracy of 97.3%, 4.8% FPR
(false positive rate) and 1.5% FNR (false negative rate). A similar approach known as EldeRan uses dynamic
analysis to detect ransomware at run-time (Sgandurra et al., 2016). The technique leverages on the fact that run-
time features exhibited by ransomware samples are similar for all ransomware families. EldeRan performs
dynamic analysis and ransomware detection by monitoring the actions carried out by applications when they are
first installed and checking for obvious signs of ransomware. The result of experiments carried out on a dataset
of 582 ransomware and 942 goodware applications, shows that the approach achieves an area under the ROC
curve of 0.995. A major strength of the EldeRan lies in its ability to perform dynamic analysis and ransomware
detection even if the entire dataset of a ransomware family is not available. This supports early detection of new
ransomware variants.

An improved technique for ransomware detection used an integrated approach, which combines static and
dynamic analysis (Bazrafshan et al., 2013). It is an analysis framework based on support vector machines, which
uses “run-time” and “static code” features for early detection of known and previously unknown ransomware
variants. The results of experiments based on a wide array of ransomware types suggest that the integrated
approach provides better ransomware detection than using either static analysis or dynamic analysis individually.
The integration of static and dynamic analysis has also been used to analyze ransomware threats against mobile
devices and perform mobile ransomware detection (Yang et al., 2015). The proposed approach combines the
results of static and dynamic analysis for detecting ransomware threats and attacks against mobile applications. It
is a two-phase approach which integrates data states and software execution on the critical test path of the Android
API. The first phase is static analysis which detects the likelihood of an attack by using API, existing attack
patterns and dynamic analysis to execute a program in a limited and restricted scope and comparing whether the
detected path conforms with existing attack patterns. The second phase (which is runtime dynamic analysis) uses
dynamic inspection to detect the nature of attack and possible violation of data confidentiality (such as web
browser cookie) without compromising sensitive and secured data sources in mobile device. A related work
detects unknown ransomware by using the most discriminating API calls to train a classifier (Sheen & Yadav,
2018). The approach was applied on an imbalanced dataset consisting of unequal amounts of ransomware and
benign data. Experimental results show that the approach is more suitable for random forest than decision tree or
KNN. Random forest produced the best detection rate of over 98% because it is more robust against class
imbalance than decision tree and KNN. A limitation of this study is class imbalance in the dataset due to the
difference in the number of samples in the ransomware class and benign class. A future work should apply the
same technique on a balanced dataset using the same classifiers and observe the outcome. An improved approach
integrates feature generation engines and machine learning for analyzing malware samples obtained from raw
binaries, assembly codes, libraries, and function calls in order to identify the goal malicious codes intend to
achieve. Poudyal et al. (2018) applied different supervised ML techniques on features extracted from ransomware
and benign binaries. Performance evaluation results show that the approach has detection accuracy which ranges
from 76% to 97% depending on the ML classifier used. Seven out of the eight classifiers achieved a detection rate
of at least 90%. The study also revealed better ransomware detection rates when static level analysis is applied to
data obtained by integrating ASM-level and DLL-level features. Similarly, Dehghantanha et al. (2018) proposed
a Decision Tree (J48) classifier known as NetConverse, for high speed and reliable detection of Windows
ransomware. Experimental results based on conversation-based network traffic features dataset show a true
positive detection rate of 97.1% using the Decision Tree (J48) classifier. Static and dynamic techniques can also
be used for real time detection and prevention of ransomware attack (Lalson et al., 2019). The technique offers a
robust and an effective protection against a variety of ransomware. The approach halts attacks before the system
or network experiences a significant damage. However, the proposed method cannot perform the recovery of
infected files. It is also possible for a ransomware to encrypt some files before it is actually detected or blocked.
Lee et al. (2022) addressed the ineffectiveness of static analysis against obfuscating ransomware, which hides
their behaviour to evade detection and low-speed detection of dynamic analysis by proposing a statistical analysis
which uses heuristics to distinguish between normal files and those attacked by ransomware. The approach

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 29

provides real-time detection of known crypto-ransomware variants. It is also efficient with about 13% overhead
required during the detection process.

Recent ML approaches such as the one proposed by Rani and Dhavale (2022) used a number of machine learning
models such as decision tree, random forest, KNN, SVM, XGBoost and Logistic Regression to build an effective
proof of concept for a product specific ransomware. The proposed solution is efficient and reliable with an
accuracy of 98.21%. Similarly, three different machine learning algorithms namely decision tree (J48), random
forest and radial basis function (RBF) were applied on 1000 dominant features obtained from raw, byte-level
ransomware data using the gain ratio feature selection method (Khammas, 2022). The results from experiments
show that random forest is the most effective of the threes algorithms with ~ 98% accuracy and the most suitable
feature size is 1000 attributes. An enhanced approach integrates ensemble learning with voting-based method,
monitors memory usage, system call logs, CPU usage and performs static and dynamic analysis of text,
permissions and network-based features (Ahmed et al., 2022). Experimental results based on malicious and benign
features (static and dynamic) obtained from Android malware applications show that the proposed technique can
detect unknown ransomware attacks based on the behaviour of malicious applications. The technique is also robust
against adversarial evasion attacks as demonstrated by its high detection accuracy when tested with 1-bit, 10-bit,
20-bit, 30-bit and 40-bit crafted ransomware data. Talabani and Abdulhadi (2022) proposed two rule-based models
to address the low accuracy of ransomware detection tools which use data mining and machine learning
techniques. The models known as Partial Decision Tree (PART) and Decision Table were applied to bitcoin
dataset consisting of 61,004 samples of 29 ransomware families with ten descriptive and decision attributes.
Experimental results show that the PART algorithm provides better performance in terms of accuracy (96.01%),
recall (96%), precision (95.9%) and F-Measure (95.6%) than Decision Table. Experimental results show that it is
necessary to carry out additional investigation on the application of PART to predictive modelling tasks in
ransomware detection experiments.

A summary of previous studies which used static and dynamic analysis for ransomware detection is presented in
Table 3.

Table 3: Summary of related works (static and dynamic analysis)

Author Problem addressed Method used Result
Khammas
(2020)

Ransomware detection Random forest technique Detection rate is 97.74%.

Hwang et al.
(2020)

An enhanced approach
to ransomware
detection.

Markov model and random
forest model

Overall accuracy of 97.3%,
4.8% FPR (false positive
rate) and 1.5% FNR (false
negative rate

Dehghantanha
et al. (2018)

High speed and
reliable detection of
windows ransomware

Netconverse
(decision tree (j48)
classifier)

True positive detection rate
of 97.1%

Rahman &
Hasan (2019)

Improved technique
for ransomware
detection

Analysis framework based
on support vector machines

Integrated approach provides
better ransomware detection
than using either static
analysis or dynamic analysis
individually.

Jasmin (2019) Distinguishing
ransomware traffic
from normal traffic

Random forest, support
vector machine and logistic
regression algorithms

Random forest has the best
detection rate of 99.9% and a
false positive rate of 0%.

Ameer (2019) Ransomware detection Static and dynamic
analysis

Detection and classification
accuracy of 100%

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 30

Talabani &
Abdulhadi
(2022)

Low accuracy of
ransomware detection
tools which use data
mining and machine
learning techniques

Partial Decision Tree
(PART) and Decision
Table

accuracy (96.01%), recall
(96%), precision (95.9%) and
F-Measure (95.6%)

Several enhanced machine learning techniques have been proposed for effective and reliable detection of
ransomware. These techniques are meant to address the weaknesses in existing ML-based ransomware detection
methods. One of such improvements addressed the limitation of detection techniques (such as sandbox analysis
and pipelines) due to their inability to isolate a sample and handle the delay in analyzing isolated ransomware
samples (Adamu, 2019). The approach predicts ransomware using a dataset consisting of 30,000 attributes which
serve as independent variables. Feature selection was used to obtain five attributes used as input to support vector
machine algorithm. The method has promising ransomware detection rate with accuracy of 88.2%. Another
improvement focused on detecting ransomware in cloud storage instead of the local system (Matthias, 2018). It is
a hybrid technique which integrates 'guilt by association' assumption with content-based, metadata-based and
behaviour-based analysis to minimize the false positive rate. This involves the use of file versioning of the cloud
storage to delay the recovery and transferring the supervision of the recovery to the end user. The only
responsibility of the end-user is to supervise the recovery. Users are provided with classification information
which allows them make informed decisions and prevent false positives. The approach provides improved
detection accuracy and reliable recovery. A novel approach used network connection information, certificate
information and machine learning for network-level ransomware detection (Jasmin, 2019). The method can be
used in conjunction with system-level detection to provide early detection of ransomware attacks. The technique
extracts and models ransomware features based on three major characteristics of network traffic namely,
connection-based, encryption-based, and certificate. It is a feature model which used random forest, support vector
machine and logistic regression algorithms to distinguish ransomware traffic from normal traffic. Experimental
results based on a variety of datasets showed that random forest has the best detection rate of 99.9% and a false
positive rate of 0%. Another enhanced detection approach is a decision tree model based on big data technology,
which exploits Argus for packet preprocessing, merging, and labeling malware file (Wan et al., 2018). Biflow was
used to replace the packet data and reduce the data size by a factor of 1000 (that is, 1000:1). Feature selection and
feature concatenation were employed to extract and combine the characteristics of a complete network traffic. The
method used six feature selection algorithms in order to achieve better classification accuracy. A recent and an
innovative ransomware detection method used machine learning to monitor power consumption of Android
devices (Azmoodeh et al., 2018). The proposed approach distinguishes ransomware from benign applications by
monitoring the energy consumption patterns of various Android processes. This is achieved by collecting and
analyzing the unique local fingerprint of ransomware’s energy consumption. Experimental results show that the
method achieved high detection and precision rates of 95.65% and 89.19% respectively. It also has better
accuracy, recall rate, precision rate and F-measure than K-Nearest Neighbor, Neural Network, Support Vector
Machine and Random Forest. Another enhanced solution is a novel lightweight approach known as RanDroid for
automated detection of polymorphic ransomware (Alzahrani et al., 2018). The technique detects new ransomware
variants on Android platforms using the structural similarity measures between features extracted from an
application and a set of threat data extracted from known ransomware variants. The similarity measures used are
Image Similarity Measurement (ISM) and String Similarity Measurement (SSM). Further information was
extracted by applying linguistic analysis on the app’s code behavioural features and image textural strings. The
approach addressed the limitations of static analysis by performing dynamic and static analyses in order to mitigate
ransomware attacks without modifying the Android OS and its underlying security module. An evaluation of
RanDroid based on 950 ransomware samples showed that the approach can detect ransomware based on evasive
techniques such as sophisticated codes or dynamic payloads. A related work proposed a hybrid solution based on
the integration of static and dynamic analysis for detecting Android ransomware and distinguishing ransomware
from other malware (Ameer, 2019). The approach applied static analysis on permissions, text, and network-based
features. It also applied dynamic analysis on the memory usage, system call logs, and CPU usage. The results of
experiments based on features extracted from ransomware and benign samples show that technique can mitigate
evasive ransomware attacks. It is also able to detect and classify unknown ransomware with 100% accuracy.

4.1.1.2 Deep Learning Approaches

Deep learning techniques are aimed at addressing the shortcomings of conventional supervised ransomware
detection tools. The goal is to enhance the accuracy and reliability of results obtained from a ransomware detection
activity. Deep learning techniques perform automatic feature generation and are very suitable for unstructured
datasets. The techniques also require very little or no human intervention (good self-learning capabilities). Deep
learning algorithms are very suitable for classifying audio, text and image data. This enhances their effectiveness

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 31

at detecting textual and image ransomware data. However, training deep learning algorithms requires a very large
amount of data. This makes the algorithms unsuitable for general purpose applications especially those requiring
small data points or sizes. Other limitations of deep learning include the need for high processing (CPU) power
and inability to easily adapt to real life datasets. A recent application of this approach is a deep learning based
semi-supervised framework, which extracts inherent, unlabeled and previously unknown features of new
ransomware variants (Sharmeen et al., 2020). The framework also provides an adaptive detection model by
integrating the unsupervised learned model with supervised classification. Experimental results based on real
ransomware data with a dynamic analysis testbed shows that the method is highly accurate at detecting different
kinds of ransomware compared to existing supervised approaches. Another deep learning approach for automated
behavioural-based ransomware detection applied dynamic analysis on data obtained from Application
Programming Interface (API) calls made by the executable (Maniath et al., 2017). This approach uses a word
sequence to represent the list of API calls made by an executable file. It applied Long-Short Term Memory
(LSTM) networks for binary sequence classification of application programming interface (API) calls a suitable
method for detecting ransomware behavior. The approach detects ransomware behaviour using API calls obtained
from systems logs of modified sandbox environment. It is a suitable method for reliable analysis and detection of
large malwares samples. A related study proposed a deep learning technique based on features extracted from
permissions and API calls for detecting Android ransomware (Wongsupa, 2018). AndroGuard (a python library)
was used for feature extraction, while the ransomware detection framework was implemented on Keras, using
multilayer perceptron (MLP) with back-propagation and supervised learning algorithm. The results of
experiments on real-world applications show that the accuracy is 98% for MLPs with more than 3 hidden layers
and moderately sized neurons. However, the use of MLPs with two hidden layers and large number of neurons
results in low detection accuracy of between 45% and 60%. A novel deep learning approach to ransomware
detection extracts salient behavioral features from labeled ransomware data (Aragom et al., 2016). It is a novel
architecture which combines deep packet inspection with machine learning. The model can detect and prevent
various types cryptographic ransomware. Experimental results show that the deep learning model achieved a
detection accuracy of 93.92%, which makes it suitable for timely detection of unknown ransomware in high-speed
network. Table 4 is the summary of related works which used deep learning techniques to implement automated
ransomware detection systems.

