THE IMPACTS OF FINANCIAL RATIOS ON STOCK PRICES IN MALAYSIA: EVIDENCE FROM BANKING INDUSTRY

Bakri Abdul Karim, Annescia Franciene Anak Patres, Bridney Chow Yi Ying and Jefferson Tiong Kung Lien
Faculty of Economics and Business, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia

Abstract
The objective of this study is to identify whether the financial ratios have an impact towards the stock price in the banking industry of Malaysia. The financial ratios used in this study are the net profit margin, price to earnings ratio and dividend payout ratio. The sample collected for this empirical study covered 10-years period from 2013-2022. The study found that the net profit margin and price to earnings ratio boost stock price, however the dividend payout ratio decreases stock price. The influence of net profit margin and dividend payment ratio on stock price is negligible, in contrast to price to earnings ratio, which has a large effect on stock price. The findings have major implications to investors, industry and policy makers.

Keywords: Financial Ratio, Stock Price, Banking Industry, EMH Theory, Signaling Theory

INTRODUCTION
The Malaysian stock market, commonly known as Bursa Malaysia, is a thriving and active market that offers plenty of chances for stock pickers for alpha generation. Almost 900 firms are listed on Bursa Malaysia, providing a broad range of investment options across numerous sectors like consumer products, healthcare, and technology. Investors can build well-diversified portfolios thanks to this diversification, which also lowers the overall risk of a single stock investment (IFAST Research Team, 2023). The stock market, a crucial economic pillar, has a tremendous impact on the expansion of business and industry, which in turn has a substantial effect on the economic climate as a whole. This is the explanation behind the active stock market activity monitoring by the nation's central bank, government advisors, and business organizations (Goel, 2023).

![Figure 1: Breakdown of the market capitalization by sectors](image-url)
According to iFAST (2021), the financial services sector, as represented by the Bursa Financials Services Index, is the largest sector with a market capitalization of RM352.61 billion (21.14% of Main Market). The sector comprises banking, insurance, and other financial companies. In addition, the total assets for commercial banks were reported to be RM3,340,246.38 million in March 2023 (CEIC, n.d.). Managers, owners, and potential investors can use financial ratios to evaluate and compare the financial condition of their companies. They are a tool that enables financial analysis across an organization's background, industry, or business sector (Carlson, 2022).

Financial statements are the end result of the accounting procedure used to present financial data about a company. Investors typically evaluate a company's performance based on its financial performance as indicated by various metrics (Harinurdin, 2023). Islamoglu (2015) looked into whether changes in financial parameters relating to the Turkish Banking Industry might help explain stock market index fluctuations. He found that while the ratio of shareholders' equity to total assets has a favorable impact on the growth of the BIST XBANK Index, the ratio of debt to equity has a negative impact. Analyzing financial measures on the Amman Stock Exchange, Alswalmeh & Dali (2019) forecasted the banking sector index. They found that while the relationships between equity ratio and quick ratio and the banking sector index in ASE were not significant, those between debt ratio, stock turnover, return on assets, price to book value, and return on equity were significantly correlated. Additionally, Mousa's (2015) study on the Bahrain Stock Exchange's banking sector's efficiency using data envelopment analysis and financial ratio analysis (FRA) demonstrates that FRA does not provide adequate and comprehensive information on the efficiency of banks.

Thus, the objectives of the study are (1) to investigate the relationship between net profit margin and stock prices, (2) to investigate the relationship between price to earnings ratio and price of stocks and (3) to investigate the relationship between dividend payout ratio and stock prices. Nine banks from the Malaysian banking industry were chosen in order to carry out this research. The nine banks include Malayan Banking Berhad (Maybank), Public Bank Berhad, CIMB Group Holdings Berhad, RHB Bank Berhad, Hong Leong Bank Berhad, Alliance Bank Malaysia Berhad, Affin Bank Berhad, AMMB Holdings Berhad, and BIMB Holdings Berhad. The findings of the study may have implications for investors, industry and policy makers.

LITERATURE REVIEW

Basu (1977) examines the relationship between the price-to-earnings ratio (PE) and the investment performance of common stocks. The study challenges the EMH theory by finding evidence of a positive correlation between low PE stocks and subsequent higher returns, suggesting the market may not be fully efficient. Rozeff (1984) explores the dividend payout ratio and its implications for equity risk. The study suggests that dividend yields can serve as a measure of risk in an efficient market. If dividends are appropriately discounted by investors based on their perceived risk, the EMH theory suggests that stock prices will adjust...
Accordingly, Fama and French (1992) examines the cross-section of expected stock returns and identifies several factors, including firm profitability (proxied by net profit margin), as determinants of stock returns. This research highlights the relevance of financial variables within the framework of the EMH theory.

