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ABSTRACT  

  
Despite entering its fourth year, the rabies outbreak in the East Malaysian state of Sarawak has claimed another nine 
lives in 2020, culminating with a total of 31 laboratory-confirmed cases of human rabies as of 31st December 2020. 
One of the outbreak control challenges faced by the authorities within a previously rabies-free area, such as in the case 
of Sarawak, is the lack of information regarding possible starting sources, notably hotspot locations of the outbreak. 
Identification of potential high-risk areas for rabies infection is a sine qua non for effective disease interventions and 
control strategies. Motivated by this and in preparation for future similar incidents, this paper presented a preliminary 
study on rabies hotspot identification. The modelling approach adopted the bipartite network where the two disjoint 
sets of nodes are the Location node and Dog (Bite Cases) node. The formulation of the network followed closely the 
Bipartite Modeling Methodology Framework. Thorough model verification was done in an attempt to show that such 
problem domain can be modelled using the Bipartite Modeling approach. 
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INTRODUCTION  
 
An outbreak of rabies has killed 29 people to date and affected dozens of localities throughout the East Malaysian 
state of Sarawak. Various rabies control efforts have been carried out by the local government, which include canine 
rabies vaccination, human post-exposure prophylaxis and targeted removal of dogs through culling (Taib, Labadin, & 
Piau, 2019). Despite entering its fourth year, the disease has claimed another nine lives in 2020 alone and dog bite 
incidents remain relatively high (State Disaster Management Committee, 2020). As Sarawak was historically rabies-
free, rabies surveillance and vaccination practice were not conducted prior to the initial outbreak in July 2017 
(Navanithakumar et al., 2019). Hence, the government faced some difficulties to control the disease outbreak when it 
first started out which may be attributable to the lack of information regarding possible hotspots for rabies. Herein we 
focus on the identification of these possible starting sources or rather, hotspot locations of Sarawak rabies outbreak. 
 

Over the past decades, mathematical modelling of dynamical systems has been a vital tool in analyzing the 
evolution of disease spread while also offering insights into the most efficient control strategies. According to Siettos 
and Russo (2013), current mathematical models of dynamical systems generally encompass four different approaches: 
(1) deterministic models, (2) stochastic models, (3) agent-based models and (4) network models. As such, previous 
rabies modelling studies mainly investigate the transmission dynamics of rabies using deterministic models (Asamoah, 
Oduro, Bonyah & Seidu, 2017; Huang, Ruan, Shu & Wu, 2019; Zhang, Jin, Sun, Sun & Ruan, 2012), stochastic 
models (Cao, Feng, Wen, Zu & Gao, 2020; Dürr & Ward, 2015; Hudson, Brookes, & Ward, 2017; Sparkes et al., 
2016), agent-based models (Brookes, Dürr, & Ward, 2019) and network models (Laager et al., 2018).  
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In the case of network epidemiology modelling, individuals or groups of individuals are represented as nodes 
while the links or rather connections between nodes are known as edges. Disease will transmit from one node to 
another along the edges. Should the transmission probability along the edge reach a high value, an epidemic is 
predicted to happen (Craft & Caillaud, 2011). One of the advantages of using this approach is that it could display 
complex relations of a disease accurately according to real world situations. Another benefit is that this type of 
modelling generally contains lists of parameters (attributes) associated to nodes and edges. This will allow clear 
representation of the variations in the between-host or between-edge patterns and relationships. Due to its ability to 
depict disease transmission dynamics via the nodes and edges while producing accurate results with minimum amount 
of data supplement, the network-based approach is commonly implemented to model various infectious diseases such 
as hepatitis B (Chandler, 2017), malaria (Pipatsart et al., 2018), HIV (Zhong, Zhang, & Li, 2018) and dengue (Kok & 
Labadin, 2019).  

 
In spite of a perusal of the works above-mentioned, modelling studies on rabies in the context of Sarawak 

remain scarce. For instance, Taib et al. (2019) developed a deterministic, compartmental model to study the spread of 
rabies in Sarawak and evaluated the effectiveness of different rabies control strategies (Taib et al., 2019). The work 
however did not focus on detecting rabies hotspots in Sarawak. In this paper, we attempt to identify potential high-
risk areas of rabies infection in Sarawak by utilizing the Bipartite Network–Based Modeling Framework (BNB-MF) 
approach that follows heavily from Liew (2016) and Kok (2018) studies. Additionally, identification of rabies hotspots 
using bipartite network modelling approach, to the best of our knowledge, has yet to be explored. 
 

