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Abstract - Digital watermark detection is treated as classification problem of
image processing. For image classification that searches for a butterfly, an
image can be classified as positive class that is a butterfly and negative class that
is not a butterfly. Similarly, the watermarked and unwatermarked images are
perceived as positive and negative class respectively. Hence, Support Vector
Machine (SVM) is used as the classifier of watermarked and unwatermarked
digital image due to its ability of separating both linearly and non-linearly
separable data. Hyperplanes of various detectors are briefly elaborated to show
how SVM's hyperplane is suitable for Stirmark attacked watermarked image.
Cox’s spread spectrum watermarking scheme is used to embed the watermark
into digital images. Then, Support Vector Machine is trained with both the
watermarked and unwatermarked images. Training SVM eliminates the use of
watermark during the detection process. Receiver Operating Characteristics
(ROC) graphs are plotted to assess the false positive and false negative
probability of both the correlation detector of the watermarking schemes and
SVM classifier. Both watermarked and unwatermarked images are later
attacked under Stirmark, and then tested on the correlation detector and SVM
classifier. Remedies are suggested to preprocess the training data. The optimal
setting of SVM parameters is also investigated and determined besides
preprocessing. The preprocessing and optimal parameters setting enable the
trained SVM to achieve substantially better results than those resulting from
the correlation detector.

Keywords: Support Vector Machine, Digital Watermark, Receiver Operating
Characteristics, Stirmark attacks.
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1. INTRODUCTION

Support Vector Machine (SVM), a universal classification algorithm developed by
Vapnik and his colleagues, has been used successfully for many classification tasks
(Clark et al. 2004; Vapnik 1995,1998). In this paper we investigate the application of
SVM in digital image watermark detection. We chose to look at classifying
watermarked and unwatermarked images similar to the classification tasks in image
processing. SVM classifiers are therefore developed to classify watermarked and
unwatermarked images.

Digital watermark is embedded into digital images as bits of information such
as copyright and authorship. These bits of information are embedded into the images
by satisfying a series of properties. The properties are effectiveness, fidelity, data
pay-load, blind or informed detection, false positive and false negative probability
and robustness (Cox et al. 2002). In this paper, we are focusing on the blind detection
and investigating the effects that Stirmark attacks can impact on the SVM classifier.
The false positive and false negative probability of correlation detector and SVM
classifier are compared to study their detection accuracy. The false positive
probability is also cross compared with and without Stirmark attacks. Another
important property of digital watermark embedding algorithm is the fidelity of the
watermarked images. Fidelity refers to the perceptual similarity of the original and
watermarked images. Another property that is closely related to fidelity is payload
of the watermark. Data payload refers to the number of bits a watermark encodes
within a unit of time or within an image. Digital watermark is embedded into the
image with maximum payload of the watermark while maintaining the perceptual
similarity of the unwatermarked and watermarked images. Higher payload probably
downgrades the image fidelity. Lower payload which is preferable to maintain high
fidelity might not be able to represent sufficient information in the watermark.
Generally, watermark with higher payload is more robust to attacks. In this paper, the
payload of the watermark is set consistent at 1000 bits. The watermarking algorithm
used throughout all experiments in this paper is Cox’s spread spectrum (Cox et al.
1997). We use Lena’s image in all experiments.

Neural networks were introduced into watermarking by Yu et al. (2001) that
used neural networks to make the watermark detection more robust against common
attacks. Picard and Robert (2001) proposed Multilayers Neural Networks
architectures to build public detection functions in public key watermarking system.
Shen et al. (2003), and Yu and Sattar (2002) used Independent Component Analysis

‘method for blind watermark extraction. Zhang et al. (2003) used Radial Basis
Function Neural Networks to find the maximum watermark embedding strength
according to the frequency component feature of the cover image. Similarly, Lou et
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al. (2003) and Davis and Najarian (2001) used neural networks based on Human
Visual Model to estimate the maximum watermark embedding strength to eliminate
human intervention. Shieh et al. (2004) later used genetic algorithms to determine
the best watermark embedding positions in block-based DCT domain watermarking.
Fu et al. (2004) used Support Vector Machine for watermark detection and
extraction.