According to Bustani et al. (2021), it is claimed that signaling theory provides investors with financial ratio material signals, such as net profit margin and dividend payout ratio, that can convey important details when making investment decisions. The decision of an investor make an investment will be influenced by information released as an announcement. If the announcement has a positive value, the market is expected to respond as soon as it is received (Novalia & Nindito, 2016). The relationship between net profit minus tax expense and regulated costs is referred to as net profit margin (NPM), and it demonstrates the efficiency with which the business is managed (Kasmir, 2012). In order to influence the market price, investors will be persuaded to purchase shares of a company that can generate a net profit (Indahsaftri et al., 2015).

On the basis of past research into whether NPM has an effect on stock price, it was determined that majority of studies indicated that net profit margin brings an impact to stock price. Lindriani’s (2018) research on the impact of net profit margin, return on assets, price to book value, and debt-to-equity ratio on the stock price of commercial products manufacturing corporations listed on IDX reveals that NPM affects the stock price. According to Kartiko (2021), Wulandari (2019), Bustani (2020), and Bayrakdaroglu et al. (2017), the NPM influences the stock price positively. In contrast, the results of Sunaryo (2020), Alaagam (2019), and Ginting (2023) indicate that NPM has no significant effect on stock prices.

From the empirical evidence of past research on whether the PE influences the price of stock, we find that three studies indicate that the PE has no impact on the price of stock, two studies indicate that the PE only influences the stock price over the long term, one study indicates that the PE has a weak but negative relationship with the stock price, and two studies indicate that the PE has no significant relationship with the price of stock.

Muthiarani et al. (2019) examine the impact of price to book value, PE, and inflation on the IDX30-indexed stocks prices. Amaliyah et al. (2017) investigates the effect of debt-to-equity ratio, price-to-book value ratio, earnings per share, and earnings ratio on the stock price of Indonesia Sharia Stock Index (ISSI) companies from 2012 to 2016. From 2013 to 2016, Arshad et al. (2015) examine the effect of market ratio, earnings per share, interest rate, gross domestic product, price earnings ratio, dividend share, and leverage on commercial banks listed on the Karachi Stock Exchange, Pakistan. These three studies demonstrate that PE does not impact stock prices. Fisher and Statman (2000) investigated the relationship between PE and future returns in the stock market and discovered that PE are not reliable predictors of potential stock returns for the short duration of period, approximately 1 to 2 years, but PE have better predictive ability when used to calculate stock returns over the extended duration.

Using data from 1872 to 1997, Rapach and Wohar (2005) discovered a weak correlation between PE and prospective stock price changes over the short term, but a strong correlation over the long term. Then, a study by Adekunle and Ejeki on the effects of company-specific variables such as the PE and macroeconomic factors on stock price discovered that the PE has a negative but not statistically significant relationship with the shareprice. Kittisak et al. (2019) and Almumani (2014) discovered a significant positive correlation between the PE and the market price of listed banks on the Amman Stock Exchange.

The empirical evidence from prior studies on whether the dividend payout ratio (DPR) influences the price of stock reveals a variety of outcomes. Ifitikhar et al. (2017), Bulutoding (2018), Chowdhury et al. (2019), and Nur Athirah et al. (2022) found that the DPR has a significant and positive relationship with stock prices. In contrast, Nguyen et al. (2020) find a negative correlation between DPR and share price volatility. Next, Debri et al. (2022) examine
the effect of return on equity, adequacy ratio, and DPR on stock prices, with interest rates of Bank Indonesia serving as moderating variables for Indonesia Stock Exchange (IDX)-listed banking companies. The study found that a stock's price is unaffected by the DPR. The same results are obtained by Girsang et al (2019), who examine the effect of the DPR on the stock price of companies in the trade, services, and investment sectors.

DATA AND METHODOLOGY

The aim of this study is to investigate the relationship between financial ratios and nine banks from the Malaysian banking industry. This study collected 10-years annual data which are from 2013-2022 from Orbi Database. A panel data analysis is carried out, which covered 89 observations. The dependent variable is the 9 banking industry companies, and the independent variables are the financial ratios as follows:

Net Profit Margin (NPM)

The amount of net income or profit as a percentage of revenue is known as the net profit margin, or simply net margin. It is the proportion of a company's net earnings to its revenues (Murphy, 2022).