MATERIALS & METHODS  
 
This research applies a modified version of Bipartite-Network –Based Modeling (BNM) approach originally used to 
model habitat suitability of Irrawaddy dolphin (Liew, 2016) and malaria hotspots (Kok, 2018). The two types of nodes 
considered in our bipartite contact network model are location node and dog node. Liew’s study (Liew, 2016) is chosen 
as our main reference due to the animal attributes involved. To be more specific, dogs have higher similarity to 
dolphins (Liew, 2016) (in terms of mobility) as compared to mosquitoes (Kok, 2018). The modified BNM approach 
used in this study is known as BNB-MF which involves three stages as follows: 
 

i. formulation of bipartite graph 
ii. development of bipartite rabies contact (BRC) network model 

iii. verification of the bipartite rabies contact (BRC) model 
 
Data collection 
Information on dog bite cases, location address of exposure, and human rabies positive cases between 1st April 2017 
to 31st July 2017 were extracted via online sources such as the official Sarawak Disaster Information website and 
online news. Records stored on the Sarawak Disaster Information website are actively being updated and maintained 
daily. This will ensure accuracy of data gathered for this study. A total amount of 17 epidemiological weeks of dog 
bite cases was collected during the study period with only six cases of dog bites clinically confirmed to be rabies-
positive.  
 
Data pre-processing 
As location addresses collected were raw data without GPS coordinates provided, the location data were digitized 
prior to parameters quantification. The distance between different location nodes was also calculated to avoid possible 
data redundancy appearing in our BRC network. Based on Figure 1, the first step is to manually convert each new 
location address into GPS coordinates (longitude and latitude), by utilising Google Maps (https://www.google.com/ 
maps). For instance, one of the recorded location addresses read as “Kampung Krait, Jalan Batang Kedup, 94700 
Serian, Sarawak”. By using the Google Maps website, the value of longitude and latitude of a specific location can be 
retrieved. As for the location mentioned above, the longitude and latitude are discovered to be 110.660221 and 
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1.049387, respectively. The second step was to declare each different location identification and record them into the 
database. The output obtained from the first step was further processed by using a location declaration generator. The 
generator code was created using R programming and the output created is a distance matrix which records the distance 
between different location nodes. 
 
Implementation of ranking algorithm  
Ranking of the location nodes will be required in order to 
determine the possible rabies hotspots in Sarawak. As this 
study only uses two types of nodes (bipartite), Hypertext-
Indexed Topic Search (HITS) search algorithm is applied 
towards the BRC network. In addition, HITS algorithm is 
justified over Page-Rank search algorithm due to its 
capability to link both the hub and authority matrices. In 
this step, the Rabies Contact Strength (RCS) values, which 
correspond to the link weight values in the BRC network, 
are used as the input for the HITS algorithm. The output 
from this algorithm is a pair of principal eigenvectors, 
which is taken as the location ranking of the BRC network. 
We labelled this location ranking as the Rabies Hotspot 
Ranking (RHR), which can also serve as a measurement of 
dog density. 
 
Model verification 
Two methods of model verification are applied: namely (1) 
benchmark verification and (2) analytical verification. 
Benchmark verification is conducted using UCINET 6 in 
order to compare the results obtained through the BRC 
network model with that of another benchmark system 
(Kok & Labadin, 2019). The root-mean-square-error 
(RMSE) is calculated by comparing the ranking values 
from the selected benchmark system and that from the BRC network model. When the RMSE does not exceed 0.05, 
the BRC network model is verified. As location is the primary concern here, UNICET will focus on generating the 
benchmark ranking values of the location nodes (RHRB). The location ranking of the BRC network (RHRBRC network) 
and the RHRB are normalized in the range 0 to 1 before proceeding with the calculation of RMSE. The RMSE values 
for the location nodes (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿) ( between RHRBRC network and RHRB are computed using the formula below, where 
𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 = number of location nodes. 
 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿 = �
1

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿
�� (𝑅𝑅𝑅𝑅𝑅𝑅𝐵𝐵𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑅𝑅BRC network𝑖𝑖)

2

𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿

𝑖𝑖=1

� . 

