Assessment of uS17 Expression in Colorectal Cancer Cell Lines HT-29 and HCT116 Reveals Minimal Variation

Authors

  • Ms Irene Khai-Yen Kho
  • Prof Edmund Ui-Hang Sim Universiti Malaysia Sarawak

DOI:

https://doi.org/10.33736/tur.7957.2025

Keywords:

Colorectal cancer, Gene expression, ribosomal protein, uS17

Abstract

Colorectal cancer (CRC) is a malignant neoplasm that develops in the large intestine, specifically in the colon and rectum. The ribosomal protein gene uS17 (RPS11) has been found to be overexpressed in CRC tissues, while its presence in normal colorectal mucosa is minimal. However, its expression pattern across different types of CRC remains poorly understood and its prognostic potentials is underexplored. In this study, we investigated the expression levels of uS17 in two CRC cell lines, HT29 and HCT116, to assess potential differences in expression between these cell types. HT29 was derived from a late-stage primary colorectal adenocarcinoma, whereas HCT116 originated from an advanced-stage metastatic colorectal carcinoma. A semi-quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) assay, along with a two-tailed unpaired t-test for inferential statistical analysis, were used in our evaluation. Although a higher uS17 expression level was observed in the HT29 cell line compared to HCT116, the difference was not statistically significant, suggesting minimal variation in uS17 expression between two different CRC cell lines of different origins, cellular differentiation, and stages of malignancy. While further studies incorporating additional cell lines and in situ tissue analyses are warranted, our findings offer novel insights into the expression profile of uS17 in specific CRC cell models.

References

Advani, S. M., Swartz, M. D., Loree, J., Davis, J. S., Sarsashek, A. M., Lam, M., Lee, M. S., Bressler, J., Lopez, D. S., Daniel, C. R., Morris, V., Shureqi, I., Kee, B., Dasari, A., Vilar, E., Overman, M., Hamilton, S., Maru, D., Braithwaite, D., & Kopetz, S. (2021). Epidemiology and molecular-pathologic characteristics of CpG Island methylator phenotype (CIMP) in colorectal cancer. Clinical Colorectal Cancer, 20(2), 137-147. https://doi.org/10.1016/j.clcc.2020.09.007

Ahmed, D., Eide, P. W., Eilertsen, I. A., Danielsen, S. A., Eknaes, M., Hektoen, M., Lind, G. E., & Lothe, R. A. (2013). Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis, 2(9), e71. https://doi.org/10.1038/oncsis.2013.35

Alam, E., Maaliki, L., & Nasr, Z. (2020). Ribosomal protein S3 selectively affects colon cancer growth by modulating the levels of p53 and lactate dehydrogenase. Molecular Biology Reports, 47(8), 6083-6090. https://doi.org/10.1007/s11033-020-05683-1

Djursby, M., Madsen, M. B., Frederiksen, J. H., Berchtold, L. A., Therkildsen, C., Willemoe, G. L., Hasselby, J. P., Wikman, F., Okkels, H., Skytte, A. B., Nilbert, M., Wadt, K., Gerdes, A. M., & van Overeem Hansen, T. (2020). New pathogenic germline variants in very early onset and familial colorectal cancer patients. Frontiers in Genetics, 11, 566266. doi: 10.3389/fgene.2020.566266

El Khoury, W., & Nasr, Z. (2021). Deregulation of ribosomal proteins in human cancers. Bioscience Reports, 41(12), BSR20211577. https://doi.org/10.1042/BSR20211577

Grothey, A., Fakih, M., & Tabernero, J. (2021). Management of BRAF-mutant metastatic colorectal cancer: a review of treatment options and evidence-based guidelines. Annals of Oncology, 32(8), 959-967. https://doi.org/10.1016/j.annonc.2021.03.206

Jørgensen, K. H., et al. (1982). "Cell kinetics of a human colonic carcinoma cell line (HT-29) in nude mice." Virchows Archiv B, 40(3), 297-307. doi:10.1007/BF02899711.

Kasai, H., Nadano, D., Hidaka, E., Higuchi, K., Kawakubo, M., Sato, T. A., & Nakayama, J. (2003). Differential expression of ribosomal proteins in human normal and neoplastic colorectum. Journal of Histochemistry & Cytochemistry, 51(5), 567-573. https://doi.org/10.1177/002215540305100502

Le Bivic, A., Hirn, M., & Reggio, H. (1988). HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation. Proceedings of the National Academy of Sciences, 85(1), 136-140. https://doi.org/10.1073/pnas.85.1.136

Leibovitz, A., Stinson, J. C., McCombs III, W. B., McCoy, C. E., Mazur, K. C., & Mabry, N. D. (1976). Classification of human colorectal adenocarcinoma cell lines. Cancer Research, 36(12), 4562-4569. ISSN 1538-7445

Liebl, M. C., & Hofmann, T. G. (2021). The role of p53 signaling in colorectal cancer. Cancers, 13(9), 2125. https://doi.org/10.3390/cancers13092125

Mao-De, L., & Jing, X. (2007). Ribosomal proteins and colorectal cancer. Current genomics, 8(1), 43-49. https://doi.org/10.2174/138920207780076938

Markowitz, S. D., & Bertagnolli, M. M. (2009). Molecular origins of cancer: Molecular basis of colorectal cancer. New England Journal of Medicine, 361(25), 2449-2460. https://doi.org/10.2174/138920207780076938

Meng, M., Zhong, K., Jiang, T., Liu, Z., Kwan, H. Y., & Su, T. (2021). The current understanding on the impact of KRAS on colorectal cancer. Biomedicine & Pharmacotherapy, 140, 111717. https://doi.org/10.1016/j.biopha.2021.111717