Price to Earnings Ratio (PE)

A ratio called the price-to-earnings ratio is used to estimate a company's value by contrasting its current share price with its earnings per share (EPS). The P/E ratio is calculated by dividing the current stock price of a firm by its current earnings per share.

Dividend Payout Ratio (DPR)

The dividend payout ratio measures how much of the company's net income is distributed to shareholders in dividends. It is the portion of earnings that are distributed as dividends to shareholders (Hayes, 2023). By summing up all of the dividends per share paid during the previous four quarters and dividing by the corresponding earnings per share, the ratio is calculated (Lavie, 2022).

The estimation model used in this study is as follow:

\[Y_{it} = NPM_{it} + PE_{it} + DPR_{it} \]

Where,

\(Y = \) stock prices of banks
\(it = \) number of companies from 2013 until 2022

In this study, the most appropriate regression model shall be selected among the pooled ordinary least square (POLS), fixed effect model (FEM), and random effect model (REM). Three tests will be conducted to determine the most suitable model to suit the econometrics model which are Chow Test, Lagrange Multiplier Test and Hausman Test. Lastly, the diagnostic tests (Normality Test, Heteroskedasticity Test, and Multicollinearity Test) and inferential test (T-test and F-test) will be conducted before employing a regression analysis to test the assumptions.
Descriptive analysis

Descriptive analysis is the analysis of the central tendency and the dispersion of the data. It will provide a picture of the data based on the mean, minimum and maximum value, standard deviation, skewness of distribution, kurtosis, variance, and standard deviation of each variable in this research. The variables in this study are stock price of 9 Malaysia banks (dependent variable) and net profit margin, price to earnings ratio, and dividend payout ratio (independent variables).

Pooled Ordinary Least Square (POLS)

POLS is a regression that enables examination of n units of observations over a period of t times. It pooled all the observations into one regression. It will examine panel data, which is the combination of time series and cross-sectional data. However, POLS will not take into account time or specific dimensions, therefore it will be presumed that the business data behaves consistently across time.

Fixed Effect Model (FEM)

Fixed effect model is a least square dummy variables model and within estimator model. It will assume that the differences between individuals can be accommodated from different intercepts. Besides, FEM cannot be used when want to estimate the effects of the invariant variables.

Random Effect Model (REM)

REM was known as the error component model. A panel data model known as a random effect model is used to estimate data in which the interference variable may be associated over both time and individuals. Besides that, the unobserved heterogeneity variables and the independent variables are assumed to have no correlation relationship between both variables in this model.

Chow Test

Chow Test or Likelihood Ratio Test is a test of fixed effect signification (F test). It is a test for differences in the two regressions which used to determine whether or not to include a dummy variable to determine whether or not the intercepts differ between firms with Fixed Effect.

\[
\begin{align*}
H_0: & \text{ Model follows common effect.} \\
H_1: & \text{ Model follow fixed effect.}
\end{align*}
\]

Lagrange Multiplier Test

Lagrange Multiplier Test was carried out to determine the appropriate model between Pooled Least Square or common effect and Random effect model.

\[
\begin{align*}
H_0: & \text{ Use common effect.} \\
H_1: & \text{ Use random effect.}
\end{align*}
\]

At 5% of significance level, the null hypothesis will be rejected (use common effect) if the p-value less than 0.05 and accept the alternative hypothesis (use random effect).
Hausman Test

Hausman Test will be conducted to determine whether the fixed effect model or random effect model is better if the result shows that random effect model is better than using pooled ordinary least squared.

\[H_0: \text{Use random effect.} \]
\[H_1: \text{Use fixed effect.} \]

At 5% of significance level, reject the null hypothesis (use random effect) if the p-value less than 0.05 and accept the alternative hypothesis (use fixed effect).

Normality test

Normality test which will be conducted is Jarque-Bera Normality Test. The purpose of doing this test is to identify whether the residuals are normally distributed or not. If the normality assumption is invalid, the results of the normality test will not be accurate. In this test, hypothesis will be developed as depicted below:

\[H_0: \text{Residuals are normally distributed.} \]
\[H_1: \text{Residuals are not normally distributed.} \]

At 5% of significance level, if the p-value of the normality test is more than 0.05, it means that there is not enough evidence to reject the null hypothesis and will be assumed that the residuals are normally distributed.