 
 
In analytical verification, the degree of closeness between ranking values for each location and dog nodes 

will be measured. Spearman’s Rank Correlation Coefficient (SRCC) is used to verify a network model with small data 
size which is appropriate in this model. SRCC values usually range from -1 to +1, whereby +1 indicates a very strong 
positive association between the ranks, whereas -1 signifies strong negative association of the ranks and 0 represents 
non-existent association between the ranks. Table 1 illustrates a range of values used to interpret SRCC. In this study, 

 
Figure 1. Steps of pre-processing location node data. 
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it is hypothesized that there exists a high correlation with a coefficient of more than 0.8 between the RHR of each 
location node and the hub matrix of edges linked to it. According to Liew (2016), a minimum of 0.7 SRCC between 
RHR and hub matrix of the location nodes should be acquired to verify the models created in this study. 

 
Parameter significance analysis 
Parameter significance analysis is conducted to identify the critical 
parameters and to determine the relative importance of each individual 
parameter considered in the BRC network. The analysis involved two 
types; (1) “leave-one-out” analysis for each individual parameter and (2) 
“multiple-out” analysis for a combination of more than one parameter. 
For “leave-one-out” analysis, one parameter from the BRC network 
model is chosen to be excluded at a time, during computation of RHR 
and other subsequent processes of BNB-MF. As for “leave-multiple-out” 
analysis, two or more parameters will be excluded from the BRC model 
and its subsequent processes. This analysis also requires the calculation 
of SRCC value. 
 
Formulation of bipartite network model 
In order to develop our BRC network model, we first need to define the bipartite graph. In this study, we identified 
two crucial components in rabies disease transmission – location and host properties. The traditional epidemiological 
triangle has been modified (Figure 2) to serve as the foundation of our bipartite graph structure. The host component 
(H) represents an animal or human potentially prone to the rabies disease. Next, the environment component (E) 
specifies exterior causes that can impact the probability of disease infection or transmission. Since this research is 
dedicated to locating the hotspots of rabies disease, the location component (L) is essential and cannot be removed 
from the modified disease triangle. Hence, E is derived into a L. It is also assumed that only stray dogs transmit rabies 
virus to humans and that all strays are susceptible to rabies.  
 

The bipartite graph structure is made up of a set of location nodes (𝑋𝑋), a set of dog nodes (𝐷𝐷) and a set of 
relation edges denoted by 𝑅𝑅. The edge represents a link created when a dog in set 𝐷𝐷 visits a location in set 𝐿𝐿. Hence, 
we can define the bipartite graph to be  𝐺𝐺 = (𝐷𝐷,𝑋𝑋,𝑅𝑅)  which consists of two distinct node sets 𝐷𝐷 and 𝑋𝑋, whereas 𝑅𝑅 
represents the edge. Therefore, the bipartite graph 𝐺𝐺 presents the basic building block (Figure 3) for the formulation 
of BRC network. 
 
 

 

 

 
Figure 2. Basic building block of bipartite graph.   Figure 3. Basic building block of BRC network. 

 
 

According to graph theory, a bipartite network is a weighted bipartite graph in which the affinity between 
two nodes is measured based on their link weights (Rayfield, Fortin, & Fall, 2011).  To formulate an example of our 
bipartite rabies contact (BRC) network as in Figure 4, we take the previously defined bipartite graph 𝐺𝐺 = (𝐷𝐷,𝑋𝑋,𝑅𝑅)  
whereby 𝘋𝘋 and X represent sets of dog nodes and location nodes, respectively, whereas 𝑅𝑅 represents the link edges. 
Then, let us also assume that set 𝐷𝐷 , the set of dogs (utilizing dog bite cases as proxy) includes these four elements, 𝘋𝘋 
= { 𝘋𝘋1, 𝘋𝘋2, 𝘋𝘋3, 𝘋𝘋4}; whereas set X, the set of locations has five elements by which X = {X1, X2, X3, X4, X5}; 