Table 4: Summary of related works (deep learning approaches)

Author Problem
addressed

Method used Result Limitation

Sharmeen et al.
(2020)

To enhance the
accuracy and
reliability of results
obtained from a
ransomware
detection activity

Deep learning
based semi-
supervised
framework

Highly accurate at
detecting different kinds
of ransomware compared
to existing supervised
approaches

N/A

Maniath et al.
(2017)

Automated
behavioural-based
ransomware
detection

Deep learning
techniques

The approach detects
ransomware behaviour
using API calls obtained
from systems logs of
modified sandbox
environment

N/A

Wongsupa
(2018)

Detecting Android
ransomware.

Deep learning
technique and
Supervised
learning
algorithm

The results of
experiments on real-
world applications show
that the accuracy is 98%
for mlps with more than 3
hidden layers and
moderately sized neurons

The use of mlps with
2 hidden layers and
large number of
neurons results in
low detection
accuracy of between
45% and 60%.

Aragom et al.
(2016)

Detection and
prevention of
various types
cryptographic
ransomware.

Combines deep
packet
inspection with
machine
learning

Detection accuracy of
93.92%,

N/A

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 32

Vinayakumar et
al. (2017)

Effective detection
and classification of
ransomware

Enhanced deep
learning
technique

Classification accuracy of
0.98 (98%)

The experimental
results do not
represent the actual
situation involving
more complex
architecture settings

Olani et al.
(2022)

Detection of
ransomware by
monitoring and
analyzing changes
in the distribution
hardware
performance
counter data.

Deep learning Classification accuracy of
98.6% and recall score of
84.41%.

N/A

An enhanced deep learning technique applied shallow and deep networks on features extracted from API calls for
effective detection and classification of ransomware (Vinayakumar et al., 2017). The study explored a number of
network parameters and structures to obtain the best architecture for the multi-layer perceptron (MLP). This
involved up to 500 epochs with a learning rate between 0.01 and 0.5. The results of various experiments showed
that MLP has very high accuracy of 1.0 (100%) in distinguishing ransomware from benign samples. It was also
able to classify ransomware into their families with an accuracy of 0.98 (98%). This shows that the approach can
detect and classify ransomware better than other classical machine learning techniques. However, the proposed
approach is a very simple MLP network, which does not impose high computational burden on hardware and
monolithic training environment. The experimental results do not represent the actual situation involving more
complex architecture settings. A future work should focus on using more complex MLP network to perform the
same experiments on state-of-the-art hardware in a distributed environment. A recent a deep learning model
monitors changes in the distribution hardware performance counter data across the system and analyzes relevant
information to achieve effective and efficient detection of ransomware (Olani et al., 2022). The information
extracted is specifically related to events which indicate behaviour that distinguishes a ransomware from a benign
application. The results of experiment based on different ransomware families show that the model is effective
with ransomware classification accuracy of 98.6% and recall score of 84.41%. The model is also effective for
detecting zero-day attack as demonstrated by experiments based on previously unknown CoronaVirus, Ryuk, and
Dharma ransomware variants.

4.1.1.3 Artificial Neural Network Approaches

Neural networks have wide applications which makes them suitable for detecting different types of ransomware
data (text or image) and ransomware variants. The ability of neural networks to perform continuous learning
makes them suitable for adapting to new ransomware data and detecting zero-day ransomware attacks. However,
neural network techniques are hardware dependent and susceptible to data dependency. They also deny human
analysts from tracking data processing tasks and checking for deviations (black box nature). Agrawal (2019)
proposed an enhanced technique which leverages on the ability of recurrent neural networks to establish a
relationship among events which follow a particular sequence. The technique known as Attended Recent Inputs-
Long Short-Term Memory (ARI-LSTM) uses attention mechanisms to extract the pattern of events created by
ransomware sequences. The approach leverages on the ability of recurrent neural networks to provide high
detection accuracy for sequence learning models. An LSTM is a type of recurrent neural network which possesses
the ability to establish a relationship among a sequence of events caused by ransomware attack (Shmidhuber &
Cummins, 1997; Gers, 2000). ARI enhances neural cells by incorporating attention in learning from ransomware
sequences. It uses the concept of a subsequence to extract local event patterns in ransomware sequences to learn
from a recent history of ransomware. An evaluation of ARI-LSTM using ransomware and benign executables
captured from Windows operating system showed that the technique has better detection rate than LSTM. A much
finer scale evaluation of detection accuracy showed that the technique has a False Positive Rate (FPR) set of 2%.
Generally, ARI-LSTM possesses much better performance accuracy (or detection rate) of 91% with low values
of FPR thus establishing the potency and efficiency of attention mechanisms in learning local patterns. Similarly,
identification of important and unique features of ransomware can be used to detect an attack (Arslan, 2020). This
is achieved by using transfer learning based deep convolutional neural networks to perform feature engineering
in order to analyze important properties and behaviors of a ransomware. The technique leverages on the ability of

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 33

neural networks to detect some attributes, states, and patterns of ransomware files. Feature engineering and
analysis were performed on static and dynamic datasets consisting of 3646 samples (1700 Ransomware and 1946
Goodware) and 3444 (1455 Ransomware and 1989 Goodware) samples respectively. Experimental results show
that relevant features for ransomware detection are registry changes, application programming interface (API)
calls, and dynamic link libraries (DLLs). It was also observed that N Gram technique can be used to detect
important sequences in a ransomware attack. For example, a Registry Delete operation, whereby a malicious file
attempts to delete registries, follows a particular and repeated sequence. A different observation involving benign
files showed that Registry Delete operation does not follow any particular or repeated sequence. A reliable and
efficient ransomware detection leverages on the nonexistence of a common Registry deleted sequence used by
both malicious and benign files. Table 5 summarizes previous researches which proposed artificial neural network
approaches for ransomware detection.

Table 5: Summary of related works (artificial neural network approaches)

Author Problem addressed Method used Result
Agrawal (2019) Establishing a

relationship among
events which follow
a particular sequence

Attended Recent
Inputs-Long Short-
Term Memory
(ARI-LSTM)

High detection accuracy for
sequence learning models

Schmidhubar &
Cummins,
(1997; Gers
(2000)

Establishing a
relationship among
events which follow
a particular sequence

Attended Recent
Inputs-Long Short-
Term Memory
(ARI-LSTM)

Have better detection rate than
LSTM.
False Positive Rate (FPR) set of
2%.

Arslan (2020) Using unique
features of
ransomware to detect
an attack

Transfer learning
based deep
convolutional neural
networks

Detects some attributes, states, and
patterns of ransomware files.

4.1.2 Non-Artificial Intelligence-Based Methods

Non-AI methods use approaches such as packet inspection and traffic analysis to detect ransomware. One of such
methods aims at detecting ransomware using a network of decoy and bogus computer systems known as honeypot.
The goal was to create and monitor honeypot folder for changes that could be used to detect the presence of
ransomware (Moore, 2016). The study performed the manipulation of the Windows Security logs using the File
Screening service of the Microsoft File Server Resource Manager feature and EventSentry. Although honeypot is
a useful tool for tracking network activity, the method offers a limited view of ransomware and their activities on
the network as the absence of attack alerts does not mean that a honeypot is not a target of ransomware attack. A
related work proposed an algorithm that probes networks for passive monitoring of traffic in order to detect the
presence of ransomware (Morato et al., 2018). Experimental analysis using 19 different ransomware families show
that it takes the proposed algorithm less than 20 seconds to detect the presence of ransomware. It was also observed
that not more than 10 files are lost within the 20 second duration. The method allows recovery of lost files as their
contents were stored in the network traffic. It also has low false positives based on experiments conducted on
traffic data from real-life corporate networks. A very recent neural network approach to ransomware detection is
the novel Bayesian Neural network known as the Radial Spike and Slab Bayesian Neural Network (Nazarovs et
al., 2022). The proposed solution is suitable for large and/or complex architectures as it provides better
performance than the generic Bayesian Neural Network and other deep learning techniques. It also provides
enough information to trigger the suspicion of investigators and confirm whether an incident is actually a
ransomware attack or not. Overall, the technique helps to overcome the limitation of insufficient ransomware
datasets for deep learning experiments by eliminating the likelihood of overfitting even if small-sized samples are
used for training and classification. A limitation of the approach is the need for human intervention to disable
systems and prevent network access in the event of a suspected ransomware attack. A summary of previous studies
based on non-AI techniques is presented in Table 6.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 34

Table 6: Summary of related works (non-artificial neural network approaches)

Author Problem
addressed

Method used Result Limitation

Moore
(2016)

Ransomware
Detection

Honeypot N/A Method offers a limited
view of ransomware and
their activities on the
network

Morato
et al.
(2018)

Detecting the
presence of
ransomware and
preventing attacks

N/A Less than 20 seconds
to detect the presence
of ransomware.

N/A

Cabaj et
al.
(2017)

Software-Defined
Network (SDN)
environment

Rapid response to
ransomware threats

Detection rates of
between 97% and
98% as well as 4–5%
false alarm rates

N/A

Chen et
al.
(2018)

Systematic
characterization
and real-time
detection of
Android
ransomware

Novel technique
for real time
detection of
encrypting
ransomware

Abnormal encryption
activities can be
detected before a
ransomware causes
significant damages.
The analysis of
runtime performance
also demonstrated the
usability of
ransomprober

Attempt at detecting
mobile ransomware is
constrained by the
unavailability of a
comprehensive dataset
and limited understanding
of real-time ransomware
attack.

(Kharra
zet al.,
2015)

HELDROID Distinguish known
and unknown
scareware and
ransomware
samples from
goodware

Provides reliable
protection against
many zero-day
ransomware attacks

N/A

A slightly different detection method used the modes of ransomware communication in a Software-Defined
Network (SDN) environment to provide a rapid response to ransomware threats (Cabaj et al., 2017). The proposed
method observes the network communication patterns of CryptoWall and Locky ransomware families between
an infected host and an attacker’s command and control server. Threat detection involves an analysis of the HTTP
message sequences and the sizes of their respective contents. The results of experiments based on actual
ransomware data showed high detection rates of between 97% and 98% as well as 4–5% false alarm rates. This
shows that the approach is simple, realist and effective in preventing ransomware attacks. Chen et al., (2018)
proposed a novel real-time detection system called RansomProber, which analyzes the user interface widgets of
related activities and the coordinates of users’ finger movements. The technique is suitable for a systematic
characterization and real-time detection of Android ransomware. The results of the analysis of these samples from
different perspectives revealed details such as the ransomware scale, classification, and features. The study also
designed a novel technique for real time detection of encrypting ransomware. The goal is to monitor a device’s
sensitive files and determine the user’s intention. The technique can accurately and reliably detect whether a file
encryption activity initiated by users or ransomware. Experimental evaluation showed that proposed method can
detect abnormal encryption activities before a ransomware causes significant damages. The analysis of runtime
performance also demonstrated the usability of RansomProber. However, attempt at detecting mobile ransomware
is constrained by the unavailability of a comprehensive dataset and limited understanding of real-time ransomware
attack. A related work (Kharraz et al., 2015) proposed a mobile ransomware detection approach known as
HELDROID to distinguish known and unknown scareware and ransomware samples from goodware in a quick,
efficient and fully automated manner. The approach monitors abnormal file system behaviour to offer protection
against a large number of ransomware. It also provides reliable protection against many zero-day ransomware
attacks by examining I/O requests and protecting master file table in the NTFS file system. A very recent non-AI
technique addressed the limitations of entropy-based ransomware detection such as misclassification due to high-
level entropy of some legitimate files and impracticality of a wholesome evaluation of large files to detect

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 35

ransomware due to high cost of such effort (Kim et al., 2022). This was achieved by proposing EntropySA and
DistSA as byte-frequency-based indicators which explore the properties of “sample areas" (SAs) of suspicious
files. The discriminant feature used to distinguish a benign file from an infected file is the degree of randomness
of information in the sampled sub-area of the files. An experimental evaluation of the proposed method showed
that benign files whose sampled area includes information such as file header have relatively low degree of
randomness despite the high level of randomness exhibited by the entire file. The main advantage of the approach
is its ability to detect a ransomware based on each file it attacks. This makes the technique able to provide effective
and accurate detection of ransomware attacks irrespective of the order in which a ransomware attacks files in the
system. It is also robust against obfuscating ransomware which hide their behaviour to evade detection. However,
the approach is unable to record 100% detection of files attacked by the DMA Locker2 ransomware because the
ransomware places a unique signature string at the beginning of a file in order to evade detection. It is also unable
to detect smaller (less than 256 bytes) files.