Various watermark detector fundamentals are analysed to investigate the
behaviour of the hyperplanes. These hyperplanes are actually the decision boundary
of the detector that determines existence and non-existence of watermark in a cover
image. The linearly and non-linearly separable data of the Stirmark attacked cover
image is analysed. Studies of the hyperplane intuited SVM as the watermark
detector. Necessary pre-processing is run to determine the right behaviour of the
training set while finding the optimal parameters for SVM. Experiment results
showed promising detector ROC from SVM classifier compared to correlation
detector. Throughout this paper, SVM classifier and detector are used
interchangeably to show the terminology familiarity before and after empirical
experiments.

Section 2 begins with the analysis of various digital watermark detectors and
its behaviour to malicious attacks. Section 3 further analysed the nonlinearity of the
Stirmark attacked images from the hyperplane perspective. Section 4 shows the
capability of SVM classifier that has high detection accuracy on nonlinear dataset
that is the Stirmark attacked images. Remedies are implemented to pre-process the
training data in Section 5. Various detector kernels are compared in literature and
with empirical experiments in Section 6. In Section 7, the watermark detection
accuracy of the correlation detector and SVM classifier are analysed based on ROC
curves that take into account both false positive and false negative probabilities.
Improvement from SVM classifier over correlation detector is analysed in Section
8. Lastly, Section 9 concludes the performance of the SVM classifier that improves
the robustness of the chosen Cox’s watermarking scheme to Stirmark attacks. SVM
classifier’s performance compared to correlation detector is overwhelming with its
blind detection compared to non-blind correlation detector.

2. DETECTOR ANALYSIS AND IMPACTS OF ATTACKS

Kalker (1998) has shown that typical watermark detection scheme can be modelled
by a black box D that takes as input a vector xex Cc R  (large N and R is real
number) and returns a binary decision b€ {+1,-1} . Decision b=+1 is interpreted as
x is watermarked and b=-1 is interpreted as x is not watermarked. The black box D
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is characterized by a 5-tuple {4», 4, B,h, g} where 4 < B are positive real numbers and
where we PN for some small and symmetrical subset 1 c R. The function /4 is some
hash functions on the space of inputs X that returns uniformly distributed values on the
interval [0,1]. The function g is a monotonically increasing self map of the interval
[0,1]. The decision &= D(x) is obtained by correlating x with w and comparing the
correlation value d with the thresholds 4 and B. The decision d is computed as

N-1
E,=0 W, X;
d )

"o NN

Kalker (1998) has shown that the d-distribution is close to a normal distribution
N(0,1) for a large N if x and w are independent. If |d|s4 , x is judged to be
unwatermarked and the value b=-1 is output. If |5} B , x is judged to be
watermarked and the value b=+1 is returned. For d between 4 and B a value b is
returned subjected to the dependency such that the probability of a return value -1 is
close to 1 for d close to 4. Similarly the probability of a return value +1 is close to 1
for d close to B. In short, the return value b is computed as

“1 i |dis4

J+1 if |dlzB

1 if A<d<B and h(x)>g(d) 2
[+1 if A<d<B and p(x)s g(d)

where d = (d - A)/(B- A) . This probability P is depicted in Figure 1.