Heteroskedasticity Test

The heteroskedasticity test will be applied is the Breusch-Godfrey heteroskedasticity test. It is done to figure out whether the error terms are heteroskedastic or homoscedastic. In this test, hypothesis will be developed as illustrated as below:

\[H_0: \text{Heteroskedasticity problem does not exist.} \]
\[H_1: \text{Heteroskedasticity problem exist.} \]

At 5% of significance level, if the probability for the heteroskedasticity test exceeds 0.05, it can be concluded that null hypothesis will not be rejected and there is no heteroskedasticity problem.

EMPIRICAL FINDINGS AND RESULTS ANALYSIS

Firstly, descriptive analysis is discussed used in this study. Then, a suitable regression model is chosen from pooled ordinary least square (POLs), fixed effect model (FEM), and random effect model (REM) by running the Chow Test, Lagrange Multiplier Test, and Hausman Test. Before using a regression analysis to assess the assumptions, the diagnostic tests (Normality assess, Heteroskedasticity Test, and Multicollinearity Test) and inferential tests (T-test and F-test) will also be carried out.
Descriptive Analysis

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>NPM</th>
<th>PE</th>
<th>DPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.631461</td>
<td>0.263990</td>
<td>12.75034</td>
<td>0.451038</td>
</tr>
<tr>
<td>Median</td>
<td>5.290000</td>
<td>0.225100</td>
<td>11.85000</td>
<td>0.424700</td>
</tr>
<tr>
<td>Maximum</td>
<td>24.76000</td>
<td>0.587600</td>
<td>82.08000</td>
<td>0.901900</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.730000</td>
<td>0.066700</td>
<td>3.380000</td>
<td>0.075300</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>5.699701</td>
<td>0.116250</td>
<td>6.222297</td>
<td>0.170772</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.326872</td>
<td>1.157987</td>
<td>7.057360</td>
<td>0.705577</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3.592369</td>
<td>3.590662</td>
<td>58.839220</td>
<td>3.591692</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>27.37311</td>
<td>21.18384</td>
<td>12299.79</td>
<td>8.682725</td>
</tr>
<tr>
<td>Probability</td>
<td>0.000001</td>
<td>0.000025</td>
<td>0.000000</td>
<td>0.013019</td>
</tr>
<tr>
<td>Sum</td>
<td>679.2000</td>
<td>23.48510</td>
<td>1134.780</td>
<td>40.14240</td>
</tr>
<tr>
<td>Sum Sq. Dev.</td>
<td>2858.920</td>
<td>1.189243</td>
<td>5949.342</td>
<td>2.566362</td>
</tr>
<tr>
<td>Observations</td>
<td>89</td>
<td>89</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 1: Descriptive Analysis Results

The findings of the descriptive analysis will characterize the study's data, including the mean, standard deviation, minimum, and maximum. In this investigation, 89 observations were made. The dependent variable stock price and the independent variables net profit margin (NPM), price to earnings ratio (PE), and dividend payout ratio (DPR) have respective average values or means of 7.631461, 0.263990, 12.75034, and 0.451038. The maximum value of stock price is 24.76, while the maximum value for the independent variables is 0.5876 (NPM), 82.08 (PE), and 0.9019 for DPR. In the meanwhile, the minimum value of stock price is 1.73, while for NPM (0.0667), PE (3.38) and DPR (0.0753). Besides, the value standard deviation for stock price, NPM, PE, and DPR are 5.699701, 0.116250, 8.222297, and 0.170772 respectively.

Chow Test

<table>
<thead>
<tr>
<th>Effects Test</th>
<th>Statistic</th>
<th>Degree of freedom (d.f.)</th>
<th>Probability (Prob.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Section Chi-Square</td>
<td>112.733142</td>
<td>8</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 2: Chow Test Results

The Chow Test result indicates that the probability value is 0.0000. Therefore, the null hypothesis (model will follow common effect) will be rejected, as the probability value (0.0000) is less than the significance level of 5%, or 0.05, which suggests the model will adhere to the fixed effect.