 Prevention, Mitigation and Recovery Strategies
It is not only necessary to detect a ransomware attack after it has caused significant damages to data and systems,
but also important to put strategies in place to prevent attacks from occurring. This makes it critical to devise
approaches for preventing the occurrence of ransomware attacks and mitigating potential damages caused by
ransomware. It is also important to ensure recovery of files and systems after attacks without any need to pay
ransom. One of such methods focuses on preventing ransomware and protecting computer systems by identifying
and blocking an attack (Patel & Tailor, 2020). The strategy involves fooling an attacker to encrypt a large dummy
file over a long period of time. This provides sufficient time to render the remaining contents of the file system
inaccessible to the ransomware. Performance evaluation of the proposed technique in a real-time environment
showed that the approach is effective against ransomware attacks. A similar study used the behaviour of a system
under advanced Petya ransomware attack to propose strategies for minimizing the susceptibility of systems and
organizations to ransomware attacks (Aidan et al., 2018). The approach prevents Petya ransomware attack by
blocking the server message block (SMB) ports (that is, UDP port 137, 138 and TCP 139, 445) or disabling
SMBv1. Additional measure includes preventing the execution of perfc.dat and psexec.dat files from sysinternals.
Perfc.dat and psexec.dat files are created as a result of ransomware attack. It is possible to prevent the creation of
the ransomware files by self-creating perfc.dat and psexec.dat files and changing their access permissions to
READONLY. Other mitigation strategies include using Software Restriction Policies (SRP) to disable binaries
from executing %APPDATA%, %PROGRAMDATA% and %TEMP% paths, as well as restricting malicious
files by deploying email and web filtering on the network. File- and behavior-based detection methods do not
have the ability to detect or prevent previously unknown ransomware variants and ransomware which attack
cloud-based data storage. This challenge was addressed by proposing a machine learning technique for
ransomware prevention known as file entropy analysis (Lee et al., 2019). The method can retrieve infected files
that have been synchronized to the backup server whether or not the host system is infected by ransomware.
Similarly, Du et al. (2022) presented a number of defensive strategies which are able to detect a ransomware
before it actually attacks an endpoint system. One of such is a hybrid machine learning solution based on
intelligent KNN and density-based algorithms. The approach integrates data pre-processing and feature
engineering techniques with KNN algorithm. It has high ransomware attack prediction accuracy of 98%, which
makes it a suitable anti-malware and anti-ransomware solution. Another method used in the study is random forest
which records a good accuracy of 99%. The study proposed K-means and DBSCAN clustering algorithms to
provide effective detection of previously unknown ransomware variants. A very recent preventive solution is the
system-architecture-based risk transference which relocates sensitive data from the system to highly protected
storage locations (Sreejith Gopinath & Aspen Olmstead, 2022). This minimizes the susceptibility of such data to
ransomware attacks. The information is also stored in a context-free manner in order to discourage attackers from
attempting to hold such data hostage. Experimental results show that the proposed architecture allows for easy
recovery of a system under ransomware attack.

The method proposed by Gómez‐Hernández et al. (2022) supports early reaction to ransomware incidents and
reduces damage to files during an attack. It is an enhanced tool which deploys a large number of “honey files” in
close proximity to sensitive system and application files in order to achieve early detection of and timely response
to ransomware attacks. The capability of the tool was extended by adapting it to Windows platforms and
improving the system-wide management of the “honey files” to provide adequate protection of system files.
Additional enhancements include semi-automation of defence mechanisms against ransomware using dynamic
white‐/black‐lists, which minimizes the need for human intervention in the event of an attack. WmRmR (weighted
minimum Redundancy maximum Relevance) is a mitigation strategy used to estimate the importance of dominant
or most discriminating features in data captured at the onset of ransomware attacks (Ahmed et al., 2022). It is a
hybrid solution based on the integration of two different techniques namely, enhanced minimum redundancy

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 36

maximum relevance (EmRmR) and Term Frequency-Inverse Document Frequency (TF-IDF). The approach uses
TF-IDF to evaluate weights generated by EmRmR algorithm and eliminate noisy features that may impair
performance. The results of experiments show that the proposed solution has simple implementation, low false
positive rate and is effective for early detection of ransomware attacks.

A simple technique for easy recovery from ransomware attacks irrespective of the availability of attacker’s tools
on the victim system to prevent recovery from such attacks has also been proposed (Wecksten, 2016). The study
revealed that common cypto ransomware attack involves the installation of tools on a victim’s device to make
recovery from ransomware attack a herculean task. Hence the need for a technique to provide easy recovery from
ransomware infections by renaming the system tool which handles shadow copies of files. A similar strategy for
ransomware recovery proposed by Kim et al. (2022) enables a partial (95%) recovery of the master key used by
attackers to launch Hive ransomware. This was achieved by analyzing the encryption process used by Hive
ransomware and discovering its vulnerabilities. The result of this effort is the creation of a decryption key for
recovering files held by the ransomware without the need to obtain the attacker’s RSA private key or pay a ransom
to the attacker. A very recent recovery method is the novel framework proposed as an efficient technique for
recovering XML documents that have been compromised by ransomware attack (Al-Dwairi et al., 2022). The
approach uses the concepts of links to support the distributed storage of different versions of the same file.
Adequate access control is also put in place to prevent the file versions from unauthorized encryption or deletion.
Experimental results show that the time required for decrypting an encrypted XML file is directly proportional to
the actual size of the file before encryption. Generally, files that less than 1 MB requires less than 120 ms and
decryption of bzip2 encrypted files required the highest CPU utilization. Decrypting zip and gzip encrypted files
requires almost the same amount of memory (~ 6.8 KBs), while decryption of bzip2 encrypted files increases the
memory usage to 28 KBs. Overall, the approach is efficient in terms of storage overhead, processing time, CPU
utilization, and memory usage.

 Future Research Directions
Path enumeration for creation of decoy file proposed by Lalson et al. (2019) takes several hours in very large file
systems. Hence, there is a need to maintain a balance between the file size and the computation time for creating
large decoy files. The threshold can be tweaked to suit the peculiarities of each system. For example, a high
threshold may be used in critical systems to minimize the false positive rate, while home systems may have
threshold values lower than those of critical systems. Future research works should also consider enhancing the
technique for detecting multi-stage crypto ransomware attacks suggested by Zimba et al. (2018) to prioritize the
security of production network devices using a cascaded network segmentation approach. Research effort should
also concentrate on detecting network-level ransomware attacks because many ransomware now communicate
with the command-and-control server via encrypted channels such as the HTTPS protocol. The work of Makinde
et al. (2019) is limited by the fact that the simulation involved few users. A future work should focus on using
tools for big data analytics to simulate the behaviour of large number of users. The solution proposed by Sheen
and Yadav (2018) applied class imbalance due to unequal number of samples in ransomware dataset and benign
dataset. The same technique should be applied on a balanced dataset using the same classifiers and observe the
outcome.

Although the Deep Packet Inspection technique proposed in Aragom et al. (2016) has 93% accuracy, the model
currently supports static analysis. It can be extended to handle dynamic analysis by implementing it on a software
defined network to support real time ransomware detection. Another possible extension is to improve the feature
selection process applied to pcap files, such that the enhanced method compares the extracted features with those
obtained from preceding or successive packets in order to obtain a better detection rate. The results obtained from
the simple MLP network proposed in Vinayakumar et al. (2017) do not represent the actual situation involving
more complex architecture settings. Future works should focus on using more complex MLP networks to perform
the same experiments on state-of-the-art hardware in a distributed environment. Zahra and Sha (2017) proposed
an IoT ransomware detection technique without actual implementation and deployment in a real-world
environment. The proposed technique should be prototyped and deployed in a real-world IoT environment in
order to evaluate and refine it. A future work should focus on increasing the accuracy of Randroid proposed by
Alzahrani et al. (2018) by adding of more samples of malicious images and strings to the ISM database and the
SSM database respectively. The new images should include logos of governments and icons of law enforcement
agencies. This will help detect ransomware variants that exploit false positives such as fake FBI notes. Additional
consideration should be given to the application of text recognition techniques on more images and texts to verify
the ability of the dynamic analysis component to detect dynamic payloads. Chen et al. (2018) suggested that
detecting mobile ransomware is constrained by the unavailability of a comprehensive dataset and limited
understanding of real-time ransomware attack. Future research should consider creating a comprehensive and up-

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 37

to-date dataset of mobile ransomware and developing a deep understanding of real-time ransomware attack against
mobile devices.

Recent studies also have limitations and gaps which may be explored by future research. Future research based
on the work of Rani and Dhavale (2022) should consider the integration of the model with Elasticsearch Logstash
Kibana (ELK) to develop a practical tool for real-life ransomware detection. ELK can serve as the backend for
filtering and collecting useful log data for the ransomware detection system. The detection system will then
process logs of suspicious activities to determine whether such events are actually ransomware attacks. The work
of Ahmed et al. (2022) focused only on the use of static and dynamic features for detecting unknown attacks by
malicious Android malware. The study can be extended to explore distinct and detailed features of known
ransomware samples, attacks that can be launched by such ransomware samples, qualitative and economical
strategies for feature extraction, and malicious feature estimation. Researchers may also propose suitable metrics
to determine the resistance of ransomware against countermeasures as well as the performance of defence
mechanisms against ransomware attacks. The inability of the byte-frequency-based indicators proposed by Kim
et al. (2022) to detect smaller (less than 256 bytes) files also represents an important research problem. This is
because attackers may evade detection by using small-sized ransomware files to exploit computer systems. The
approach can also be enhanced to address its inability to detect the DMA Locker2 ransomware. The novel
Bayesian Neural network known as the Radial Spike and Slab Bayesian Neural Network (Nazarovs et al., 2022)
requires human intervention for disabling and isolating systems in the event of ransomware attack. Future works
should explore an enhanced solution which automatically disables systems and prevent access to the network once
there is a suspected ransomware attack. Techniques which use enhanced feature extraction methods for better
ransomware detection also require improvements. The two-stage particle swarm optimization proposed by Abbasi
et al. (2022) requires improvements such as the use of more feature sets in the experimental dataset to capture
additional behavioral traits such as communication involving critical servers or command and control centre. Also,
certain future sets may be removed from the dataset and observe the impact of such removal on performance. In
addition to this, intending researchers may explore the use system call sequences as additional features for
classifying ransomware into families.

 Conclusion
Ransomware attacks have done and are still doing significant damages to computers as well as data and
information they process. These include unauthorized access, disclosure and destruction of vital, sensitive and
critical computer and hardware resources. Both individuals and corporations have suffered grave financial losses
and reputational damages due to ransomware attacks. Hence, several methods have been proposed for accurate,
timely and reliable ransomware detection techniques. The background discussion on ransomware as well as the
historical background and chronology of ransomware attacks presented in this study provide readers with the
much-needed introduction to ransomware detection. The detailed and critical review of recent papers provide
readers with an up-to-date knowledge of the current trends in automated ransomware detection. This will equip
readers with the knowledge of the state-of-the-art in automated ransomware detection, prevention, mitigation and
recovery. Also included in this study is an exposé on future research directions to provide intending researchers
with open issues and possible research problems in detection, prevention, mitigation of and recovery from
ransomware attacks.

References
Acronis International (2021). How machine learning can be used to prevent ransomware. Retrieved from

https://www.acronis.com/en-eu/articles/machine-learning-prevent-ransomware.
Adamov, A. & Carlsson A. (2017). The state of ransomware. Trends and mitigation techniques. IEEE East-West

Design & Test Symposium (EWDTS), 1-8, doi: 10.1109/EWDTS.2017.8110056.
Adamu, U. & Awan, I. (2019). Ransomware prediction using supervised learning algorithms. FiCloud 2019,

Istanbul, Turkey, 57–63. doi: 10.1109/FiCloud.2019.00016.
Agrawal R., Stokes J.W., Selvaraj K. & Marinescu, M. (2019). Attention in recurrent neural networks for

ransomware detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 3222-3226, doi: 10.1109/ICASSP.2019.8682899.

Ahmad, A., Kaiiali, M., Sezer, S. & O’kane P. (2019). A multi-classifier network-based crypto ransomware
detection system: a case study of locky ransomware. IEEE Access, vol. 7, doi:
10.1109/ACCESS.2019.2907485.

Ahmed, U., Lin J.C.W. & Srivastava, G. (2022). Mitigating adversarial evasion attacks of ransomware using

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 38

 ensemble learning. Computers and Electrical Engineering, 100 (2022) 107903.
Ahmed Y.A., Huda S., Al-rimy B.A.S., Alharbi N., Saeed F, Ghaleb F.A. & Ali I.M. (2022). A weighted

minimum redundancy maximum relevance technique for ransomware early detection in industrial iot
sustainability. MDPI. 14(1231), 1-15. Retrieved from https://doi.org/10.3390/su14031231.

Aidan J., Zeenia, S. & Garg, U. (2018). Advanced petya ransomware and mitigation strategies. First International
Conference on Secure Cyber Computing and Communication (ICSCCC). 23-28, doi:
10.1109/ICSCCC.2018.8703323.

Al-Dwairi M., Shatnawi A.S., Al-Khaleel, O. & Al-Duwairi, B. (2022). Ransomware-resilient self-healing XML
documents. Future Internet, 14(115), 1-19. Retrieved from https://doi.org/10.3390/fi14040115.