P sinusoid transition
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Figure 1 The probability of return value b as function of the correlation value d. The linear
and sinusoid transitions are shown (linear-solid line,transition-dashed line)

Multiple of the watermark w are then added to the original content
y=x+Aw 3)
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If Aw is small compared to x, then the correlation value d that is obtained from D
consists of two terms:

N @

D will decide y is watermarked when A is chosen large enough. A is the embedding
strength of the watermarking scheme that determine the detectability of y.

d=d, +A

Mansour and Tewfik (2002) have reviewed the various types of public watermark
detector extensively. They have covered correlation based detectors, generalized
exponential family detector, asymmetric detector, multibit embedding and
quantization based detector. Mansour and Tewfik (2002) showed that all detectors
share the common feature that is the decision boundary is parametric. This means
the decision boundary can be fully specified by a finite set of parameters and
generally, the detectors can be formulated as a binary hypothesis test. Let I as the
original (unwatermarked) signal, and S as the signal under investigation by the
watermark detector, WM as the watermark, and I, as the watermarked signal, M and
N respectively as number of row and column of the signal, L (=MxN) as signal
length, wm,, as samples of the watermark indexed by n, a binary hypothesis test can
be formulated as

Ho:lw=1

Hi: Iw=1WM 5)

assuming the detector removed the signal mean prior to detection. The optimal
detector depends on the assumed underlying probability density function. It becomes
a correlation detector for Gaussian distribution and if watermarks of equal weights
are used.

Correlation detector is the most common and optimal detector for the class of
additive watermark (Kalker 1998). Hence, the watermarking schemes that use

correlation detector will be analysed in more details.

When the correlation is performed in the signal domain, the log-likelihood test
statistic is reduced after removing the common terms to

IS)=5"WM = (/L)Y 5, wm, (6)

where “*” denotes the conjugate transpose of the matrix. H; is determined if [(S)> A
and H, is decided otherwise, where A is the detection threshold.
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Geometrically, Figure 2 shows that the watermark detector involves a decision
boundary that is a hyperplane in the multidimensional space SL. The hyperplane
requires L distinct points on it to be completely specified. Least square minimization
can be applied to estimate the hyperplane given sufficient points on the boundary.
The detector can be viewed as a black box (Kalker 1998; Linnartz et al. 1998). Slight
changes can be made to the watermarked signal until reaching a point that the
detector is not able to detect the watermark (Kalker 1998; Mansour and Tewfik
2002; Linnartz et al. 1998). The possible changes are normal image manipulation
such as JPEG compression or intent modification like geometrical distortion. The
minimal changes required to render the watermark undetectable is following the
minimum normal projection as labelled in Figure 2. There are three solid arrows
showing the other projections that are caused by the changes. The projections as long
as crossing the decision boundary will render the watermark undetectable. The
direction of the solid line arrow is showing projection from watermarked plane H;
to unwatermarked plane H,,.

Minimum normal {'
H, ije“;'< e
\\
N\
. \\
Watermarked signal i - AN

Decision <4

boundary

Figure 2 Projection caused by changes on image and its decision boundary of hypothesis
test Mansour and Tewfik 2002)

The works from Kalker (1998) and Mansour-Tewfik (2002) showed similar
intuition of binary decision in term of decision boundary and hypothesis testing. In
general, the detectors are treated as binary decision maker. Their works are different
in determining the decision boundary where Kalker (1998)’s detector considers a
fuzzy area that is 4<d<B as shown in Equation 2. A gradient function g(d) is used
to determine the boundary of a vector x that falls in watermarked and
unwatermarked hyperplane. In pattern recognition research domain, the fuzzy area
in Kalker (1998)’ detector is analogous to the misclassification that is caused by
outliners. These outliners are root from the nature of the dataset distribution. The
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distribution of the data can be either linearly or unlinearly separable. Unlinearly
separable data causes misclassification of the dataset.

Figure 3 and Figure 4 show linearly and unlinearly separable dataset.
Considering binary classification, ring circle represented class A and cross circle
represents class B. In Figure 3, it is visually clear that class A and B are well-
separated by the hyperplane 7 where ring circles fall on the right side of 7 and cross
circles fall on the left side of 7. In Figure 4, there are some outliners that fall on the
wrong side of 7. There are some ring-circles falls on the left side of 7 whilst some
cross-circles fall on the right side of 7.