Table 1. SRCC Indicators 

SRCC coefficient (±) Indicator 
±(0.00-0.19) Very Weak 
±(0.20-0.39) Weak 
±(0.40-0.59) Moderate 
±(0.60-0.79) Strong 
±(0.80-1.00) Very Strong 
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whereas set 𝑅𝑅, the set of links in between elements X and 𝐷𝐷 , consists of eight elements 𝑅𝑅 = {𝘳𝘳1, 𝘳𝘳2, 𝘳𝘳3, 𝘳𝘳4, 𝘳𝘳5, 𝘳𝘳6, 𝘳𝘳7, 
𝘳𝘳8}. As a summary, the network can be expressed as {𝘋𝘋1X2, 𝘋𝘋1X3, 𝘋𝘋2X3, 𝘋𝘋3X1, 𝘋𝘋3X4, 𝘋𝘋4X3, 𝘋𝘋4X4, 𝘋𝘋4X5}.  

 
To build a network, the computation of link 

weights corresponding to each link edge is required. We 
labelled these link weights as the RCS values. The RCS 
value is defined as the summation of parameter values for 
both the location and dog nodes. That is; 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖:𝑗𝑗 = 

∑ location node parameters𝑖𝑖 + ∑ dog node parameters𝑗𝑗 .  
 

Therefore, suitable attributes or parameters are 
required to accurately quantify these contact strength 
values (or link weights) in between the nodes. As seen in 
Table 2, we have identified a total of five parameters for 
the location nodes as well as dog nodes set.  
 
 
 
 
 
 
 
 
 
 
 
 
 

For the location node parameters, the dog population density parameter (𝑃𝑃𝑑𝑑) for a given location node can be 
written as: 

 

𝑃𝑃𝑑𝑑 =
number of dogs in a given area, 𝑁𝑁𝑑𝑑

area of the location node (km2)
 

 
 

Since we assumed that stray dogs can travel up to 10 km2, the area of each location node is set to be 10 km2 
therefore we have: 

 

𝑃𝑃𝑑𝑑 =
 𝑁𝑁𝑑𝑑
 10

, 

  
Reproduction number (𝑅𝑅0) among the stray dog population measures how factors such as rate of stray dog 

control and contact rate of rabid dogs among the dog population affects the birth rate of puppies. To align with the 
assumptions in our study, 𝑅𝑅0 from (Asamoah et al., 2017) is modified to be: 

 

𝑅𝑅0 =  
𝛾𝛾

𝛾𝛾+𝜌𝜌
,          

 
Figure 4. An example of bipartite rabies contact 
(BRC) network 

 Table 2. Parameters for location node and dog node. 

 Parameter Definition 
 Location node 
 𝑃𝑃𝑑𝑑  Dog population density 
 𝑅𝑅0 Reproduction number 
 𝐹𝐹𝑙𝑙  Number of times a location is visited by a dog 

 Dog node 
 𝛽𝛽𝐿𝐿  Dog biting rate 
 𝐹𝐹𝑑𝑑 Number of times a dog visited a location 
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where 𝛾𝛾 gives the dog rabies incubation period and 𝜌𝜌 represents dog vaccination rate. The parameter 𝐹𝐹𝑙𝑙  is created to 
recognize the effect of dogs visiting a location and is defined as the frequency of a specific location node being visited 
by any dog node of the BRC network. Also, 𝐹𝐹𝑙𝑙 can be written in terms of a link matrix of the BRC network, 𝑅𝑅(𝑋𝑋𝑖𝑖𝐷𝐷𝑗𝑗), 
where  
 

𝐹𝐹𝑙𝑙𝑖𝑖 = ��𝑅𝑅(𝑋𝑋𝑖𝑖𝐷𝐷𝑗𝑗) × 𝐹𝐹𝑑𝑑𝑖𝑖:𝑗𝑗� ,
𝑚𝑚

𝑗𝑗=1

 

 
and 
 

𝑅𝑅�𝑋𝑋𝑖𝑖𝐷𝐷𝑗𝑗� = �
1,  if 𝐷𝐷𝑗𝑗  is visited by 𝑋𝑋𝑖𝑖  

       0,  if 𝐷𝐷𝑗𝑗  is not visited by 𝑋𝑋𝑖𝑖 
, 

 
 

such that 𝑋𝑋𝑖𝑖 = location node of BRC network and 𝐷𝐷𝑗𝑗 = dog node of BRC network, whereas 𝑖𝑖 ∈ (1, 2, … ,𝑛𝑛) and  𝑗𝑗 ∈
(1, 2, … ,𝑛𝑛).   
For the dog node parameters, we define the dog biting rate to be: 
 