Alzahrani A. (2018). RanDroid: structural similarity approach for detecting ransomware applications in android
platform. IEEE International Conference on Electro/Information Technology (EIT), 0892-0897. doi:
10.1109/EIT.2018.8500161.

Ameer, M. (2019). Android Ransomware Detection using Machine Learning Techniques to Mitigate Adversarial
Evasion Attacks. (Capital University of Science and Technology, Islamabad, Pakistan).

Andronio N., Zanero S. & Maggi F. (2015). HelDroid: dissecting and detecting mobile ransomware. In Research
in Attacks, Intrusions, and Defenses. Lect. Notes Comput. Sci., vol. 9404, 382–404.

Aragorn, T., Yun-chun, C., YiHsiang, K., & Tsungnan, L. (2016). Deep learning for ransomware detection.
Retrieved from https://www.semanticscholar.org/paper/Deep-Learning-for-Ransomware-Detection-Aragorn-
Yun-chun/cc3a41b37230861cfe429632744e0d1db19256b7.

Arslan A., Abdul A., Umme Z., & Asifullah, K. (2020). Ransomware analysis using feature engineering and deep
neural networks. Retrieved from https://arxiv.org/abs/1910.00286v2.

Azmoodeh A., Dehghantanha A., Conti M, & Choo K. R (2018). Detecting crypto Ransomware in IoT networks
based on energy consumption footprint. Ambient Intell Human Comput 9, 1141–1152, Retrieved from
https://doi.org/10.1007/s12652-017-0558-5.

Bazrafshan, Z., Hashemi, H, Fard, S.M.H. & Hamzeh, A. (2013). A survey on heuristic malware detection
techniques. The 5th Conference on Information and Knowledge Technology, 113-120, doi:
10.1109/IKT.2013.6620049.

Brewer, R. (2016), Ransomware attacks: detection, prevention and cure. Netw. Secur, 1–6.
Cabaj, K., Gregorczyk, M., & Mazurczyk, W. (2017). Software-defined networking-based crypto ransomware

detection using HTTP traffic characteristics. Comput. Electr. Eng., 353-368.
Celdrán A.H, Sánchez P.M.S, Castillo M.A, Gérôme B, Gregorio M.P. & Burkhard S (2022). Intelligent and

behavioral-based detection of malware in IoT spectrum sensors. Int. J. Inf. Secur, 1-21. Retrieved from
https://doi.org/10.1007/s10207-022-00602-w.

Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R. & G.-J. Ahn (2018). Uncovering the face of android ransomware:
characterization and real-time detection. IEEE Trans. Inf. Forensics Secur. 1286–1300.

Crowdstrike (2022a). How ransomware works. Retrieved from
https://www.crowdstrike.com/resources/infographics/

 how-fileless-ransomware-works/
Crowdstrike (2022b). Fileless Malware Explained. Retrieved from https://www.crowdstrike.com/cybersecurity-

101/malware/fileless-malware/
Dargahi, T., Dehghantanha, A., Bahrami, P. N., Conti, M., Bianchi, G., & Benedetto, L. (2019). A cyber-kill-

chain based taxonomy of crypto-ransomware features. Journal of Computer Virology and Hacking
Techniques, 15(4), 277-305. Retrieved from https://doi.org/10.1007/s11416-019-00338-7.

Dehghantanha, A., Baldwin, J., & Alhawi. O. M. K. (2018). Leveraging machine learning techniques for windows
ransomware network traffic detection. Retrieved from https://doi.org/10.1007/978-3-319-73951-95.

Dontov, D. (2019). Ransomware detection using machine learning. Retrieved from https://spinbackup.com/blog/
 ransomware-detection-using-machine-learning/
Du, J., Raza, S.H., Ahmad, M., Alam, I., Dar, S.H, & Habib, M.A, (2022). Digital forensics as advanced

ransomware pre-attack detection algorithm for endpoint data protection. Security and Communication
Networks. 1-16. Retrieved from https://doi.org/10.1155/2022/1424638.

eScan (2017). Antivirus reports.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 39

F-Secure Labs (2013). Threat Report H1, Helsinki, Finland.
Fingers, J. (2020). Ransomware may have led to the death of a German hospital patient. Retrieved from

www.google.com/amp/s/www.engadget.com/amp/ransomware-death-at-german-hospital-210309749.html.
Fitzpatrick, D. & Griffin, D. (2016). Cyber-extortion losses skyrocket, says FBI. Retrieved from

http://money.cnn.com/2016/04/15/technology/ransomwarecyber-security.
Gallegos-Segovia, P.L., Bravo-Torres, J.F., Larios-Rosillo, V.M., Vintimilla-Tapia, P.E., Yuquilima-Albarado,

I.F.
& Jara-Saltos J.D. (2017). Social engineering as an attack vector for ransomware. CHILEAN Conference on

Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 1-6, doi:
10.1109/CHILECON.2017.8229528.

Gers, F.A., Schmidhuber, J. & Cummins, F.A (2000). Learning to forget: Continual prediction with lstm, Neural
Computation. Neural Comput 2000. 12(10) 2451–2471. Retrieved from https://doi.org/10.1162/

 089976600300015015
Gómez‐Hernández, J.A., Sánchez‐Fernández, R. & García‐Teodoro, A. (2022). Inhibiting crypto‐ransomware on

windows platforms through a honeyfile‐based approach with R‐Locker. IET Inf. Secur. 16(1), 64–74.
Retrieved from https://doi.org/10.1049/ise2.12042.

Gopinath, S. & Olmstead, A. (2022). Mitigating the effects of ransomware attacks on healthcare systems.
Hwang J, Kim J, L. S, & Kim K (2020). Two-stage ransomware detection using dynamic analysis and machine

learning techniques. Wireless Pers Commun 112, 2597–2609, Retrieved from https://doi.org/10.1007/s11277-
020-07166-9.

Jasmin, M. (2019). Detecting ransomware in encrypted network traffic using machine learning. (University of
Victoria, Canada). Retrieved from http://hdl.handle.net/1828/11076.

Juan, A., Silver, H., & Hernández-Alvarez, M. (2017). Ransomware detection by cognitive security, IEEE, 346–
363.

Khammas, B. (2020). Ransomware detection using random forest technique. ICT Express, 6(4), 325–331.
Khammas, B.M. (2022). Comparative analysis of various machine learning algorithms for ransomware detection.

TELKOMNIKA Telecommunication Computing Electronics and Control, 20(1), 43~51.
Kharraz A., Robertson W, Balzarotti D, Leyla Bilge & Kirda E (2015). Cutting the gordian knot: a look under

the hood of ransomware attacks In: M. Almgren., V. Gulisano, F. Maggi. (eds) Detection of Intrusions and
Malware, and Vulnerability Assessment. DIMVA Lecture Notes in Computer Science, vol 9148. Springer,
Cham. Retrieved from https://doi.org/10.1007/978-3-319-20550-2_1.

Kim, G., Kim, S., Kang, J. & Kim, J. (2022). A method for decrypting data infected with hive ransomware.
arXiv:2202.08477v1 [cs.CR], 1-23.

Kim, G.Y., Paik J.Y. & Kim Y. (2022). Byte frequency-based indicators for crypto-ransomware detection from
empirical analysis. Journal of Computer Science and Technology, 37(2). DOI 10.1007/s11390-021-0263-x.

Lalson, E.R., Shony, K.M, & Netto, D.F. (2019). An integrated approach for detecting ransomware using static
and dynamic analysis. FiCloud 2019, 410–414. doi: 10.1109/FiCloud.2019.00016.

Lee, K., Lee, S,, & Yim, K, (2019). Machine learning based file entropy analysis for ransomware detection in
backup systems. IEEE Access, 110205–110215, doi: 10.1109/ACCESS.2019.2931136.

Lee, S., Jho, N., Chung D, Kang, Y. & Kim, M. (2022). Rcryptect: real-time detection of cryptographic function
in the user-space filesystem. Computers & Security. 112, 1-13.

Makinde, O., Sangodoyin, A., Mohammed, B., Neagu, D., & Adamu, U. (2019). Distributed network behaviour
prediction using machine learning and agent-based micro simulation. FiCloud 2019, 182-188.

Maniath S, Ashok A., Poornachandran P., Sujadevi G., Sankar,. A.U. & Jan, S (2017). Deep learning LSTM based
ransomware detection. Recent Dev. Control Autom. Power Eng., 442–446, doi:
10.1109/RDCAPE.2017.8358312.

Matthias, H. (2018). Detecting ransomware. (Universität Konstanz).
McIntosh, T., Kayes, A.S.M., Chen, Y.P.P., Ng, A. & Watters, P, (2021). Ransomware mitigation in the modern

era: a comprehensive review, research challenges, and future directions. ACM Computing Surveys (CSUR),
54(9), 1-36. Retrieved from https://doi.org/10.1145/3479393.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 40

Microsoft Ignite (2022). What is ransomware? Retrieved from https://docs.microsoft.com/en-
us/security/compass/human-operated-ransomware.

Mohurle, S., & Patil, S. (2017). Brief study of wannacry ransomware attack. Int. J. Adv. Res. Comput. Sci., vol.
8, 1938–1940.

Moore, C. (2016), Detecting ransomware with honeypot techniques. Cybersecurity and Cyberforensics
Conference (CCC). 77-81. doi: 10.1109/CCC.2016.14.

Morato, D., Berrueta, E., Magaña E., & Izal, M. (2018). Ransomware early detection by the analysis of file sharing
traffic. J. Netw. Comput. Appl., 14–32.

Nazarovs, J., Stokes, J.W, Turcotte, M., Carroll, J. & Grady, I. (2022). Radial spike and slab bayesian neural
networks for sparse data in ransomware attacks. arXiv:2205.14759v1 [cs.CR] 1-17.

Olani, G., Wu, C-F. & Chang, Y-H. (2022). DeepWare: imaging performance counters with deep learning to
detect ransomware. IEEE Transactions on Computers, Vol. X, No. X, XXX 20XX, pp. 1-15.

Oz, H., Aris, A., Levi, A., & Uluagac, A. S. (2021). A survey on ransomware: evolution, taxonomy, and defense
solutions. ACM Computing Surveys (CSUR). Retrieved from https://doi.org/10.1145/3514229.

Patel, A. & Tailor, J, (2020). A malicious activity monitoring mechanism to detect and prevent ransomware.
Comput. Fraud Secur, 14–19.

Potoroaca, A. (2020). Over 41% of cyber insurance claims in 2020 came from ransomware attacks. Retrieved
from https://www.techspot.com/amp/news/86714-over-41-percent-cyber-insurance-claims-2020-came.html.

Poudyal, S., Subedi, K.P. & Dasgupta, D. (2018). A framework for analyzing ransomware using machine
learning. IEEE Symposium Series on Computational Intelligence (SSCI), 1692-1699. doi:
10.1109/SSCI.2018.8628743.

Rahman, M. & Hasan, M. (2017). A support vector machine-based ransomware analysis framework with
integrated feature set. 20th International Conference of Computer and Information Technology, Dhaka, 1–7.
doi: 10.1109/ICCITECHN.2017.8281835.

Rani, N. & Dhavale, S.V. (2022). Leveraging machine learning for ransomware detection. arXiv:2206.01919v1
[cs.CR], 1-13.

Ransomware attacks. (2021). Top 5 ransomware attacks to watch out for in 2020-2021. Retrieved from
https://www.google.com/amp/s/top-5-ransomware-attacks-to- watch-out-for-in-2020-2021/amp.

Richardson, R. & North, M. (2017). Ransomware: evolution, mitigation and prevention. Int. Manag. Rev., vol.
13, 10–21.

Savage, K., Coogan P, & Lau, H. (2015). The evolution of ransomware. Secur. Response, Symantec. Retrieved
from https://its.fsu.edu/sites/g/files/imported/storage/images/information-security-and-privacy-office/the-
evolution-of-ransomware.pdf.

Scaife, N., Carter, H., Traynor, P, & Kevin, B. (2016). CryptoLock (and drop it): stopping ransomware attacks on
user data. IEEE 36th Int. Conf. Distrib. Comput. Syst.

Schmidhuber, J. & Sepp, H. (1997). Long short term memory. Neural Computation. 1735–1780.
Sgandurra D., Muñoz-González, L., Mohsen, R., & Lupu, E. (2016). Automated dynamic analysis of ransomware:

benefits, limitations and use for detection. Retrieved from https://arxiv.org/abs/1609.03020, 1–12.
Sharmeen, S., Ahmed, Y.A., Huda, S., Koçer, B.S., & Hassan, M.M. (2020). Avoiding future digital extortion

through
robust protection against ransomware threats using deep learning based adaptive approaches. IEEE Access, vol.

8, 24522–24534, doi: 10.1109/ACCESS.2020.2970466.
Shaukat, S., & Ribeiro, V. (2018). RansomWall: a layered defense system against cryptographic ransomware

attacks using machine learning. 10th International Conference on Communication Systems and Networks,
356-363.

Sheen, S. & Yadav, A. (2018). Ransomware detection by mining api call usage. International Conference on
Advances in Computing, Communications and Informatics (ICACCI), 983-987, doi:
10.1109/ICACCI.2018.8554938.