Figure 3 Linearly separable dataset (A ring circle répresents class A, cross circle represents
class B)

Figure 4 Unlinearly separable dataset (A ring circle represents class A, a cross circle
represents class B)
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“The misclassification caused by outliners in pattern recognition and image
processing domain is very much alike to digital watermarking. The idea of
perceiving watermark detection as image classification and pattern recognition can
be further enhanced by observing the behaviour of digital watermark detector under
attacks (Then and Wang 2005, 2006).

False alarm from the digital watermark detector is inevitable (Cox et al. 2002).
This false alarm comes in the form of false positive and false negative. For false
positive detection, the detector detects an unwatermarked cover data as watermarked
while for false negative detection, the detector detects watermarked cover data as
unwatermarked. This false detection can be described as type-A and type-B errors in
statistical terms.

The false detection rates increase after the cover data is attacked. The specific
attack that solely challenged the robustness of the watermarking scheme is Stirmark
attack. Tt is also a widely accepted benchmarking attack to evaluate the robustness of
digital watermarking schemes (Petitcolas and Anderson 1999; Petitcolas et al. 1998).
In general, the attacks increase the false positive and false negative probabilities.
Hence, by perceiving watermark detection as pattern recognition, the issue of
outliners in misclassification can be treated similar to the false detection in digital
watermarking. From pattern recognition and image classification perspective, the
main reason of false detection is due to the nonlinearly separable data. The
nonlinearity of the data is worsened after the cover data is attacked. This leads to the
investigation of nonlinearity of the cover data.

3. NONLINEARITY OF STIRMARK ATTACKED IMAGES

Webb (2004) has addressed the decision boundary of nonlinearly separable data in
statistical pattern recognition context. Radial basis function (RBF) network and
SVM are the most suitable kernel classifier for nonlinear separable data (Webb
2004). These methods are developed primarily in the neural networks and machine
learning, and are flexible models for nonlinear separable data discriminant analysis
(Webb 2004).

RBF network implements a mapping function, F(R*) — R according to

F(x) - gwm(n x-x, ) Q)
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where R is real number, »n is the dimension of R, X € R» is the input vector,
{#(l x-x, |)1i=12,....n} is a set of n arbitrary nonlinear function from R* to R, known
as RBEF, ||.|| denotes norm that is usually Euclidean distance, x; € Rr (1<i<n)
are the RBF centres, and » is the number of centres. Choice of unlinear function ¢(.)
can be:

2
(i) Gaussian function, ¢(x) = exp(— M] , where x; is centre of cluster / and
cov

cov is the covariance of the cluster .

cov

242 2
(i) Thin-plate-spline function, ¢(x)=(”";o’3 I ] 1og(”""‘f I )

(i) Multiquadric function, ¢(x) = yi|x—x, " +cov®
(iv) Inverse multiquadric function, ¢(x)= —12_—2
lx—x, [I* +cov

Gaussian function is most commonly used in the neural network community
(Chen et al. 1999). Furthermore, theoretical analysis and practical experiments
suggest that the choice of the nonlinearity ¢(.) is not crucial to the performance of
the RBF network. To select the suitable set of RBF centres, x; is the crucial factor to
the performance of the RBF network. Chen et al. (1999) proposed an Orthogonal
Least Squares learning algorithm that operates in forward regression procedure to
select RBF centres, x;, from the data points.

