Pioneering Blockchain Assisted Authentication Frameworks for the Industrial Internet of Things

Authors

  • Derrick Jia Yung Koay Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Jin Ming Neoh Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Jia Hou Tan Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Zhi Hong Teh Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Yu Heng Liew Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • Hashim Elshafie Department of Engineering, College of Computer Science, King Khalid University, Main Campus Al Farah Abha 61421, Saudi Arabia

DOI:

https://doi.org/10.33736/jcsi.7366.2024

Keywords:

blockchain, IIoT, key refreshment, QECC, Spoofing

Abstract

In the rapidly evolving landscape of technology, integrating blockchain with Industrial Internet of Things (IIoT) presents a groundbreaking synergy with transformative potential. This paper addresses key security challenges in IIoT environments by proposing a novel authentication mechanism for Industrial Internet of Things (IIoT) systems that enhances security by integrating Quantum-Elliptic Curve Cryptography (QECC) and a blockchain-regulated, automatic key refreshment mechanism. Building on the ECC-based Diffie-Hellman protocol, our approach addresses vulnerabilities such as Man-in-the-Middle (MITM) attacks by combining quantum cryptography with ECC to detect eavesdroppers and secure communications between Base Stations (BS), Relay Stations (RS), and Subscriber Stations (SS). The blockchain-regulated mechanism ensures periodic and verifiable key updates, enhancing key management against MAC layer and spoofing attacks. This integrated framework significantly improves the security of IIoT systems by ensuring confidentiality, integrity, availability, authenticity, and non-repudiation, offering a robust solution for secure data transmission in IIoT environments.

References

Deebak, B. D., Memon, F. H., Dev, K., Khowaja, S. A., Wang, W., & Qureshi, N. M. F. (2023). TAB-SAPP: a Trust-Aware Blockchain-Based seamless authentication for massive IoT-Enabled industrial applications. IEEE Transactions on Industrial Informatics, 19(1), 243–250. https://doi.org/10.1109/tii.2022.3159164

Gilbert, G., & Hamrick, M. (2000). Practical Quantum Cryptography: A Comprehensive Analysis (Part One). arXiv (Cornell University). https://doi.org/10.48550/arxiv.quant-ph/0009027

How will quantum technologies change cryptography? (n.d.). Caltech Science Exchange. https://scienceexchange.caltech.edu/topics/quantum-science-explained/quantum-cryptography

Khan, A. S., Abdullah, J., Khan, N., Julahi, A., & Tarmizi, S. (2017). Quantum-Elliptic curve Cryptography Multihop Communication in 5G Networks. International Journal of Computer Science and Network Security(IJCSNS), 17(5), 357–365. https://ir.unimas.my/id/eprint/17233/

Khan, A. S., Abdullah, J., Zen, K., & Tarmizi, S. (2017). Secure and scalable group rekeying for mobile multihop relay network. Advanced Science Letters, 23(6), 5242–5245. https://doi.org/10.1166/asl.2017.7350

Khan, A. S., Lenando, H., Abdullah, J., & Fisal, N. (n.d.). Secure Authentication and Key Management Protocols for Mobile Multihop WiMAX Networks. Jurnal Teknologi/Jurnal Teknologi, 73(1).https://doi.org/10.11113/jt.v73.3258

Khan, A. S., Mehdi, M. H., Uddin, R., Abbasi, A. R., BSChowdhry, & Nisar, K. (2023). Ensemble based automotive paint surface defect detection augmented by order statistics filtering using machine learning. Authorea (Authorea). https://doi.org/10.22541/au.169735587.77641533/v1

Khan, A. S., Yahya, M. I. B., Zen, K. B., Abdullah, J. B., Rashid, R. B. A., Javed, Y., Khan, N. A., & Mostafa, A. M. (2023). Blockchain-Based lightweight multifactor authentication for Cell-Free in Ultra-Dense 6G Based (6-CMAS) cellular network. IEEE Access, 11, 20524–20541. https://doi.org/10.1109/access.2023.3249969

Khan, A., Yasir, J., Johari, A., Nazim, J., & Khan, N. (2017). Security issues in 5G device to device communication. IJCSNS, 17(5). https://ir.unimas.my/17236/

Khan, N., Abdullah, J., & Khan, A. S. (2017). Defending malicious script attacks using machine learning classifiers. Wireless Communications and Mobile Computing, 2017, 1–9. https://doi.org/10.1155/2017/5360472

Liu, X., Wang, J., Wang, M., & Zhang, R. (2024). Improved LTE-R access authentication scheme based on blockchain and SECGear. IEEE Internet of Things Journal, 11(6), 10537–10550. https://doi.org/10.1109/jiot.2023.3325904

Mishra, R. A., Kalla, A., Braeken, A., & Liyanage, M. (2023). Blockchain regulated verifiable and automatic key refreshment mechanism for IoT. IEEE Access, 11, 21758–21770. https://doi.org/10.1109/access.2023.3251651

Tong, F., Chen, X., Huang, C., Zhang, Y., & Shen, X. (2023). Blockchain-Assisted secure Intra/Inter-Domain authorization and authentication for internet of things. IEEE Internet of Things Journal, 10(9), 7761–7773. https://doi.org/10.1109/jiot.2022.3229676

Wang, F., Cui, J., Zhang, Q., He, D., Gu, C., & Zhong, H. (2024). Lightweight and secure data sharing based on proxy Re-Encryption for Blockchain-Enabled industrial internet of Things. IEEE Internet of Things Journal, 11(8), 14115–14126. https://doi.org/10.1109/jiot.2023.3340567

Wang, W., Xu, H., Alazab, M., Gadekallu, T. R., Han, Z., & Su, C. (2022). Blockchain-Based reliable and efficient certificateless signature for IIoT devices. IEEE Transactions on Industrial Informatics, 18(10), 7059–7067. https://doi.org/10.1109/tii.2021.3084753

Wang, X., Garg, S., Lin, H., Piran, M. J., Hu, J., & Hossain, M. S. (2021). Enabling secure authentication in industrial IoT with transfer learning empowered blockchain. IEEE Transactions on Industrial Informatics, 17(11), 7725–7733. https://doi.org/10.1109/tii.2021.3049405

What is Quantum Computing? | IBM. (n.d.). https://www.ibm.com/quantum-computing/what-is-quantumcomputing/

Yang, Y., Wu, J., Long, C., Liang, W., & Lin, Y. (2022). Blockchain-Enabled multiparty computation for privacy preserving and public audit in industrial IoT. IEEE Transactions on Industrial Informatics, 18(12), 9259–9267. https://doi.org/10.1109/tii.2022.3177630

Zhang, P., Yang, P., Kumar, N., Hsu, C., Wu, S., & Zhou, F. (2024). RRV-BC: Random Reputation voting mechanism and blockchain Assisted access authentication for industrial internet of Things. IEEE Transactions on Industrial Informatics, 20(1), 713–722. https://doi.org/10.1109/tii.2023.3271127

Downloads

Published

2024-10-30

How to Cite

Koay, D. J. Y., Neoh, J. M., Tan, J. H., Teh, Z. H., Liew, Y. H., & Elshafie, H. (2024). Pioneering Blockchain Assisted Authentication Frameworks for the Industrial Internet of Things. Journal of Computing and Social Informatics, 3(2), 15–28. https://doi.org/10.33736/jcsi.7366.2024