 

𝛽𝛽𝐿𝐿 = 𝛽𝛽𝑅𝑅𝐻𝐻𝐼𝐼𝐷𝐷 , 
 
 
where  𝛽𝛽 = dog-to-human biting rate, 𝑅𝑅𝐻𝐻 = susceptible humans, and 𝐼𝐼𝐷𝐷 = infected dogs. The dog-to-human biting 
rate can be estimated from:  
 
 

𝛽𝛽 =
no. of confirmed human cases

total no. of human in all location nodes
. 

 

 
The parameter 𝐹𝐹𝑑𝑑 measures the number of times that a dog visited a location and can be represented by: 
 
 

𝐹𝐹𝑑𝑑𝑖𝑖:𝑗𝑗 = �
𝑛𝑛,   if 𝐷𝐷𝑗𝑗  is visited by 𝑋𝑋𝑖𝑖 where 𝑛𝑛 ∈ 𝑍𝑍+

0,                       if 𝐷𝐷𝑗𝑗  is not visited by 𝑋𝑋𝑖𝑖
, 

 
 
Hence, after defining all parameters, the RCS values can be expressed as: 
 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖:𝑗𝑗 = � location node parameters𝑖𝑖 + � dog node parameters𝑗𝑗 , 

 
  

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖:𝑗𝑗 = ��𝑃𝑃𝑑𝑑𝑗𝑗 + 𝑅𝑅0𝑗𝑗 + 𝐹𝐹𝑙𝑙𝑗𝑗� + �𝛽𝛽𝐿𝐿𝑗𝑗 + 𝐹𝐹𝑑𝑑𝑗𝑗:𝑖𝑖 . 
 
 

The higher the RCS values, the stronger the strength between the two nodes; hence signifying the existence 
of more attachment between the location node and the specified dog node. 
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RESULTS  
 
Between 1st April 2017 to 31st July 2017, we have 
determined 11 location nodes and 10 dog nodes. As 
shown in Figure 5, the RCS values are calculated 
based on the quantified concomitant parameters. 
Next, by using the RCS values as input, results of the 
RHR are computed via the HITS algorithm. The 
algorithm ranked the location nodes based on the 
RHR values which are tabulated in Table 3. In terms 
of node degree, X3, X4, and X6 had the highest 
degree of 2 as two dog nodes are attached to X3, X4, 
and X6 each (Figure 5). Higher-degree nodes are 
generally inclined to have stronger edges 
(Pavlopoulos et al., 2018). Based on Table 3 
however, the X4 location node has the highest 
ranking value, hence it is worth noting that the node 
degree would not indicate the ranking of the location 
node directly. Therefore, X4 can be considered as a 
hotspot of rabies based on the BRC network model. 
This also indicates that X4 could be a possible 
location with the highest dog density. 

 
Benchmark verification was performed by 

comparing the results obtained with the benchmark 
system produced by UCINET 6. The RMSE value of 
0.02753 (corrected to four significant figures) which 
is less than the threshold value of 0.05 is obtained 
from the ranking of location nodes. This verifies our 
BRC network model. Additionally, analytical 
verification is performed and findings showed that 
RHR and hub matrix of the location nodes are 
correlated as proven by the SRCC value of 0.9818 
obtained. The value is very close to 1, putting it at a 
position far above the threshold value of 0.7. This 
finding supports the claim made in benchmark 
verification, which further approves the BRC 
network model created in this study. 