Comparative study reviewing several approaches to RBF training show that
SVM learning approach is often superior on a classification task compared to the
standard two-stage learning of RBFs (Webb 2004; Schwenker et al. 2001). Besides,
works from Massachusset Institute of Technology (MIT) has also undermined
the suitability of RBF compared to Support vector machine in classifying data
(Scholkpf et al. 1996). The applicability of the studies by Schwenker et al. (2001)
and Scholkpf et al. (1996) on digital watermarking is investigated in this paper.
Schélkpf (1996)’s works have tested SVM with Gaussian Kernel, classical RBF
machine and hybrid of them on recognizing the US postal service database of
handwritten digits. Their results showed that SVM approach is not only theoretically
sound but superior in the practical application. Further justification of choosing the
right kernel and its associated parameters are discussed in Section 6. Thus, it is
worthwhile to give a reasonable background of SVM prior to its role as digital
watermark detector.
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4. SVM CLASSIFIER

Support Vector Machines are machine learning tool for performing classification
and detection tasks. They have been applied to a wide range of real-world problems
such as face recognition, image retrieval, and text categorizations. SVM classifier is
trained using a set of labelled training examples. The training set consists of /
training examples, with each example described as A-dimensional vector. Each
example is labelled as belonging to one of two classes, y € {1, — 1}, described as
the positive class and the negative class. Hence, each example is represented as
{x;y:}, =1,....I, y;e {1,— 1} x; € R» where R is real number. After the training, the
. resulted SVM is able to classify unseen instances, x, into a class based on the
examples learnt from the training set. Typically, SVM outputs zero when
classification failed.

In the simplest form, SVMs are hyperplanes that are separating training data by
maximum margin. This margin is defined as the distance between the closest
training examples in the positive and negative classes to the separating hyperplanes
(Burges 1998). The training examples that determine the margin are known as
“support vectors”. All vectors lying on one side of the hyperplane are labelled as 1,
and vectors lying on another side of the hyperplane are labelled as —1.

Separating hyperplane
Examples from class 1
Examples from class 2
Support vectors in class
1

Support vectors in class
2

® ©°°|

Figure 5. Simple SVM classification of two classes in a two-dimensional input space

There is tradeoff on finding the optimal hyperplane decision boundary when
some examples unavoidably fall on the wrong side of the boundary. Hence the
decision boundary have to be found by maximizing the margin between the two
classes while minimizing the penalty associated with the misclassifications in the
training set. The equation of a decision surface in the form of a hyperplane that does
the separation is

@ex)+b=0 ®)

L em oam e o
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where x is an input vector, ® is an adjustable weight vector, and b is a bias. The
distance from the origin to the optimal hyperplane is given by &/ ko | where |o |is
the Euclidean norm of @. A scaling of b and o leaves this distance unchanged that
maintain the condition in Equation (11). Supposed all training examples satisfy the
following constraints as shown as dotted lines respectively in Figure 5:

(ar x)+b 21 fory;=+1 )
(@ x)+b< 1 fory,=—1 (10)

Equations (9) and (10) form a set of inequalities:

By introducing positive Lagrange muitipliers o, i=1,...,J, the optimal hyperplane
defined by equation (8) is found by solving the following quadratic programming
problem, where ¢,i = 1,...,/ are the Lagrange multipliers:

1 1

min o’ —Za.-yi(w-xi +b>+’§=;a,- (12)

aba

5. TRAINING SET PREPROCESSING

The performance of SVM classifier is dependent on its training and therefore it is
mnportant to make sure the training dataset consists of positive and negative classes.
The generalization performance of SVM classifier is highly dependent on the linear
separation of positive and negative classes in the input space. The images used in
training and testing had dimensions of 256 x 256 pixels. We found that using the
fraining set by including every pixel from an image of these dimensions produced
SVM that can still maintain its high generalization ability when the watermarked
mnages are attacked under Stirmark.

Samples from watermarked and unwatermarked images are chosen to train and test
SVM. The image Lena as in Figure 6 is used throughout the experiments.

Figure 6. Lena
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Lena image is pre-processed by incrementing the amplitude of the image
pixels up to as much as 220. The watermarked images are denoted as 7;*» and the
unwatermarked images are denoted as I, where i represents the increment value of
the image pixels. The diagrammatic view of the training scheme is shown in Figure
7where {I/"UI7,i=123,..n} represents all adjacent training dataset from
i=1 to i=n are fed into the training. Few examples of I,»m are arbitrarily selected
and shown in Figure 8.