Lagrange Multiplier Test

<table>
<thead>
<tr>
<th>Method</th>
<th>Cross-section</th>
<th>Test Hypothesis Time</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breusch-Pagan</td>
<td>122.5091 (0.0000)</td>
<td>1.878083 (0.1706)</td>
<td>124.3871 (0.0000)</td>
</tr>
</tbody>
</table>

Table 3: Lagrange Multiplier Test Results

Breusch-Pagan Lagrange multiplier test is used to distinguish between the common effect model and the random effect model. According to the results in the preceding table, the probability value is less than 0.05 (0.0000<0.05). The null hypothesis will then be refuted, and the random effect model will be applied.
Hausman Test

<table>
<thead>
<tr>
<th>Test Summary</th>
<th>Chi-Square Statistic</th>
<th>Chi-Square d.f.</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-Section random</td>
<td>9.808573</td>
<td>3</td>
<td>0.0203</td>
</tr>
</tbody>
</table>

Table 4: Hausman Test Results

Chow Test results support the use of the fixed effect model (FEM), whereas Breusch-Pagan Lagrange Multiplier Test results support the use of the random effect model (REM). Therefore, the Hausman Test must be conducted to determine which of FEM and REM is the most applicable model. According to the above table's Hausman Test result, the probability value (0.0203) is less than the significance level of 5%, or 0.05. Therefore, the null hypothesis is rejected. Then, overall testing indicates that the FEM will be the ideal model for this research.

Normality test

<table>
<thead>
<tr>
<th>Normality Test</th>
<th>Jarque-Bera</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>34.49264</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Table 5: Normality test Results

Based on the Normality Test results in the table above, the p-value of the normality test is less than 0.05 (0.0000). The null hypothesis will not be rejected. Thus, the residuals do not follow a normal distribution.

Variance Inflation Factor (VIF)

<table>
<thead>
<tr>
<th></th>
<th>PE</th>
<th>NPM</th>
<th>DPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIF</td>
<td>1.040322</td>
<td>1.010901</td>
<td>1.040322</td>
</tr>
</tbody>
</table>

Table 6: Variance Inflation Factor (VIF) Results

In the above table, the variance inflation factor (VIF) value for the independent variables (PE, NPM, DPR) is displayed. Multicollinearity issues arise when VIF is greater than 10 (severe multicollinearity issue), while there is no relationship between the independent variables if VIF equals one. Given the outcomes from the above table, all the values of variance inflation factor (VIF) for independent variables are not more than ten and closer to one. As a result, it may be inferred that there is no significant multicollinearity issue and that all of the independent variables have low correlations with one another.
Panel Cross-section Heteroskedasticity LR Test

<table>
<thead>
<tr>
<th>Null hypothesis: Residuals are homoskedastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood ratio</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

LR test summary:

<table>
<thead>
<tr>
<th>Value</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted LogL</td>
<td>281.0896</td>
</tr>
<tr>
<td>Unrestricted LogL</td>
<td>204.0767</td>
</tr>
</tbody>
</table>

Table 7: Panel Cross-section Results

According to the outcome of the Panel Cross-section Heteroskedasticity LR Test, the likelihood ratio is 114.0257, with a probability value of 0.0000 less than the significance level of 0.05 or 5%. Therefore, the null hypothesis will be refuted, indicating the existence of the heteroskedasticity problem.

Panel Period Heteroskedasticity LR Test

<table>
<thead>
<tr>
<th>Null hypothesis: Residuals are homoskedastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood ratio</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

LR test summary:

<table>
<thead>
<tr>
<th>Value</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted LogL</td>
<td>281.0896</td>
</tr>
<tr>
<td>Unrestricted LogL</td>
<td>252.8826</td>
</tr>
</tbody>
</table>

Table 8: Panel Period Results

The result of Panel period Heteroskedasticity LR Test from the figure above shows that the value of likelihood ratio is 16.41391 and with a probability value which greater than 5% significance level (0.0587 > 0.05). It indicates that the null hypothesis will not be rejected and the heteroskedasticity problem does not exist.

Fixed Effect Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>5.070538</td>
<td>1.951450</td>
<td>2.598344</td>
<td>0.0112</td>
</tr>
<tr>
<td>NPM</td>
<td>9.602596</td>
<td>5.758570</td>
<td>1.667531</td>
<td>0.0995</td>
</tr>
<tr>
<td>PE</td>
<td>0.080116</td>
<td>0.038503</td>
<td>2.080790</td>
<td>0.0408</td>
</tr>
<tr>
<td>DPR</td>
<td>-2.207298</td>
<td>2.661425</td>
<td>-0.823967</td>
<td>0.4095</td>
</tr>
</tbody>
</table>