Michel, M., Kaps, L., Maderer, A., Galle, P. R., & Moehler, M. (2021). The role of p53 dysfunction in colorectal cancer and its implication for therapy. Cancers, 13(10), 2296. https://doi.org/10.3390/cancers13102296

Mittal, V. K., Bhullar, J. S., & Jayant, K. (2015). Animal models of human colorectal cancer: Current status, uses and limitations. World Journal of Gastroenterology, 21(41), 11854. https://doi.org/10.3748/wjg.v21.i41.11854

Molina-Cerrillo, J., San Román, M., Pozas, J., Alonso-Gordoa, T., Pozas, M., Conde, E., Rosas, M., Grande, E., García-Bermejo, M. L., & Carrato, A. (2020). BRAF mutated colorectal cancer: new treatment approaches. Cancers, 12(6), 1571. https://doi.org/10.3390/cancers12061571

Mouradov, D., Sloggett, C., Jorissen, R. N., Love, C. G., Li, S., Burgess, A. W., Arango, D., Strausberg, R. L., Buchanan, D., Wormald, S., O'Connor, L., Wilding, J. L., Bicknell, D., Tomlinson, I. P., Bodmer, W. F., Mariadason, J. M., & Sieber, O. M. (2014). Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Research, 74(12), 3238-3247. https://doi.org/10.1158/0008-5472.CAN-14-0013

Nieminen, T. T., O’Donohue, M. F., Wu, Y., Lohi, H., Scherer, S. W., Paterson, A. D., Ellonen, P., Abdel-Rahman, W. M., Valo, S., Mecklin, J. P., Järvinen, H. J., Gleizes, P. E., & Peltomäki, P. (2014). Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology, 147(3), 595-598. https://doi.org/10.1053/j.gastro.2014.06.009

Olkinuora, A. P., Peltomäki, P. T., Aaltonen, L. A., & Rajamäki, K. (2021). From APC to the genetics of hereditary and familial colon cancer syndromes. Human Molecular Genetics, 30(R2), R206-R224. https://doi.org/10.1093/hmg/ddab208

Sim, E.U.H., Mutsamy, S., & Teh, Z.Y. (2020). Expression patterns of the human ribosomal protein genes, eL14 and uS19 in colon cancer is dependent on the type and stage of the cancer cell. Malaysian Applied Biology Journal, 49 (1), 31-39. https://doi.org/10.55230/mabjournal.v49i1.1652

Tian, Y., Babaylova, E. S., Gopanenko, A. V., Tupikin, A. E., Kabilov, M. R., Malygin, A. A., & Karpova, G. G. (2022). Changes in the transcriptome caused by mutations in the ribosomal protein uS10 associated with a predisposition to colorectal cancer. International Journal of Molecular Sciences, 23(11), 6174. https://doi.org/10.3390/ijms23116174

Wang, J., Deng, Z., Lang, X., Jiang, J., Xie, K., Lu, S., Hu, Q., Huo, Y., Xiong, X., Zhu, N., & Zhang, W. (2022). Meta‐Analysis of the Prognostic and Predictive Role of the CpG Island Methylator Phenotype in Colorectal Cancer. Disease Markers, 2022(1), 4254862. https://doi.org/10.1155/2022/4254862

Van Erk, M. J., Krul, C. A. M., Caldenhoven, E., Stierum, R. H., Peters, W. H., Woutersen, R. A., & Van Ommen, B. (2005). Expression profiling of colon cancer cell lines and colon biopsies: towards a screening system for potential cancer-preventive compounds. European Journal of Cancer Prevention, 14(5), 439-457. 10.1097/01.cej.0000174781.51883.21

Yamamoto, H., Watanabe, Y., Maehata, T., Imai, K., & Itoh, F. (2020). Microsatellite instability in cancer: a novel landscape for diagnostic and therapeutic approach. Archives of toxicology, 94, 3349-3357. https://doi.org/10.1007/s00204-020-02833-z

Yi, Y. W., You, K. S., Park, J. S., Lee, S. G., & Seong, Y. S. (2021). Ribosomal protein S6: a potential therapeutic target against cancer? International Journal of Molecular Sciences, 23(1), 48. https://doi.org/10.3390/ijms23010048

Yong, W. H., Shabihkhani, M., Telesca, D., Yang, S., Tso, J. L., Menjivar, J. C., Wei, B., Lucey, G. M., Mareninov, S., Chen, Z., Liau, L. M., Lai, A., Nelson, S. F., Cloughesy, T. F., & Tso, C. L. (2015). Ribosomal proteins RPS11 and RPS20, two stress-response markers of glioblastoma stem cells, are novel predictors of poor prognosis in glioblastoma patients. PLoS One, 10(10), e0141334. doi: 10.1371/journal.pone.0141334.

Zhou, C., Sun, J., Zheng, Z., Weng, J., Atyah, M., Zhou, Q., Chen, W., Zhang, Y., Huang, J., Yin, Y., Mao, H., Zhang, Z., Yi, Y., & Ren, N. (2020). High RPS11 level in hepatocellular carcinoma associates with poor prognosis after curative resection. Annals of Translational Medicine, 8(7), 466. doi: 10.21037/atm.2020.03.92.

Downloads

Published

2025-12-14

How to Cite

Kho, I. K. Y., & Sim, E. U. H. (2025). Assessment of uS17 Expression in Colorectal Cancer Cell Lines HT-29 and HCT116 Reveals Minimal Variation. Trends in Undergraduate Research, 8(2), a1–7. https://doi.org/10.33736/tur.7957.2025

Issue

Section

Resource Science and Technology