Singh, A., Ikuesan, R.A. & Venter, H. (2022). Ransomware detection using process memory. ICCWS 2022: 17th
International Conference on Cyber Warfare and Security, 1-10.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 41

Symantec Corporation (2016). Internet security threat report.
Talabani, H.S. & Abdulhadi, H.M.T. (2022). Bitcoin ransomware detection employing rule-based algorithms.
 Science Journal of University of Zakho, 10(1), 5– 10.
Vehabovic, A., Ghani, N., Bou-Harb, E., Crichigno, J. & Yayimli, A. (2022). Ransomware detection and

classification strategies. IEEE International Black Sea Conference on Communications and Networking
(BlackSeaCom), 316-324, doi: 10.1109/BlackSeaCom54372.2022.9858296.

Vinayakumar, R., Soman, K.P., Senthil, M., Velan, K. K. & Ganorkar, S. (2017). Evaluating shallow and deep
networks for ransomware detection and classification. International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 259-265. doi: 10.1109/ICACCI.2017.8125850.

Wan, Y., Chang, J., Chen, R. & Wang, S. (2018). Feature-selection-based ransomware detection with machine
learning of data analysis. 3rd International Conference on Computer and Communication Systems (ICCCS),
85-88, doi: 10.1109/CCOMS.2018.8463300.

Weckstén, M., Frick, J., Sjöström, A. & Järpe, E. (2016). A novel method for recovery from crypto ransomware
infections. 2nd IEEE International Conference on Computer and Communications (ICCC). 1354-1358, doi:
10.1109/CompComm.2016.7924925.

Wongsupa, P. (2018). Deep learning for android application ransomware detection. MSc Dissertation. (Florida
Atlantic University).

Yang, T., Yang, Y., Qian K., Lo, D.C, Qian, Y. & Tao, L. (2015). Automated detection and analysis for android
ransomware. IEEE 17th International Conference on High Performance Computing and Communications, IEEE

7th International Symposium on Cyberspace Safety and Security, and IEEE 12th International Conference on
Embedded Software and Systems, 1338-1343, doi: 10.1109/HPCC-CSS-ICESS.2015.39.

Zahra, A. & Shah, M. (2017). IoT based ransomware growth rate evaluation and detection using command and
control blacklisting. Proceedings of the 23rd International Conference on Automation & Computing,
(University of Huddersfield, Huddersfield), 1–6.

Zetter, K. (2015). Hacker lexicon: A guide to ransomware, the scary hack that’s on the rise. Retrieved from:
https://www.wired.com/2015/09/hacker-lexicon-guideransomware- scary-hack-thats-rise/

Zimba, A., Wang, Z., & Chen, H. (2018). Multi-stage crypto ransomware attacks: a new emerging cyber threat to
critical infrastructure and industrial control systems. ICT Express, vol. 4, 14–18.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 42

EEMDS: Efficient and Effective Malware Detection
System with Hybrid Model based on XceptionCNN

and LightGBM Algorithm

1,2*Monday Onoja, 2,3Abayomi Jegede, 2Nachamada Blamah, 4Olawale Victor Abimbola and
1Temidayo Oluwatosin Omotehinwa

1Department of Mathematics and Computer Scicence, Faculty of Science, Federal University of Health
Sciences, P.M.B 145, Otukpo, Nigeria.

2Department of Computer Scicence, Faculty of Natural Science, University of Jos, P.M.B 2084 Jos, Nigeria.
3Africa Centre of Excellence on Technology Enhanced Learning, National Open University, Abuja, Nigeria.

 4Creative Advanced Technologies, Dubai, UAE.

email: 1,2*monday.onoja@fuhso.edu.ng; 2,3jegedea@unijos.edu.ng; 2blamahn@unijos.edu.ng
4abimbolaolawale41@gmail.com; 1oluomotehinwa@gmail.com

*Corresponding author

Received: 13 June 2022 | Accepted: 24 October 2022 | Early access: 28 October 2022

Abstract - The security threats posed by malware make it imperative to build a model for efficient and effective

classification of malware based on its family, irrespective of the variant. Preliminary experiments carried out

demonstrate the suitability of the generic LightGBM algorithm for Windows malware as well as its

effectiveness and efficiency in terms of detection accuracy, training accuracy, prediction time and training
time. The prediction time of the generic LightGBM is 0.08s for binary class and 0.40s for multi-class on the

Malimg dataset. The classification accuracy of the generic LightGBM is 99% True Positive Rate (TPR). Its

training accuracy is 99.80% for binary class and 96.87% for multi-class, while the training time is 179.51s

and 2224.77s for binary and multi classification respectively. The performance of the generic LightGBM

leaves room for improvement, hence, the need to improve the classification accuracy and training accuracy

of the model for effective decision making and to reduce the prediction time and training time for efficiency.

It is also imperative to improve the performance and accuracy for effectiveness on larger samples. The goal

is to enhance the detection accuracy and reduce the prediction time. The reduction in prediction time provides

early detection of malware before it damages files stored in computer systems. Performance evaluation based

on Malimg dataset demonstrates the effectiveness and efficiency of the hybrid model. The proposed model is

a hybrid model which integrates XceptionCNN with LightGBM algorithm for Windows Malware classification
on google colab environment. It uses the Malimg malware dataset which is a benchmark dataset for Windows

malware image classification. It contains 9,339 Malware samples, structured as grayscale images, consisting

of 25 families and 1,042 Windows benign executable files extracted from Windows environments. The

proposed XceptionCNN-LightGBM technique provides improved classification accuracy of 100% TPR, with

an overall reduction in the prediction time of 0.08s and 0.37s for binary and multi-class respectively. These

are lower than the prediction time for the generic LightGBM which is 0.08s for binary class and 0.40s for

multi-class, with an improved 100% classification accuracy. The training accuracy increased to 99.85% for

binary classification and 97.40% for multi classification, with reduction in the training time of 29.97s for

binary classification and 447.75s for multi classification. These are also lower than the training times for the

generic LightGBM model, which are 179.51s and 2224.77s for the binary and multi classification respectively.

This significant reduction in the training time makes it possible for the model to converge quickly and train a

large sum of data within a relatively short period of time. Overall, the reduction in detection time and
improvement in detection accuracy will minimize damages to files stored in computer systems in the event of

malware attack.

Keywords: Anomaly-based Detection, LightGBM, Machine Learning, Malware Detection, XceptionCNN.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 43

1 Introduction
Malware, also known as malicious software can be described as any instruction set that is compromised to alter a
computer system and impose harm on users and organizations (Abusitta, 2021). A malware is categorized based
on its activities and execution process (Singh & Singh, 2020). The internet has made great contributions in
communication, however, it has consequently led to the rise in malware distribution. The developments of web
services with increasing speed have made productive advantage available to end-users. The number of people
using the Internet was about two billion in 2010 (Chang et al., 2013). A report from Dasient, and cited by Chang
et al. (2013), suggests that the number of malware delivering websites doubled between 2009 and 2010. “There
were 3.424 billion people using the Internet by July 2018” (Wang, 2018). Carrying out activities on an infected
website is a sufficient pathway for an attacker to take advantage of the weakness of a browser.

Malware analysis is essential in order to build successful malware detection techniques. The focus of malware
analysis is to understand the intent and activities of malware (Wong et al., 2021). Malware analysis may be static,
dynamic, or hybrid depending on the way and manner it is carried out. Analysts use static analysis, dynamic
analysis or a combination of both methods (hybrid) to understand and explain the mode of operation of malware
and the effects on the system (Wong et al., 2021).

Malware detection is the process of recognizing malicious sets of instruction from benign ones, so that a defense
can be built, in order that the system can be protected or recovered from any malicious effects (Landage &
Wankhade, 2013). Malware detection techniques identify malicious codes and prevent the system from its effect
and possible loss of information. A malware detector uses malware detection techniques to identify activities of
malware. Figure 1 shows malware detection techniques and approach as presented by Kumar (2017).

Figure 1: Malware detection techniques (Kumar, 2017)

1.1 Signature-Based Detection

A signature is a chain of information that describes the activities of a particular malware (Damodaran et al., 2017).
In Signature-Based Detection approach, unique signatures are detached from captured malware files. The
signatures are further used to detect malware with similar characteristics. Signature-based approach is suitable for
generic malware which do go through significant behavioural modification (Abusitta, 2021). However, attackers
easily manipulate malware signatures in order not to be detected by antivirus software (Abusitta, 2021). Signature-
based models are very effective in known malware detections, but, it is unable to identify new ones (Bazrafshan
et al., 2013).

1.2 Anomaly-Based Detection

In Anomaly-based detection; the behaviors of malware during runtime are studied in a training phase, after which
the executable is tagged as malicious or benign during testing phase based on extracted patterns in the training
phase (Damodaran et al., 2017). Behavior-based method is capable of detecting new and unknown malware and
malware that uses obfuscation techniques. The main limitations of the behavior-based detection are: a substantial
False Positive Rate (FPR) and unnecessary testing time (Bazrafshan et al., 2013).

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 44

Malware issue has developed into a serious issue in computing. According to Gibert et al. (2020), machine
learning technique is the best technique that is needed to protect a computer system due to rise in malware attack.
Using malware images makes malware classification easier (Pant & Bista, 2021). Image-based techniques are
robust against many types of obfuscations (Bhodia et al., 2019). Omitting irrelevant features fasten and make
algorithm to perform better (Şahin et al., 2021). While LightGBM technique is the best of the Gradient Boosting
Decision Tree Algorithms (GBDT) and has demonstrated its suitability for malware detection (Abbadi et al., &
Pan et al., 2020), XceptionCNN is an effective and less complex neural network for robust feature extraction
(Shaheed & Zhang, 2022).

We conducted a preliminary study which reveals the prediction time of the generic LightGBM to be 0.08s for
binary class and 0.40s for multi-class on the Malimg dataset with 10,381 malware samples. The preliminary study
further reveals a classification accuracy of 99% (TPR), with training accuracy of 99.80% for binary classification
on Malimg dataset and 96.87% for multi classification on the same malware samples. A growth in data size may
lead to corresponding increase in time of prediction. Although the classification accuracy obtained from our
preliminary experiment seems to be good, it could be further improved in order to enforce the effectiveness of the
algorithm. The prediction time, performance accuracy, and training time obtained from the preliminary
experiment also leave room for improvement. Hence, there will be a need to make the classification accuracy of
the model better for effective decision making, reduce the prediction time for efficiency, and improve the
performance and accuracy for effectiveness on larger samples. Our study, which hybridized XceptionCNN with
LightGBM has the following contributions and novelty:

• Improved training accuracy of the model for effective decision making.
• Reduction in the detection time and improvement in detection accuracy, which will minimize damages

to files stored in computer systems in the event of malware attack.
• Reduction in the training time, which will enable the model to converge quickly and train a large amount

of data within a relatively short period of time.
• The proposed model can detect both known and new malware variants.
• The training accuracy of the proposed model is higher than those of the existing models.
• This study is the first to compute and improve the detection time of the LightGBM algorithm

This study proposes a hybrid model based on LightGBM and XceptionCNN algorithms. The aim is to improve
the efficiency and effectiveness of Windows malware detection. Our preliminary study revealed that the
LightGBM technique which is the best of the GBDT algorithm, has proven to be suitable for Windows malware
detection (Abbadi et al., 2020; Pan et al., 2020) and can be improved for effective and efficient malware detection.
ML-based classifiers use underlying features to distinguish between malicious and benign applications, and
detecting changes in those features when malicious modifies itself. Malware possess certain features which
Machine learning algorithm can learn and use to predict if an executable file is a malware or benign sample. Such
that, if such an executable file behaves in a certain way or attempts to modify the system or access privilege
instructions, they may be classified as malware or benign based on their activities. Our technique can take a
number of these features as input, learn the properties of these features, then, build a model for prediction of new
samples. Using the mathematical function!:#	 → &, where m is the given malware and x is their corresponding
malware family, the model can also detect new variants of malware. This study will contribute to advances in
malware detection. The proposed solution can be applied to similar studies in future.

The rest of this paper is organized as follows: Section 2 presents related work in malware detection, while Section
3 discusses experiments and implementation details. Section 4 covers the findings of our study and the
implications of those findings, while Section 5 summarizes the study and draws conclusions based on the achieved
objectives.