 
The critical parameters are determined by 

using two types of analysis which are “leave-one-
out” and “multiple-out”. The SRCC values are recalculated after one or more parameters excluded from the network, 
then a comparison between the computed values with the original ranking is done. The SRCC value showed a sudden 
drop below the threshold value of 0.7 when parameters 𝑃𝑃𝑑𝑑, 𝑅𝑅0 and 𝛽𝛽𝐿𝐿 are excluded. This suggests that 𝑃𝑃𝑑𝑑, 𝑅𝑅0 and 𝛽𝛽𝐿𝐿 
may be significant parameters. The decrease in SRCC value is relatively more when 𝑅𝑅0, 𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑑𝑑 are excluded from 
calculation. It is observed that SRCC values for both location and dog node decreased to 0.6970 and 0.6768 
respectively. This indicates that 𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑑𝑑 are essential parameters, due to 𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑑𝑑being the two main parameters 
that links the location and dog node. Thus, 𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑑𝑑 must be kept in the model. Moreover, the exclusion of both 𝑃𝑃𝑑𝑑 

 
Figure 5. Bipartite Rabies Contact (BRC) network 

   

  Table 3. Location ranking of BRC network model. 

  Ranking Ranked Location RHR 
  1 X4 1.000000e+00 
  2 X6 5.833356e-01 
  3 X9 5.096758e-01 
  4 X10 4.807880e-01 
  5 X5 1.192827e-01 
  6 X3 1.426934e-09 
  7 X2 4.723061e-15 
  8 X8 1.265446e-16 
  9 X7 7.596613e-17 
  10 X1 1.425781e-17 
  11 X11 6.638513e-18 
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and 𝑅𝑅0 suggests a low correlation to the original location and dog node ranking. When 𝑃𝑃𝑑𝑑 and 𝑅𝑅0 are excluded from 
the calculation, the SRCC value still maintains a value above the threshold value. This possibly indicates that these 
two parameters are not significant parameters. 
 
DISCUSSIONS & CONCLUSION 
 
This study sought to construct a network model that detects hotspot areas of a rabies epidemic outbreak. To achieve 
this objective, a network model is proposed to describe the contact between the dog and the location that the dog 
visited. A modified epidemiological triangle is initially formulated in the first stage of BNB-MF in order to develop 
the bipartite graph structure. Two main components are identified to be the crucial components in rabies disease 
transmission – location and host properties 
 

In stage 2 of BNB-MF, a data pre-processing algorithm was developed and deployed to measure GPS 
coordinate of locations. The data pre-processing algorithm is also used to generate a distance matrix, which can be 
used to calculate distance between location nodes. Then, parameters for location and dog nodes are quantified, as well 
as the RCS using a summation rule. Hence, the BRC network consisting of 11 location nodes and 10 dog nodes is 
formed. Next, to rank each location and dog nodes, an adapted HITS algorithm is applied towards the BRC network 
to generate RHR value. Based on the results of our BRC network, it can be concluded that X4 is possibly the hotspot 
for rabies disease transmission. For stage 3 of BNB-MF, UCINET 6 is utilized to verify the BRC model formulated. 
A parameter significance analysis is conducted to measure the relative importance of each parameter quantified. 
Results of the analysis support the existence of a link between the parameters of the BRC network model. 

 
Furthermore, due to the fact that this study is the first to ever utilize the bipartite network modelling method 

in rabies hotspot detection, no direct reference or immediate comparison of results can be done. This work only 
considers verification and analysis of results to validate the reliability of the model formulated. Also, this study only 
considers the stray dog population despite the fact that several human rabies cases in Sarawak have reported domestic 
dogs as the biting animal. As such, 𝐹𝐹𝑙𝑙 and 𝐹𝐹𝑑𝑑 are significant parameters in this study albeit difficult to obtain in real 
world. One of the possible methods to retrieve the data for parameter 𝐹𝐹𝑑𝑑 is by conducting interviews for the residents 
in the location. If the location is at micro-level such as a shop lot or a small community, then it is fairly easy to 
determine the parameter 𝐹𝐹𝑑𝑑 of a dog to the location. Consequently, the parameter 𝐹𝐹𝑙𝑙 can be calculated based on the 
quantification equation of 𝐹𝐹𝑙𝑙. 

 
Besides, some other potential parameters that could potentially affect the transmission dynamics of rabies 

are yet to be tested, not to mention testing these parameters will require an additional set of data specifically recording 
attributes such as the environmental properties of the research areas (e.g., temperature, rainfall of a location node) or 
rabies disease state transition period. Hence, a potential future work might be to explore several other parameters and 
further understand the association link between all parameters involved in rabies hotspots detection study. Other than 
that, studies for locations other than Sarawak should be conducted so as to test and verify this current modelling 
approach. 
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