Estimation of Caffeine Content in Coffee of Malaysian Market Using Fourier Transform Infrared (FTIR) Spectroscopy

Authors

  • Francis Davin Nyoro
  • Siong Fong Sim
  • Amelia Laccy Jeffrey Kimura

DOI:

https://doi.org/10.33736/tur.1137.2018

Abstract

This study reports the caffeine content in seven locally available coffee. The caffeine was extracted with chloroform and analysed using Fourier Transform Infrared (FTIR). The method reports an average recovery of 101% with the limit of determination established at 0.1%. The absorption band at 1654 cm-1 was used to construct the calibration curve for quantification of caffeine where the regression was fitted with satisfactory linearity. An average of 0.55% of caffeine was detected in the seven coffee products with Arabica coffee demonstrating lower caffeine concentration. The study evidenced that caffeine content in coffee is determined by the coffee types. The caffeine content found in the local coffee products was relatively lower likely due to the solvent types, extraction procedure and analytical method used.


Keywords: Arabica coffee, decaffeinated, chloroform extraction, Robusta coffee

References

Abdalla, M. A. (2015). Determination of caffeine, the active ingredient in different coffee drinks and its characterisation by FTIR/ATR and TGA/DTA. International Journal of Engineering and Applied Science, 2(12), 85-89.

Alves, R. C., Casal, S., & Oliveira, B. P. (2007). Factors influencing the norhaman and harman contents in espresso coffee. Journal of Agriculture and Food Chemistry, 55(5), 1832-1838.

https://doi.org/10.1021/jf063128u

Chalmers, L., & Cossey, K. (2016). The determination of caffeine content in decaffeinated Blackbird coffee. The Corinthian: The Journal of Student Research at Georgia College, 17, 13-23.

Dunayar, E. K. (2008). Household hazards. In R.V. Morgan (Ed.), Handbook of Small Animal Practice (pp. 1205-1211). Amsterdam, Netherlands: Elsevier, Inc.

https://doi.org/10.1016/B978-1-4160-3949-5.50130-8

Eggers, R., & Pietsch, A. (2001). Roasting. In R. J. Clarke & O. G. Vitzthum (Eds.), Coffee: Recent Developments (pp. 90-107). London, UK: Blackwell Science.

Essays, U. K. (2013). Coffee culture in Malaysia marketing essay. Retrieved August 15, 2018, from https://www.ukessays.com/essays/marketing/coffee-culture-in-malaysia-marketing-essay.php?vref=1.

Farah, A. (2012) Coffee constituents. In Y.F. Chu (Ed.), Coffee: Emerging Health Effects and Disease Prevention (pp. 21-58). London, UK: John Wiley & Sons.

https://doi.org/10.1002/9781119949893.ch2

Franca, A. S., & Oliveira, L. S. (2011). Potential uses of Fourier transform infrared spectroscopy (FTIR) in food processing and engineering. In B. C. Siegler (Ed.), Food Engineering (pp. 211-257). New York, USA: Nova Science Publisher, Inc.

Frary, C. D., Johnson, R. K., & Wang, M. Q. (2005). Food sources and intakes of caffeine in the diets of persons in the United States. Journal of the American Dietic Association, 105(1), 110-113.

https://doi.org/10.1016/j.jada.2004.10.027

Garrigues, J. M., Bouhsan, Z., Garrigues, S., & de la Guardia, M. (2000). Fourier transform infrared determination of caffeine in roasted coffee samples. Fresenius Journal of Analytical Chemistry, 366(3), 319-322.

https://doi.org/10.1007/s002160050063

Gera, M., Kalra, S., & Gupta, P. (2016). Caffeine intake among adolescents in Delhi. Indian Journal of Community Medicine, 41(2), 151-153.

https://doi.org/10.4103/0970-0218.173501

Gichimu, M., Gichuru, E. K., Mamati, G. E., & Nyende, A. B. (2014). Biochemical composition within coffea Arabica cv, Ruiru 11 and its relationship with cup quality. Journal of Food Research, 3(3), 31-44.

https://doi.org/10.5539/jfr.v3n3p31

Glade, M. J. (2010). Caffeine - not just a stimulant. Nutrition, 16(10), 932-938.

https://doi.org/10.1016/j.nut.2010.08.004

Hodgson, A. B., Randell, R. K., & Jeuendrup, A. E. (2013). The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE, 8, 259561.

https://doi.org/10.1371/journal.pone.0059561

IARC Monographs on the evaluation of carcinogenic risks to humans. (1991). Coffee, tea, mate, methylxanthines and methylglyoxal. Retrieved September 18, 2018, from https://monographs.iarc.fr/wp-content/uploads/2018/06/mono51-6.pdf.