2 Related Work
Ke et al. (2017) posited that GBDT is one of the machine learning classifiers which is extensively utilized as a
result of its effectiveness. LightGBM is a new GBDT algorithm with Gradient-based One-Side Sampling (GOSS)
and the Exclusive Feature Bundling (EFB) (Ke et al., 2017). The GOSS and EFB makes LightGBM considerably
effective than eXtreme Gradient Boosting (XGBoost) with regards to speed and memory usage (Ke et al., 2017).
In an attempt to study user’s click for click fraud detection, Minastireanu and Mesnita (2019) used the
experimental test for LightGBM using a public dataset available on Kaggle. Their results on the GBDT Algorithm
achieved 98% accuracy. In a different study, using the N-Gram model, Venkat et al. (2020) proposed a medicine
approval system. In an attempt to boost the efficiency of the medicine approval system, a LightGBM model was

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 45

used to carry out medication examination. Ju et al. (2019) observed that single-convolution model was ineffective
for wind power prediction; hence, they proposed a solution which integrates LightGBM algorithm with
convolutional model to enhance the prediction accuracy and reliability. A study by Fonseca et al. (2017) showed
that training LightGBM algorithm is faster than training XGBoost. The study did not compare the algorithms
based on their classification time. In further study, using dataset made available through Kaggle’s competition,
Machado et al. (2019) evaluated the accuracy of two GBDT Models: XGBoost and LightGBM algorithm in
predicting credit card customers’ reliability status. The study assessed customer loyalty prediction accuracy
through Root Mean Square Error and found that LightGBM achieved better than XGBoost. LightGBM-based
method performed better than most generic methods (such as Support Vector Machine, XGBoost, or Random
Forest) when applied fraud detection (Huang, 2020). Sun et al. (2020) also used LightGBM to combine the daily
data of 42 kinds of primary crypto-currencies with key important pointers in order to predict the prices of crypto-
currencies and obtain relevant information about the market. Their experimental results show that the robustness
of the LightGBM model is better than the other models. The time complexity for the LightGBM is calculated as
O(#Data x #Features) (Meidan et al., 2018). A malware classification approach converted malware binaries to
grayscale images before using a trained CNN to build a model for classifying malware according to its family
(Kalash et al., 2018). A deep learning architecture applied to Malimg malware dataset and Microsoft dataset has
performance accuracy of 98.52% for malign dataset and 99.97% accuracy for Microsoft datasets (Kalash et al.,
2018). In a similar study carried out by Bhodia et al. (2019), their deep learning architecture which was also
experimented on the Malimg malware dataset yielded a training accuracy of 98.39% for binary classification and
94.80% for multi-classification. A study by Lo et al. (2019) classified malware into families based on the
integration of deep CNN with Xception model. Experimental results show that the training accuracy of the
Xception model on the Malimg datasets is 99.37%. The study did not evaluate the classification accuracy and
prediction time of the model. Hussain (2019) proposed a hybrid technique based on gradient boosting classifier.
The method used information such as target of applications, privileges, static data and dynamic data to detect
malicious application. The approach has a good detection accuracy of 96%. This result still leaves room for
improvement. In another study, Nawaz et al. (2021) performed hybrid analysis using Android application features
which include permissions, targets, and network features. The study extracts permissions and intent from a
suspected file. It also obtains network related information from java files. The use of Info Gain as a feature
selection method results in precision of 0.99. The study did not apply their model to Windows malware domain.
An improved solution uses a small set of highly discriminant features for automated malware detection (Fang et
al., 2019). The goal is to address the limitations of classical feature selection techniques. DQFSA interacts with
the feature space and uses Q-learning to train an agent in order to achieve high accuracy. The proposed approach
performs better than existing baseline feature selection methods for malware detection using small feature sets.
The study did not apply the framework to other selection tasks. In an attempt to construct a detection framework,
Chen et al. (2020) used the characteristics of data and features of the attention mechanism to construct a sliding
local attention mechanism model (SLAM). The performance accuracy of the proposed model is 0.9723. The study
did explore the used of the technique for malware detection. Bensaoud and Kalita (2022) proposed a novel deep
learning method for classifying malware images for effective and efficient malware detection. Experimental
results based on about 100,000 benign and malicious PE, APK, Mach-o, and ELF show that the method has the
highest accuracy of more than 99.87%. The method is also effective at detecting different malware evasion
techniques. The detection time of the model was not considered. Pan et al. (2020) used Logistic Regression, KNN
and LightGBM to build models based on datasets of heartbeat and threat reports. The results obtained from the
respective models show that LightGBM has the highest accuracy with AUC of 0.720687. The study attempted to
enhance the training accuracy of the models, however, the detection time and detection accuracy were not
considered. Using a custom model based on convolutional neural network with a benchmark dataset (Malimg
dataset), Pant and Bista (2021) achieved 99.64% training accuracy while classifying malware into their respective
families. The study did not consider the detection time of the model. The study also did not evaluate the model
based on binary classification of the malware. A preliminary study conducted by the authors of this article reveal
that the LightGBM achieves 0.08s prediction time for binary classification on Malimg dataset with 10,381
malware samples and a prediction time of 0.40s for multi classification on the same malware samples. The
preliminary experiments reveal that the classification accuracy of the generic LightGBM machine learning
algorithm is 99% TPR. From the literature review, no study has deemed it fit to improve the classification accuracy
or reduce the prediction time of the LightGBM algorithm for windows malware detection.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 46

3 Methodology
The research process flow in Figure 2 depicts the sequence of activities required to accomplish the overall
objectives of the study.

Figure 2: Research process flow

3.1 Data Collection

We used the Malimg malware dataset which contain 9,339 of Malware samples structured as grayscale images
consisting of 25 malware families. Each of the malware families is made up of varying number of samples across
the dataset. Malimg dataset is one of the most commonly used datasets for malware findings. The Malimg dataset
was created by reading malware binaries into an 8-bit unsigned integer consisting of a matrix M ∈ Rm×n (Nataraj
et al., 2011). The matrix could be seen as image (grayscale) having values within the range of [0, 255], where 0
represents black, 1 represents white. In addition, benign dataset used are 1,042 windows benign executable files
extracted from windows environment and further converted into images. Table 1 presents a breakdown of the
Malimg dataset into families and their variants.

Table 1: The Malimg Dataset (Nataraj et al., 2011).

NO. Family Name Family Samples
1 Adialer.C dialer 122
2 Agent.FYI Backdoor 116
3 Allaple.A worm 2,949
4 Allaple.L worm 1,591
5 Alueron.gen!J Trojan 198
6 Autorun.K worm 106
7 C2LOP.gen!g Trojan 200
8 C2LOP.P Trojan 146
9 Dialplatform.B Dialer 177
10 Dontovo.A Trojan Downloader 162
11 Fakerean Rogue 381
12 Instantaccess Dialer 431
13 Lolyda.AA1 PWS 213
14 Lolyda.AA2 PWS 184
15 Lolyda.AA3 PWS 123
16 Lolyda.AT PWS 159
17 Malex.gen!J Trojan 136
18 Obfuscator.AD Trojan Downloader 142
19 Rbot!gen Backdoor 158
20 Skintrim.N Trojan 80

FEATURE EXTRACTION
/SELECTION

TRAINING / TESTING
(XCEPTIONCN-LGBM)

STOP

RESULTS
(EVALUATION METRICS)

START

DATA COLLECTION

DATA PREPROCESSING

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 47

21 Swizzor.gen!E Trojan Downloader 128
22 Swizzor.gen!I Trojan Downloader 132
23 VB.AT worm 408
24 Wintrim.BX Trojan Downloader 97
25 Yuner.A worm 800
 Total — 9,339

The analysis of the families and variants of the Malimg Dataset with a total of 9,339 dataset (Nataraj et al., 2011).

3.2 Data Preprocessing

The Malimg dataset used consists of images, hence, there was no preprocessing done on the dataset. We directly
passed the images that consist of the dataset into XceptionCNN for automatic feature extraction. Thereafter, we
saved the extracted features as CSV and passed it for classification and training. We also separated the dataset
into training and testing sets. Since our model require images as input, we further converted the windows benign
executable file to images using ‘exe2image’ converter, a digital image converter software available on github
(Malith, n.d.), operated on windows.

3.3 Feature Extraction

A total of 10,381 images of two (2) classes were used for the binary classification and the same number of images
of twenty (26) classes were used for the multi-classification. We applied an Advanced Convolutional Neural
Network model (Xception) which extracted the image features with distinctive pattern automatically from the
dataset, and the extracted features were saved as CSV files. Malware that share the same family are very similar
in layout and image (Nataraj et al., 2011).

3.4 Training and Testing

We trained the models on 100 epochs using the following hyperparameters : learning rate of 0.03 & Max-dept of
10. We used a total of 10,381 data samples. We randomly selected 80% and 20% of the samples in each of the
families for training and testing respectively, resulting in 8,304 and 2,077samples used for training and testing
respectively. The LightGBM was used for training and testing.

3.5 LightGBM Classifier

LightGBM is a new gradient boosting framework. It is a decision tree algorithm which supports many algorithms
like Gradient Boosting Machine (GBM), Gradient Boosting Decision Tree (GBDT), Gradient Boosted Regression
Tree (GBRT), and Multiple Additive Regression Tree (MART). It is has high level scalability, precision, and
efficiency (Ke et al., 2017). It is suitable for classification and other machine learning activities (Abbadi et al.,
2020). It applies a leaf-wise splitting of the tree based on the best fit, unlike other boosting algorithms which use
depth-wise or level-wise splitting. The leaf-wise growth of LightGBM reduces the level of loss, which results in
faster speed and higher accuracy than other boosting algorithms. Figure 3 shows the leaf-wise tree growth structure
of the LightGBM algorithm.

Figure 3: LightGBM Architecture (Khandelwal, 2017)

Figure 3 shows the leaf-wise tree growth (architecture) of the LightGBM algorithm as presented by Khandelwal
(2017).

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 48

Leaf-wise splits results in high complexity and overfitting, which can be addressed by using a parameter known
as max-depth to indicate how deep the splitting should be (Microsoft, 2021). LightGBM algorithm was proposed
by Su et al. (2018) and has been applied in different studies such as Abbadi et al. (2020) and Fonseca et al. (2017).
Abbadi et al. (2020) used LightGBM in IoT malware detection. LightGBM uses Gradient-based One-Side
Sampling (GOSS) and the Exclusive Feature bundling (EFB) (Sharma, 2018) to minimize the complexity of
histogram building (O(data*feature)). This is achieved by using GOSS and EFB to reduce the sampled data and
feature size. Hence, the complexity becomes (O(data2 * bundles)) where data2 < data and bundles << feature
(Sharma, 2018). LightGBM algorithm works on a supervised training set to compute an approximate function that
minimizes the value of a specific loss function ((*, !(&)) as expressed:

 !- = #/01*, &((*, !(&)) (1)

where & represents a set of random input variable and * represents a random output or response variable.
LightGBM computes an approximation of the final model by combining multiple 2 regression trees
∑ !!(4)"
!#$ 	which is expressed as

 !"(&) = 	∑ !!(&)%
!#$ (2)

The regression trees could be expressed as 5&((),6 ∈ {1,2, … , ;}	where	; denotes the number of leaves, 6 represents
the decision rules of the tree and 5 is a vector that denotes the sample weight of leaf nodes. Hence, LightGBM
would be trained in an additive form at step = as follows:

 ɼ! = ∑ ((*+,?!,$		@&+,A 	+	!!,	(&+,)).
+#$ (3)

In LightGBM, the objective function is rapidly approximated using Newton’s method. After removing the
constant term in the last equation for simplicity, the formulation can be represented as

 ɼ! ≅ ∑ (D+!!@&+,A +	
$

/
ℎ+!!/	(&+,)).

+#$ (4)

where D+ and ℎ+	denote the first and second-order gradient statics of the loss function.

Let F0 denote the sample set of leaf ;, (4) could be expressed as

 ɼ! = ∑ ((∑ D+)50+∈2! +		$
/
G∑ ℎ+ + ʎ)	50/+∈2! I)0

0#$ (5)

For a certain tree structure6(&), the optimal leaf weight scores of each leaf node 50∗ and the extreme value of
ɼ! can be expressed as:

 ""∗ =	−
∑ %!!∈#$
∑ &!'ʎ!∈#$

 (6)

 	
ɼT∗=	−

1
2	∑

"∑ $%%∈'! (
∑)%*ʎ%∈'!

j
j=1

2 (7)

where
ɼ5		∗ is the scoring function that measures the quality of the tree structure q. Finally, the objective function after
adding the split is:

 G =	 $
/
K
6∑ 7%%∈', 8

-

∑ 9%:ʎ%∈',
+	

6∑ 7%%∈'. 8
-

∑ 9%:ʎ%∈'.
− (∑ 7%%∈')-

∑ 9%:ʎ%∈'
M (8)

where F< and F= are the sample sets of the left and right branches respectively. Unlike traditional GBDT based
techniques such as XGboost and GBDT which grow trees horizontally, LightGBM adopts a vertical approach to
grow the tree, which makes the algorithm effective for handling large datasets and features. LightGBM increases
training performance and minimizes memory requirements by using algorithms based on the histogram. The
advantages of LightGBM as presented by Khandelwal (2017) are as follows:

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 49

i. Higher efficiency: It uses histogram-based algorithm to convert continuous feature values into discrete bins
which results increases the speed of training a dataset.

ii. Reduced memory requirements - the replacement of continuous values with discrete bins results in low
memory utilization.

iii. Higher accuracy than similar techniques – by using leaf-wise instead of level-wise splitting to compute more
complex trees.

iv. Suitable for large datasets – performs well on large datasets and minimizes the training time considerably
when compared to XGBOOST.

v. It supports parallel learning.

3.6 Architecture of XceptionCNN

Xception model was developed using an 'extreme' interpretation of Google’s Inception model (Chollet, 2017). Its
structure is a linear stack of 36 independent convolution layers which use depth-wise splitting method and are
linked together by residual connections. The layered stack is responsible for feature extraction on the network.
The 36 independent convolution layers are grouped into 14 modules, which are joined by linear residual
connections, with the exception of the first and last modules (Chollet, 2017). XceptionCNN diagrammatic
representation is shown in figure 4.

