Securing Industrial Internet of Things: A Multi-Factor Authentication Approach using PUFs and AI

Authors

  • Fakhrul Iqbal Mohd Firdaus Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Jasmin Khan Abdul Rahman Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Karisma Khairunnisa Osman Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Mcjoey Michael Enggat Johnny Ernst & Young Consulting Sdn. Bhd. (EY), Pusat Bandar Damansara, Kuala Lumpur 50490, Malaysia
  • Muhammad Zikri Roslan Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Reema Shaheen Department of eLearning Center (ELC), Jazan University

DOI:

https://doi.org/10.33736/jcsi.7374.2024

Keywords:

Industrial Internet of Things, multi-factor authentication, Physical Unclonable Functions, hashing, Artificial Intelligence

Abstract

Ensuring secure and reliable authentication is a critical challenge in the Industrial Internet of Things (IIoT) due to the vulnerability of traditional authentication methods. This paper proposes a multi-factor authentication mechanism (MFA) that combines Physical Unclonable Functions (PUFs), HMAC-SHA-256 hashing, and Artificial Intelligence (AI) to address the shortcomings of existing protocols. PUFs exploit manufacturing variations to generate unique, unclonable identifiers for each IIoT device, eliminating the need to store cryptographic keys that can be extracted through physical attacks. The proposed approach consists of a registration phase where devices generate PUF responses linked to temporary identities, and an authentication phase with mutual verification using challenge-response pairs and XOR operations. This lightweight protocol maintains high security through resistance to various attacks like replay, man-in-the-middle, and impersonation, while ensuring efficiency suitable for resource-constrained IIoT environments. AI is integrated to optimize challenge-response pair selection, perform anomaly detection, and enable adaptive authentication, enhancing the robustness and scalability of the system against evolving cyber threats. The solution effectively secures IIoT device authentication while meeting the operational requirements of industrial applications.

References

Ahmad, Z., Adnan Shahid Khan, Zen, K., & Ahmad, F. (2023). MS‐ADS: Multistage Spectrogram image‐based Anomaly Detection System for IoT security. Transactions on Emerging Telecommunications Technologies. https://doi.org/10.1002/ett.4810

Ahmad, Z., Shahid Khan, A., Nisar, K., Haider, I., Hassan, R., Haque, M. R., Tarmizi, S., & Rodrigues, J. J. P. C. (2021). Anomaly detection using deep neural network for IoT architecture. Applied Sciences, 11(15), 7050.

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150.

Aminian Modarres, A. M., & Sarbishaei, G. (2022). An Improved Lightweight Two-Factor Authentication Protocol for IoT Applications. IEEE Transactions on Industrial Informatics, 1–11. https://doi.org/10.1109/tii.2022.3201971

Asif, R., Ghanem, K., & Irvine, J. (2020). Proof-of-PUF Enabled Blockchain: Concurrent Data and Device Security for Internet-of-Energy. Sensors, 21(1), 28. https://doi.org/10.3390/s21010028

Bhatia, K., Pandey, S. K., Singh, V. K., & Gupta, D. N. (2023). Hash and Physical Unclonable Function (PUF)-Based Mutual Authentication Mechanism. Sensors, 23(14), 6307. https://doi.org/10.3390/s23146307

Ganji, F., & Shahin Tajik. (2022). Physically Unclonable Functions and AI. Lecture Notes in Computer Science, 85–106. https://doi.org/10.1007/978-3-030-98795-4_5

Han, Y., Guo, H., Liu, J., Ehui, B. B., Wu, Y., & Li, S. (2024). An Enhanced Multi-Factor Authentication and Key Agreement Protocol in Industrial Internet of Things. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/JIOT.2024.3355228

Irshad Ahmed Abbasi, Saeed Ullah Jan, Abdulrahman Saad Alqahtani, Adnan Shahid Khan, & Fahad Algarni. (2024). A lightweight and robust authentication scheme for the healthcare system using public cloud server. PloS One, 19(1), e0294429–e0294429. https://doi.org/10.1371/journal.pone.0294429

Javed, Y., Khan, A. S., Qahar, A., & Abdullah, J. (2017). Preventing DoS attacks in IoT using AES. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-11), 55-60

Khalid, H., Hashim, S. J., Ahmad, S. M. S., Hashim, F., & Chaudhary, M. A. (2021). SELAMAT: A New Secure and Lightweight Multi-Factor Authentication Scheme for Cross-Platform Industrial IoT Systems. Sensors, 21(4), 1428. https://doi.org/10.3390/s21041428

Khan, N., Abdullah, J., & Khan, A. S. (2017). A dynamic method of detecting malicious scripts using classifiers. Advanced Science Letters, 23(6), 5352-5355.