Illy, E. (2002). The complexity of coffee. Scientific American, 286(8), 86-91.

https://doi.org/10.1038/scientificamerican0602-86

Khapre, Y., Kyamuhangire, W., Njoroge, E. K., & Khaturima, C. W. (2017). The diversity of some Arabica and Robusta coffee from Kenya and Uganda by sensory and biochemical components and their correlation to taste. Journal of Environmental Science, Toxicology and Food Technology, 11(10), 39-43.

Liew, S. L., Nik Daud, N. I., & Hassan, O. (2001). Determination of coffee content in coffee mixtures. Malaysia Journal of Analytical Sciences, 7(2), 327-332.

Malaysian Standard MS 1360 (1994). Penentuan untuk kopi campuran. Standards & Industrial Research Institute of Malaysia.

McCusker, R. R., Fuehrlein, B., Goldberger, B. A., Gold, M. S., & Cone, E. J. (2006). Caffeine content of decaffeinated coffee. Journal of Analytical Toxicology, 30, 611-613.

https://doi.org/10.1093/jat/30.8.611

Mohammad Nor, N. A. A., & Abd Wahap, M. A. M. (2016). Exploring the potentials of coffee industry in Malaysia. FFTC Agricultural Policy Articles. Retrieved August 10, 2018, from http://ap.fftc.agnet.org/ap_db.php?id=574.

Nawrot, P., Jordan, S., Eastwood, J., Rotstein, J., Hugenholtz, A., & Feeley, M. (2003). Effects of caffeine on human health. Additives and Contaminants, 20(1), 1-30.

https://doi.org/10.1080/0265203021000007840

Ohnsmann, J., Quintas, G., Garrigues, S., & de la Guardia, M. (2002). Determination of caffeine in tea samples by Fourier transform infrared spectrometry. Analytical and Bioanalytical Chemistry, 374(3), 561-565.

https://doi.org/10.1007/s00216-002-1503-8

Paradkar, M. M., & Irudavaraj, J. (2002). A rapid FTIR spectroscopic method for estimation of caffeine in soft drinks and total methylxanthines in tea and coffee. Journal of Food Science, 67(7), 2507-2511.

https://doi.org/10.1111/j.1365-2621.2002.tb08767.x

Samiullah, F. B., Bashir, F., Qasim, R., Fazal, M., Titus, K., & Khan, M. (2015). Qualitative and quantitative determination of caffeine by comparing its amount in variety of black and green tea leaves marketed in Quetta city. Pure Applied Biology, 4(1), 9-14.

https://doi.org/10.19045/bspab.2015.41002

Sim, S. F., & Ting, W. (2012). An automated approach for analysis of Fourier Transform Infrared (FTIR) spectra of edible oils. Talanta, 88, 537-543.

https://doi.org/10.1016/j.talanta.2011.11.030

Singh, B. M., Wechter, M. A., Hu, Y., & Lafontaine, C. (1998). Determination of caffeine content in coffee using Fourier transform infrared spectroscopy in combination with attenuated total reflectance technique: a bioanalytical chemistry experiment for biochemists. Biochemical Education, 26, 243-247.

https://doi.org/10.1016/S0307-4412(98)00078-8

The Malaysian Reserve. (n.d.). Retrieved August 11, 2018, from https://themalaysianreserve.com/2017/12/05/mcdonalds-malaysia-takes-shot-rm8b-coffee-industry/.

Wanyika, H. N., Gatebe, E. G., Gitu, L. M., Ngumba, E. K., & Maritim, C. W. (2010). Determination of caffeine content of tea and instant coffee brands found in the Kenyan market. African Journal of Food Science, 4(6), 353-358.

Weldegebreal, B., Redi-Abshiro, M., & Chandravanshi, B. S. (2017). Development of new analytical methods for determination of caffeine content in aqueous solution of green coffee beans. Chemistry Central Journal, 11, 126.

https://doi.org/10.1186/s13065-017-0356-3

Downloads

Published

2018-12-10

How to Cite

Nyoro, F. D., Sim, S. F., & Jeffrey Kimura, A. L. (2018). Estimation of Caffeine Content in Coffee of Malaysian Market Using Fourier Transform Infrared (FTIR) Spectroscopy. Trends in Undergraduate Research, 1(1), a16–22. https://doi.org/10.33736/tur.1137.2018

Issue

Section

Resource Science and Technology