Figure 4: XceptionCNN Architecture (Chollet, 2017)

Figure 4 shows the Xception architecture. It is divided into 3 components (entry flow, middle flow and exit flow),
14 modules and 36 convolutional layers. It uses the layers with a depth of 126 to perform feature extraction. Its
input format is a 299x299 RGB image. A global average pooling layer is substituted for the fully-connected layer
to reduce the parameter size, while the softmax function is used to predict the output. The flow of data from the
entry flow to the middle flow is repeated eight times before it finally passes through the exit flow. The number of
convolutional layers in the entry flow, middle flow and exit flow are 8, 8*3= 24 and 4 respectively. The model
uses depth-wise separable convolution to reduce the operational cost of the convolution process.

3.7 Design of the XceptionCNN - LightGBM Experiments

To reduce the prediction time and take advantage of the efficiency of XceptionCNN, we combine XceptionCNN
with LightGBM. We use the XceptionCNN to extract features automatically; it uses less resource and time as
compared to the already available methods. The XceptionCNN is hybridized with the LightGBM model. We
directly passed the images that comprise the dataset into XceptionCNN model for automatic feature extraction,
thereafter, saved the extracted features as CSV and passed it to the LightGBM model for classification and
training.

In order to demonstrate that the XceptionCNN-LightGBM can reduce prediction time and training time, improve
the performance and improve the training accuracy, experiments with XceptionCNN-LightGBM were conducted.
We compared XceptionCNN-LightGBM models with the generic LightGBM models (preliminary experiment) to

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 50

verify that using XceptionCNN-LightGBM can reduce prediction time and training time, improve classification
accuracy and training accuracy. We also compared our results with similar studies to show that our model
performs better on the Malimg dataset than the previous ones.

In our experiments, we chose LightGBM because of its better accuracy than any other boosting algorithm
(Khandelwal, 2017). And also because of, its performance and effectiveness in Robust Intelligent Malware
Detection as studied by (Abbadi et al., 2020). Similarly, we chose XceptionCNN because of its efficiency in
extracting image features automatically, it is less time consuming and effective (Lo et al., 2019). Figure 5 shows
our approach in accomplishing our enhanced LightGBM model.

Figure 5: Design of the Proposed XceptionCNN-LightGBM model

3.8 Performance Evaluation

A Confusion matrix N x N (where N is the number of target classes) is used to evaluate the performance of the
proposed model. A 2 x 2 matrix is required to perform binary classification. The confusion matrix is used to
evaluate the ability of our model to classify the data based on its assigned labels. Each Cmn is the data instances
which belong to group m (true label) and predicted belonging to group n (predicted label) (Harikrishnan, 2019).
C00, C01 and C10 denote the number of true negatives, false positives, and false negatives respectively.

The basic terminologies used for defining Confusion Matrix include (1) True Positive (TP), which refers to the
point at which the predicted positive value matches the real value; (2) True Negative (TN), when the predicted
negative value matches the real value; (3) False Positive (FP) - where the real value is negative but the model
predicted positive (also referred to as Type 1 error); and (4) False Negative (FN) – a situation where the real value
is positive but the model predicted negative (commonly referred to as Type 2 error).

3.8.1 Evaluation Metrics

Evaluation metrics assess the quality of machine learning model in order to obtain necessary feedback and
determine its effectiveness and efficiency. We explain the metrics used in evaluating our models below :

i. Accuracy: The machine learning model accuracy for a given classification task is given as
>?@AB%CDEC%%BF!G%BH+F!+C.

"C!IJ>?@AB%CDG%BH+F!+C.KIHB

 Accuracy = ">:"G

">:LG:"G:L>
 (9)

 Where, TN, TP, FN, and FP represent True Negative, True Positive, False Negative and False Positive data
points respectively.

ii. True Positive Rate: True Positive Rate corresponds to the proportion of positive data points that are
correctly predicted as positive, with respect to all positive data points.

 True Positive Rate (TPR) = "G

"G:L>
 (10)

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 51

 TP and FN are as described in (9).

iii. False Positive Rate (FPR): False Positive Rate corresponds to the proportion of negative data points that
are mistakenly predicted as positive, with respect to all negative data points.

 False Positive Rate (FPR) = LG

">:LG
 (11)

 TN and FP are as described in (9).

iv. Precision: used to measure the positive patterns that are correctly predicted from the total predicted patterns
in a positive class (Hossin, 2015). It is calculated as the ratio of the correct positive results to the number of
positive results predicted by the classifier.

 Precision = "G

"G:LG
 (12)

 TP and FP are as described in (9).

v. Recall - used to measure the fraction of positive patterns that are correctly classified (Hossin, 2015). It is
the number of correct positive results divided by the number of all relevant samples (all samples that should
have been identified as positive).

 Recall = "G

"G:L>
 (13)

 TP and FN are as described in (9)

vi. F1 Score: measures the accuracy and effectiveness of a classifier (Mishra, 2018). The value ranges between
0 and 1. A high F1 score indicates that the model has good performance. It is calculated as the Harmonic
Mean of precision and recall. it can be expressed mathematically as:

 F1 Score = 2 * MNOPQRQST∗UOPVWW
MNOPQRQST	:	UOPVWW

 (14)

vii. Training Time (TT): The training time of a model is the total amount of time required for a model to be
completely trained. It is the difference between the end time and the start time of training the model.

 TT = EndTime(ET) – StartTime(ST) (15)

3.9 Implementation Environment

We conducted experiments on Google Co-laboratory (COLAB) environment with TPU v3, 32GB HMB. COLAB
is a machine learning education and research platform based on Jupyter Notebook (Carneiro et al., 2018). It is
pre-configured with necessary machine learning and artificial intelligence libraries, such as TensorFlow,
Matplotlib, and Keras. It provides a CPU, GPU and TPU accelerated Python 2 and 3 runtime.

4 Results and Discussion
We performed two experiments involving the Malimg dataset, with binary/multi classification level, using hybrid
(XceptionCNN - LightGBM) learning technique. In this section, each experiment will be discussed in detail and
results will be presented for the two separate experiments. Each experiment represents the Malimg dataset,
binary/multi classification level. The results from our preliminary LightGBM experiments on the Malimg malware
dataset are presented in Table 2.

Table 2 presents the results (binary & multi-class) obtained from our preliminary experiment using LightGBM
Algorithm.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 52

Table 2: Results of LightGBM (Preliminary) Experiments

Metric

Binary Multi-Class

Recall 99.80% 96.87%
Precision 99.80% 96.75%
F1_Score 99.80% 96.51%
Training Accuracy 99.80% 96.87%
Training Time 179.51s 2224.77s
Prediction time 0.08s 0.40s

For the binary classification results in Table 1, training time of 179.51s means the model spent a total of 179.51s
for training. It obtained a training accuracy of 99.80%, a precision of 99.80% which is the positive patterns
correctly predicted from the total predicted patterns in a positive class, and a recall of 99.80%, which means
99.80% fraction of positive patterns, were correctly classified. The Harmonic Mean between this precision and
recall which is the F1_score, is 99.80%. The greater the F1 Score, the better the performance of the model. The
corresponding multiclass model spent a total of 2224.77s of training time, with training accuracy of 96.87% and
a precision of 96.75%, which is the positive patterns correctly predicted from the total predicted patterns in a
positive class, with a recall of 96.87%, which implies 96.87% fraction of positive patterns were correctly
classified. The Harmonic Mean between precision and recall which is the F1 Score is 96.51%. Similarly, the
greater the F1 Score the better the performance of the model. The prediction time of 0.08s and 0.40s for binary
and multi classification respectively show the time taken for predictions to occur.

4.1 Experiments on XceptionCNN – LightGBM

In these experiments, we improved the LightGBM model by hybridizing it with XceptionCNN. We installed
LightGBM as an independent model on the colab notebook for implementation.

4.1.1 Binary Classification

Binary classification is used to distinguish malware from benign samples. We created the malware class by placing
all Malimg families into one malware set. There are 1042 benign samples which are converted to images.

4.1.2 Multi-Classification

We also used the XceptionCNN – LightGBM algorithm to classify malware samples into distinct families. It is a
multi-classification problem consisting of 26 classes, The actual Malimg dataset consist of 25 malware families,
while the benign set is considered an additional “family” resulting in a total of 26 classes. We present the results
obtained from our hybrid experiments in the Table 3.

Table 3: Results of XceptionCNN – LightGBM Experiments

Metric

Binary Multi-Class

Recall 99.85% 97.40%
Precision 99.85% 97.29%
F1_Score 99.85% 97.29%
Training Accuracy 99.85% 97.40%
Training Time 29.97s 447.75s
Prediction time 0.08s 0.37s

Table 3 presents the results (binary & multi-class) obtained from our experiments using our hybrid model.

For the binary classification results in Table 3, training time of 29.97s means the model spent a total of 29.97s for
training. It obtained a training accuracy of 99.85%, a precision of 99.85% which is the positive patterns correctly
predicted from the total predicted pattern in a positive class and a recall of 99.85%, which means 99.85% fraction
of positive pattern were correctly classified. The Harmonic Mean between this precision and recall, which is the

Classification

Classification

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 53

F1_score is 99.85%. The greater the F1 Score the better the performance of the model. The corresponding multi-
class model spent a total of 447.75s training time, with training accuracy of 97.40% and a precision of 97.29%
which is the positive patterns correctly predicted from the total predicted patterns in a positive class. A recall of
97.40% was obtained, which means 97.40% fraction of positive patterns were correctly classified. The Harmonic
Mean between precision and recall which is the F1 Score is 97.29%. Similarly, the greater the F1 Score the better
the performance of the model. The prediction time of 0.08s and 0.37s for binary and multi classification
respectively show the time and how fast predictions occur.

4.2 Comparison of Results

The results in Table 3 are comparable to those obtained in our generic LightGBM preliminary experiment (Table
2) and serves to confirm our hybrid model implementation. Table 4 shows the results comparison.

Table 4: Results Comparison

 LightGBM (Preliminary
Experiment)

Xception – LightGBM

 Classification

Metric

Binary Multi-Class Binary Multi-Class

Recall 99.80% 96.87% 99.85% 97.40%
Precision 99.80% 96.75% 99.85% 97.29%
F1_Score 99.80% 96.51% 99.85% 97.29%
Training Accuracy 99.80% 96.87% 99.85% 97.40%
Training Time 179.51s 2224.77s 29.97s 447.75s
Prediction time 0.08s 0.40s 0.08s 0.37s

Table 4 presents the results obtained from the various training techniques used. This study shows that it is effective
to combine pre-trained XceptionCNN model with LightGBM algorithm to improve detection and classification
of windows malware. It leverages on the strengths and benefits of XceptionCNN (Shaheed & Zhang, 2022) and
the LightGBM algorithm (Abbadi et al., 2020). Comparing the experimental results obtained in this study with
the preliminary experiments, Table 4 shows that combining the pre-trained XceptionCNN model with LightGBM
obtains better classification accuracy than applying the generic LightGBM algorithm. Results clearly indicate that
extracting image features using XceptionCNN and performing classification using LightGBM provides the best
performance for malware detection. In order to evaluate our model, we chose Accuracy, Precision, F1-score,
Recall, Training time and Detection time as evaluation criteria. From the results of these experiments in Table 4,
we can see that our model achieves a good performance result compared to the preliminary experiments based on
the generic LightGBM algorithm. Although the detection time of the binary class looks the same with the
LightGBM, figure 7 shows that our hybrid approach outperforms it in terms of detection accuracy of 100%. This
is due to the use of pre-trained XceptionCNN model. XceptionCNN extracted fewer misleading features than the
generic LightGBM. Hence, fewer misleading data improves modeling accuracy.

4.3 Confusion Matrix

We also present the confusion matrix for our experiments in Figure 6 and Figure 7, to show the improved
classification accuracy of our XceptionCNN – LightGBM algorithm.

Figure 6 shows the classification accuracy of the generic LightGBM model. It shows a total data point of 2,077,
which corresponds to the 20% (testing data) of the total dataset. The generic LightGBM model performed
reasonably well in this malware classification, correctly identifying 99% of the malware samples (True Positive
Rate of 99%).

The classification accuracy of the hybrid model is presented in Figure 7. It shows a total of 2,077 data points,
which correspond to the 20% (testing data) of the total dataset. Our hybrid model shows an improved classification
accuracy of 100% True Positive Rate. This means our model correctly identifies 100% samples that are truly
malware.

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 54

Figure 6: Generic LightGBM Confusion matrix

Figure 7: XceptionCNN –LightGBM Confusion Matrix

4.4 Comparison with Related Works

In Table 5, we compare our method with similar studies using the Malimg dataset for Windows Malware detection.
Our results maintain higher accuracy than all the approaches in the related work. Our hybrid approach further
maintains 100% TPR (see Figure 7).

Table 5: Comparison with Related Works.

Training Techniques Classification Training Accuracy
LightGBM (Preliminary Experiment) Binary 99.80%

Multi-Class 96.87%
XceptionCNN -LightGBM (Ours) Binary 99.85%

Multi-Class 97.40%
M-CNN (Kalash et al., 2018) Binary 98.25%
DL (Bhodia et al., 2019) Binary 98.39%
XceptionCNN (Lo et al., 2019) Binary 99.37%

Multi-Class 94.80%

199 2

2 1874

223 3

0 1851

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 55

The results as presented in Table 5 show that the XceptionCNN – LightGBM model is more effective and robust
than previous solutions.