Khan, N., Abdullah, J., & Khan, A. S. (2017). Research Article Defending Malicious Script Attacks Using Machine Learning Classifiers.

Khan, N., Johari, A., & Adnan, S. (2017). A Taxonomy Study of XSS Vulnerabilities. Asian J. Inf. Technol, 16, 169-177.

Kilat, V. S., Khan, A. S., James, E., & Khan, N. A. (2023). Recapitulation of Survey on Taxonomy: Security Unmanned Aerial Vehicles Networks. Journal of Computing and Social Informatics, 2(1), 21–31. https://doi.org/10.33736/jcsi.4969.2023

Li, Z., Yang, Z., Szalachowski, P., & Zhou, J. (2020). Building Low-Interactivity Multi-Factor Authenticated Key Exchange for Industrial Internet-of-Things. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/jiot.2020.3008773

Luo, H., Zou, T., Wu, C., Li, D., Li, S., & Chu, C. (2022). Lightweight Authentication Protocol Based on Physical Unclonable Function. Computers, Materials & Continua, 72(3), 5031–5040. https://doi.org/10.32604/cmc.2022.027118

Ming, Y., Yang, P., Mahdikhani, H., & Lu, R. (2023). A Secure One-to-Many Authentication and Key Agreement Scheme for Industrial IoT. IEEE Systems Journal, 17(2), 2225–2236. https://doi.org/10.1109/jsyst.2022.3209868

Mostafa, A., Lee, S. J., & Peker, Y. K. (2020). Physical Unclonable Function and Hashing Are All You Need to Mutually Authenticate IoT Devices. Sensors (Basel, Switzerland), 20(16). https://doi.org/10.3390/s20164361

Muhammad Syahreen Zulkifli, Noor Hafizah Hassan, Nurazean Maarop, Fiza Abdul Rahim, & Mohd. (2023). A Proposed Multifactor Authentication Framework for SME in Cloud Computing Environment. https://doi.org/10.1109/icset59111.2023.10295159

Nisa, N., Adnan Shahid Khan, Ahmad, Z., & Abdullah, J. (2024). TPAAD: Two‐phase authentication system for denial of service attack detection and mitigation using machine learning in software‐defined network. International Journal of Network Management. https://doi.org/10.1002/nem.2258

Safdar, H., Norsheila Fisal, Ullah, R., Maqbool, W., Faiz Asraf, Khalid, Z., & Khan, A. S. (2013). Resource allocation for uplink M2M communication: A game theory approach. Unimas Institutional Repository (Universiti Malaysia Sarawak). https://doi.org/10.1109/iswta.2013.6688815

Salawu, N., Syed Ariffin, S. H., Fisal, N., Binti Ghazali, N. E., & Khan, A. S. (2013). A cost function algorithm for mobility load balancing in long term evolution networks.

Ullah, R., Fisal, N., Safdar, H., Maqbool, W., Khalid, Z., & Khan, A. S. (2013). Voronoi cell geometry based dynamic fractional frequency reuse for OFDMA cellular networks.

Xiao, M., Chen, Y., Li, Z., Chen, Q., & Xu, R. (2023). Proving Mutual Authentication Property of Industrial Internet of Things Multi-Factor Authentication Protocol Based on Logic of Events. Electronics, 13(1), 177–177. https://doi.org/10.3390/electronics13010177

Xu, H., Hsu, C., Harn, L., Cui, J., Zhao, Z., & Zhang, Z. (2023). Three-Factor Anonymous Authentication and Key Agreement Based on Fuzzy Biological Extraction for Industrial Internet of Things. IEEE Transactions on Services Computing, 16(4), 3000–3013. https://doi.org/10.1109/tsc.2023.3257569

Zhang, Y., Li, B., Wu, J., Liu, B., Chen, R., & Chang, J. (2022). Efficient and Privacy-preserving Blockchain-based Multi-factor Device Authentication Protocol for Cross-domain IIoT. IEEE Internet of Things Journal, 1–1. https://doi.org/10.1109/jiot.2022.3176192

Zou, S., Cao, Q., Lu, R., Wang, C., Xu, G., Ma, H., Cheng, Y., & Xi, J. (2023). A Robust and Effective 3-Factor Authentication Protocol for Smart Factory in Iiot. https://doi.org/10.2139/ssrn.4469456

Downloads

Published

2024-10-29

How to Cite

Mohd Firdaus, F. I., Abdul Rahman, J. K., Osman, K. K., Johnny, M. M. E., Roslan, M. Z., & Shaheen, R. (2024). Securing Industrial Internet of Things: A Multi-Factor Authentication Approach using PUFs and AI. Journal of Computing and Social Informatics, 3(2), 1–14. https://doi.org/10.33736/jcsi.7374.2024