Effects Specification

<table>
<thead>
<tr>
<th>Cross-section fixed (dummy variables)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root MSE</td>
</tr>
<tr>
<td>Mean dependent var</td>
</tr>
<tr>
<td>S.D. dependent var</td>
</tr>
<tr>
<td>Akaike info criterion</td>
</tr>
<tr>
<td>Schwarz criterion</td>
</tr>
<tr>
<td>Hannan-Quinn criter.</td>
</tr>
<tr>
<td>Durbin-Watson stat</td>
</tr>
</tbody>
</table>

Table 9: Fixed Effect Model Results
Based on the figure above, the regression equation of the fixed effect model is:

$$Y = 5.070538 + 9.602596NPM_{it} + 0.080116PE_{it} - 2.207298DPR_{it}$$

Based on the above regression, the constant value coefficient is 5.070538. This indicates that the stock price would be $5.070538 if all independent variables (NPM, PE, and DPR) were held constant. The coefficient value of NPM is 9.602596, indicating that NPM and stock price are positively correlated. The stock price will increase by 9.602596 units when the net profit margin increases by one unit. In accordance with the findings of Kartiko (2021), Wulandari (2019), Bustani (2020), and Bayrakdaroglu et al. (2017), NPM positively impacts the stock price. None of the studies, however, pertain specifically to the banking industry.

Moreover, PE has a positive coefficient value of 0.080116. This is in line with the findings of Kittisak et al. (2019) and Almumani (2014), who discovered a considerable positive correlation between PE and stock price. The focus of Almumani’s (2014) research is the banking sector, specifically the Amman Stock Exchange-listed banks. The coefficient for the DPR is -2.207298. This negative regression coefficient indicates that an increase of 1 unit in DPR will result in a decrease of $2.207298 per share. This is compatible with Nguyen et al. (2020), whose study sample is made up by Vietnamese corporations listed on the Ho Chi Minh Stock Exchange (HOSE). The result of insignificant relationship is in line with the findings of research by Sunaryo (2020), Alagam (2019) Ginting (2023) which shows there is no significant impact of NPM on stock prices. It is also noted that Alagam (2019) & Ginting(2023)’s studies are related to the banking sector which are the Saudi Arabia banking sector and banking sector of Indonesia Stock exchange respectively.

Next, the findings of the test indicate that the t-count value for the price-to-earnings ratio (PE) is greater than the t-table value (2.080790 > -1.662577). Besides, its probability value (0.0408) is also below 0.05. This indicates that the PE is significantly related to the share price. The results of hypothesis testing show that PE and stock price have a positive and significant relationship. This is accordant with the result of the study by Kittisak et al. (2019) and Almumani (2014) which found a significant positive correlation between PE and stock price. Finally, the outcome of the test indicates that the value of t-count for the independent variable DPR exceeds the value of t-table (-0.829367 > -1.662577), while its probability value (0.4095).

CONCLUSION

This study investigates the impact of the net profit margin, price to earnings ratio and dividend payout ratio on the stock price in the banking industry of Malaysia. Using a novel hand-collected data of listed Malaysian banks over the period 2013–2022, this study documents that the NPM and PE increases stock price, while the stock price declines as a result of the DPR. The impact of NPM and DPR is insignificant towards stock price, unlike PE which has a significant effect on stock price. Research on the effects of financial ratios on stock prices in Malaysia contributes to the body of knowledge by shedding light on valuation metrics, financial performance evaluation, investor decision-making, capital market efficiency, industry performance evaluation, and policy implications. This research aids industry stakeholders, analysts, investors, and policymakers in making informed decisions and fostering a robust and sustainable financial market in Malaysia by enhancing their understanding and providing them with pertinent information.

There are several limitations to our study. Firstly, the relationship between financial ratios and stock prices may not have taken into account all relevant variables. Excluded variables, such as market conditions, interest rates, or particular bank characteristics, could introduce
bias and confound the results. Secondly, the period of the research may make it difficult to identify long-term trends or changes in financial measures and stock prices. Furthermore, the study's conclusions may not be easily generalised to banks in other areas or countries due to discoveries that are peculiar to the Malaysian banking industry.

There is less research on the banking industry stock price performance from past research. Most research that are relevant with the banking industry are carried out for non-Asia countries. Therefore, it is recommended to future researchers to include Asia countries such as Malaysia, China, Japan, South Korea and more in their study. As there is relationship between financial ratios and stock price, future researchers can include more relevant ratios in their study to get to know more on how the other ratios may affect the stock price.

References