The XceptionCNN – LightGBM model accepts image data as input. The Malimg dataset is available publicly as
benchmark Windows malware image dataset used in many studies for image based malware classification. Many
machine learning and deep learning algorithms have been presented to develop models for effective malware
detection. In this study, we combined XceptionCNN and LightGBM algorithms for binary and multi classification
approach for effective and efficient malware detection. The proposed approach was compared with current
methods in the literature. Table 5 summarizes the comparison of our performance results with current methods in
the literature in terms of Training accuracy. Our model outperforms the state–of–the–art approaches with the best
training accuracy. These significant improvements are attributed to the usage of the pre-trained XceptionCNN
model and the LightGBM algorithm which aided in producing an excellent outcome. This is because
XceptionCNN which is a pre-trained model for image based feature extraction, extracts the best image features
needed for training the model by the LightGBM algorithm. The XceptionCNN model extracted adequate and less
redundant image features from the dataset which were further trained by LightGBM. Less redundant data means
fewer tendencies to make decision based on noise, reduced overfitting and improved robustness. Similarly,
Quality training using the LightGBM algorithm produces a highly reliable model, resulting in fast and accurate
classification.

5 Conclusion
This study proposed XceptionCNN – LightGBM model for Windows malware detection. The proposed hybrid
technique addresses the limitations of the generic LightGBM algorithm in terms of classification accuracy,
prediction time, training accuracy and training time. The model was tested on 9,339 malware samples across 25
malware families and 1,042 benign samples. Preliminary experiments based on the generic LightGBM algorithm
show a classification accuracy of 99% TPR with prediction time of 0.08s and 0.40s for binary and multi
classification respectively. Experimental results show that the hybrid technique provides improved classification
accuracy of 100% and reduced prediction time of 0.08s and 0.37s for binary and multi classification respectively.
The training accuracy improved by 0.5% and achieved a reduced training time of 29.97s from 179.51s for binary
classification and 447.75s from 2224.77s for multi classification. The practical implication of this study is that the
hybrid approach provides accurate and reliable detection of malicious software that attack computer systems and
compromise the confidentiality, integrity and availability of information stored in them. The reduction in detection
time provides early detection of a malware before it causes significant damage to files stored in computer systems.
This minimizes the losses an organization will suffer in case of malware attack. The reduction in the training time
enables the model to converge quickly and train a large amount of data in a relatively short period of time. A
future study will consider using two or more malware datasets to conduct the experiments. This will further
enhance the validity and reliability of the proposed model.

References
Abbadi, M. A., Al-Bustanji, A. M., & Al-kasassbeh, M. (2020, April 30). Robust Intelligent Malware Detection

using LightGBM Algorithm. International Journal of Innovative Technology and Exploring Engineering,
9(6), 1253–1260. https://doi.org/10.35940/ijitee.f4043.049620

Abusitta, A., Li, M. Q., & Fung, B. C. (2021). Malware Classification and Composition Analysis: A Survey of
Recent Developments. Journal of Information Security and Applications, 59, 102828.
https://doi.org/10.1016/j.jisa.2021.102828

Bazrafshan, Z., Hashemi, H., Fard, S. M. H., & Hamzeh, A. (2013). A Survey on Heuristic Malware Detection
Techniques. The 5th Conference on Information and Knowledge Technology (pp. 113-120).
https://doi.org/10.1109/ikt.2013.6620049

Bensaoud, A., & Kalita, J. (2022). Deep Multi-task Learning for Malware Image Classification. Journal of

Information Security and Applications, 64, 103057. https://doi.org/10.1016/j.jisa.2021.103057
Bhodia, N., Prajapati, P., Di Troia, F., & Stamp, M. (2019). Transfer Learning for Image-based Malware

Classification. Proceedings of the 5th International Conference on Information Systems Security and Privacy
(pp 719-726). https://doi.org/10.5220/0007701407190726

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 56

Carneiro, T., Nobrega, R. V., Nepomuceno, T., Bian, G. B., De Albuquerque, V. H. C., & Filho, P. P. R. (2018).
Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE

Access, 6, 61677–61685. https://doi.org/10.1109/access.2018.2874767
Chang, J., Venkatasubramanian, K. K., West, A. G., & Lee, I. (2013). Analyzing and Defending against Web-

based Malware. ACM Computing Surveys, 45(4), 1–35. https://doi.org/10.1145/2501654.2501663
Chen, J., Guo, S., Ma, X., Li, H., Guo, J., Chen, M., & Pan, Z. (2020). SLAM: A Malware Detection Method

Based on Sliding Local Attention Mechanism. Security and Communication Networks, 1–11.
https://doi.org/10.1155/2020/6724513

Chollet, F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), (pp.1251-1258). https://doi.org/10.1109/cvpr.2017.195
Damodaran, A., Troia, F. D., Visaggio, C. A., Austin, T. H., & Stamp, M. (2015). A Comparison of Static,

Dynamic, and Hybrid Analysis for Malware Detection. Journal of Computer Virology and Hacking

Techniques, 13(1), 1–12. https://doi.org/10.1007/s11416-015-0261-z
Fang, Z., Wang, J., Geng, J., & Kan, X. (2019). Feature Selection for Malware Detection Based on Reinforcement

Learning. IEEE Access, 7, 176177–176187. https://doi.org/10.1109/access.2019.2957429
Fonseca, E., Gong, R., Bogdanov, D., Slizovskaia, O., Gomez, E., & Serra, X. (2017). Acoustic Scene

 Classification by Ensembling Gradient Boosting Machine and Convolutional Neural Networks. In Virtanen,
T., Mesaros, A., Heittola, T., Diment, A., Vincent, E., Benetos, E., Martinez B. (Eds). Detection and

Classification of Acoustic Scenes and Events 2017 Workshop: Tampere University of Technology (pp.37-
41). http://hdl.handle.net/10230/33454

Gibert, D., Mateu, C., & Planes, J. (2020). The rise of Machine Learning for Detection and Classification of
Malware: Research developments, Trends and Challenges. Journal of Network and Computer Applications,
153, 102526. https://doi.org/10.1016/j.jnca.2019.102526

Harikrishnan, B. (2019, December 10). Confusion Matrix, Accuracy, Precision, Recall, F1 Score Binary

Classification Metric. National Institute of Advanced Studies, Bengaluru, India.
https://medium.com/@harikrishnannb

Hossin, M., & Sulaiman, N. (2015). A Review on Evaluation Metrics for Data Classification. International

Journal of Data Mining & Knowledge Management Process, 5(2), 01-11.
https://dio.org/10.5121/ijdkp.2015.5201

Huang, K. (2020). An Optimized LightGBM Model for Fraud Detection. Journal of Physics: Conference Series,
1651(1), 012111. https://doi.org/10.1088/1742-6596/1651/1/012111

Hussain, S. J., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N., & Humayun, M. (2019). IMIAD: Intelligent Malware
Identification for Android Platform. 2019 International Conference on Computer and Information Sciences

(ICCIS). (pp. 1- 6). https://doi.org/10.1109/iccisci.2019.8716471
Ju, Y., Sun, G., Chen, Q., Zhang, M., Zhu, H., & Rehman, M. U. (2019). A Model Combining Convolutional

Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting. IEEE Access, 7,
28309–28318. https://doi.org/10.1109/access.2019.2901920

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., & Iqbal, F. (2018). Malware Classification
with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies,

Mobility and Security (NTMS). https://doi.org/10.1109/ntms.2018.8328749
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T. (2017). LightGBM: A Highly

Efficient Gradient Boosting Decision Tree. 31st International Conference On Neural Information Processing

Systems, (pp. 3149–3157). https://dl.acm.org/doi/10.5555/3294996.3295074
Khandelwal, P. (2017, June 12). Which Algorithm takes the crown: LightGBM vs XGBOOST? Analytics

Vidhya. https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-
Kumar, A. (2017). A Frame work for Malware Detection with Static Features using Machine Learning

Algorithms. [Doctoral thesis] Soongsil University. https://doi.org/10.13140/RG.2.2.35593.90723
Landage, J., & Wankhade, P. (2013). Malware and Malware Detection Techniques: A Survey. International

Journal of Engineering Research & Technology, 2(12), 61 - 68. https://doi.org/ 10.17577/IJERTV2IS120163
Lo, W. W., Yang, X., & Wang, Y. (2019). An Xception Convolutional Neural Network for Malware Classification

with Transfer Learning. 2019 10th IFIP International Conference on New Technologies, Mobility and Security

(NTMS) (pp.1-5). https://doi.org/10.1109/ntms.2019.8763852

Journal of Computing and Social Informatics (Vol 1 No 2, 2022)

 57

Machado, M. R., Karray, S., & Sousa, I. T. (2019). LightGBM: an Effective Decision Tree Gradient Boosting
Method to Predict Customer Loyalty in the Finance Industry. 2019 14th International Conference on

Computer Science & Amp; Education (ICCSE) (pp. 1111-1116). https://doi.org/10.1109/iccse.2019.8845529
Malith, O. (n.d.). A Simple Utility to Convert EXE Files to PNG Images and Vice Versa. Github. Retrieved from

http://github.com/OsandaMalith/Exe2Image
Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici, Y. (2018). N-

BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive
Computing, 17(3), 12–22. https://doi.org/10.1109/mprv.2018.03367731

Microsoft Cooperation. (2021). Read the Docs, LightGBM Release 3.2.1.99. Github. Retrieved from
https://lightgbm.readthedocs.io/

Minastireanu, E. A., & Mesnita, G. (2019). LightGBM Machine Learning Algorithm to Online Click Fraud
Detection. Journal of Information Assurance &Amp; Cybersecurity, 12, 1–12.
https://doi.org/10.5171/2019.263928

Mishra, A. (2018, February 24). Metrics to Evaluate your Machine Learning Algorithm. Towards Data Science.
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

Nataraj, L., Karthikeyan, S., Jacob, G., & Manjunath, B. (2011). Malware Images: Visualization and Automatic
Classification. 8th International Symposium on Visualization for Cyber Security 2011 (pp.1–7).
https://doi.org/10.1145/2016904.2016908

Nawaz, A. (2021). Feature Engineering based on Hybrid Features for Malware Detection over Android
Framework. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(10), 2856–2864.
https://doi.org/10.17762/turcomat.v12i10.4931

Pan, Q., Tang, W., & Yao, S. (2020). The Application of LightGBM in Microsoft Malware Detection. Journal of

Physics: Conference Series, 1684(1), 012041. https://doi.org/10.1088/1742-6596/1684/1/012041
Pant, D., & Bista, R. (2021b). Image-based Malware Classification using Deep Convolutional Neural Network

and Transfer Learning. 2021 3rd International Conference on Advanced Information Science and System

(AISS 2021). https://doi.org/10.1145/3503047.3503081
Şahin, D. Z., Kural, O. E., Akleylek, S., & Kılıç, E. (2021). A Novel Permission-based Android Malware

Detection System using Feature Selection based on Linear Regression. Neural Computing and Applications,
33, 1 – 16. https://doi.org/10.1007/s00521-021-05875-1

Shaheed, K., Mao, A., Qureshi, I., Kumar, M., Hussain, S., Ullah, I., & Zhang, X. (2022). DS-CNN: A pre-trained
Xception Model based on Depth-Wise Separable Convolutional Neural Network for Finger Vein Recognition.
Expert Systems With Applications, 191, 116288. https://doi.org/10.1016/j.eswa.2021.116288

Sharma, A. (2018, October 15). Understanding GOSS and EFB: The core Pillars of LightGBM. Towards Data
Science. https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e

Singh, J., & Singh, J. (2021). A Survey on Machine Learning-based Malware Detection in Executable Files.
Journal of Systems Architecture, 112, 101861. https://doi.org/10.1016/j.sysarc.2020.101861

Su, J., Vargas, V. D., Prasad, S., Daniele, S., Feng, Y., & Sakurai, K. (2018). Lightweight Classification of IoT
Malware Based on Image Recognition. 2018 IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC) (pp. 664 - 669). https://doi.org/10.1109/compsac.2018.10315
Sun, X., Liu, M., & Sima, Z. (2020). A Novel Cryptocurrency Price Trend Forecasting Model Based on

LightGBM. Finance Research Letters, 32, 101084. https://doi.org/10.1016/j.frl.2018.12.032
Venkat, T., Rao, N., Unnisa, A., & Sreni, K. (2020). Medicine Recommendation System based on Patient

Reviews. International journal of Scientific & Technology research, 9(2), 3308 - 3312.
Wang, J. (2018). Detection and Analysis of Web-based Malware and Vulnerability [Doctoral thesis]. Nanyang

Technological University, Singapore. https://doi.org/10.32657/10220/47659
Wong, M. Y., Landen, M., Antonakakis, M., Blough, M. D., Redmiles, M. E., & Ahamad, M. (2021). An inside

look into the practice of Malware Analysis. Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security (pp. 3053–3069). ACM SIGSAC. https://doi.org/10.1145/3460120.3484759