UrmurIc,i=123,..n

Reaining Testing

Y
| Trained SVM

Figure 7. Diagrammatic view of training scheme

Figure 8. Resultant Images from Pixel Increments. (a) +1, (b) +10, (c) +20, (d) +50, (e) +100,
and (f) +150




Perceiving Digital Watermark Detection as Image Classification Problem 13

This experiment takes all the watermarked and unwatermarked images to train
the SVM. There are 220 watermarked images and 220 unwatermarked images being
fed into the training. The same training images are tested on the trained networks.
This yields zero error from the training sets.

The trained SVM is tested on the training images. Then, the trained SVM is
cross-tested with separate set of images besides the ones used in training. As
depicted in Table 1. The results are measured in terms of false positive and false
negative probability.

Table 1. Resuits of network testing

Training Testing False False
Images Images positive negative
Lena Lena 0 0
Baboon 0 0
Peppers 0 0

The outputs of the SVM trained with Lena when is tested with Baboon and
Peppers are shown in Figure 9 and Figure 10. All the outputs fall under 0 that
indicate negative classification. In other words, SVM trained with Lena will not be
able to recognise Baboon and Peppers regardless of whether they are watermarked
or unwatermarked.

0.00E+00 . . . . 0.00E400 . ' . '
-1.00E+19 S0 100 150 200 ZLO 2.00E+19 o 50 100 150 Mo
% -2.00E+19 \ 3 -4.00E+19
=
© -6.00E+19
3.00E+19
=
> > -8.00E+19
% “4.00E+19 trd
\ 1.00E+20
5.00E+19 S
-1.20E+20
5.00E+19 i
i
—— Baboon Watermarked —— Peppers Watermarked
------- Baboon Unwatermarked --+--- Peppers unwatermarked

Figure 10. SVM trained with Lena and
tested with Peppers

Figure 9. SVM trained with Lena and tested
with Baboon

Subsequent experiment trained SVM using three training image sets. Then, the
trained SVM is tested with all three image sets. Its result is shown in Table 2.
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Table 2 Results of detection rate of network trained using three image sets

Training Images Testing Images False positive False negative

Lena, baboon, Peppers Lena 0 0
Baboon 0 0
Peppers 0 0

This training scheme aims to determine the baseline performance of SVM on
detecting watermarked and unwatermarked training images. Independently, SVM
trained with separate set of training images has zero false positive and false negative.
SVM trained with all the three training sets again detect all the training images
without false alarm. This training scheme has verified the expected baseline results.

6. TRAINING PARAMETERS

Fu et al. (2004) used the blue component of colour image to train the SVM using
linear, polynomial and RBF kernels. The training scheme is represented in Figure 11.

L

0go

Reference Final
kl > mark ——>| watermark
%) »,
Original
image »| Embedding
‘Watermarked image

l

Data
extraction

3.

SVM train

Reference

Y

mark

—>»{ Watermark
extraction

,l 41‘

O

Logo

Figure 11. Diagrammatic representation of Fu et al. (2004)’s watermarking scheme
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The training dataset comprises of two features

i)  at pixel p~(ij) selected randomly by key k,, the difference between the
intensity of the blue component value of the central p1xe1 and that of the others
within the slide window with size c, d,;, where d, - B, - B,
where 5 =(E B,+,+E Bijer 2B, )/(45)

ii)  reference mark at pixel (i), 1,. This reference mark is embedded based on key
kI -

One of the row of the training feature vector, d;; is defined as D={d;;., d;;.;,
d;j dijip dijus digj Ay dij divyj diysyh. Thus the trauung dataset can be defmed
as {D,,r,}t—l,....

Fu et al. (2004) tested their algorithm on RGB images with various content
complexities including Lena, Peppers, and Baboon. The experimental results shown in
their paper is based on the RGB Lena. The signature used in the experiments is a binary
logo image with size 32 x 25 i.e. “CHN™. This signature is reshaped into line ordered
watermark sequence S by row major fashion and modulated into PN sequence.

One of the important parameters used in the experiments is the SVM kernels
including linear, polynomial and RBE The best suitable one is necessary to produce
the lowest Bit Error Rate (BER). From Fu et al. (2004)’s experiments on these three
kernels, the RBF is the best, defeating linear and polynomial. The kernel parameter
o of the RBF kernel from 1 to 40 are tested and the best BERs are obtained from 5
to 10.

Series of experiments show the effects of the setting different values for the
exponent, e, of Polynomial kernel and the gamma, o of RBF kernel. The summarized
parameters setting and its corresponding ROC curves are shown in Table 3.

Figure 12a-k show the ROC graphs of 4 sets of testing images i.e. Set 1-
Stirmark attacked watermarked Lena, Set 2-Stirmark attacked unwatermarked Lena,
Set 3-Stirmark attacked pixel-incremented watermarked Lena, and Set 4 - Stirmark
attacked pixel-incremented unwatermarked Lena. The training dataset are 50 pixel-
incremented watermarked Lena and 50 pixel-incremented unwatermarked Lena for
all the settings.

The ROC curves resulted from testing image set 1 and 2 are depicted in solid
line while the ROC curves resulted from testing image set 3 and 4 are shown in
dotted line. The unclassified result means that the trained SVM yields zero during
testing. Zero means the SVM failed to classify the dataset to neither positive nor
negative class.
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Table 3. Parameters Setting and ROC Curves

Kernel Parameters ROC Curves
Linear Nil Figure 12a
Polynomial e=1 Figure 12b
e= Figure 12¢
=3 Unclassified
c=1 Figure 12d
C = Figure 12¢
o= Figure 12f
RBF o =10 Figure 12g
o =15 Figure 12h
o =20 Figure 12i
o =25 Figure 12j
o =30 Figure 12k
SVM detector output for Linear kernel SVM output for P Kkernel
i el g o
£l A
2%, OF 20% 40% 60% 80% 100% 12p% 29% 0% 20% 0%  60% 80%  100% 120%
Falxe Positive Faise Posttive
[T s [ sman s

Figure 12a Figure 12b
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SVM detector output for Polynom al kernel SVM detector output for RBF kernel
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Figure 12d Figure 12g
SVM detector output for RBF kernel SVM detector output for RBF kernel
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SVM detector output for RBF kernel SVM detector output for RBF kernel

o e N o e, N\

£l S £ om S

£l [ £ - i

Fla P F ol P

o P ] o P

-Z(HW % 20% 40% 0% 80% 100%  120% -20% WUIG 20% 40% 0% 80% 100%  120%
False Positive False Positive
[ Set1and2 —--—-Set3and 4 [——set1and2 —--—-set3and4
Figure 12i Figure 12j
SVM detactor output for RBF kernel From Figures 12a-k, it is obvious
. that the parameter settings for linear,
. polynomial, and RBF kernel do not
R meemmeeme - A show acceptable ROC curves except
E. so /} Figures 12a-c. With Polynomial Kernel
z “: I,’ ] and exponent e=2, the optimal detection
=~ i accuracy is achieved with the lowest
o o 2% % e e 10w % | false positive and false negative
False Positive probabilities are achieved from ROC
[——setrandz—--—-setsands curves as in Figure 12c. This
Figure 12k observation contradicts Fu et al. (2004)s
result that shows optimal detection from
RBF kernel.

7. PERFORMANCE OF CORRELATION AND SVM DETECTOR

Both correlation and SVM detectors are further tested on the images after Stirmark
attack (Kutter and Petitcolas 1999). The series of Stirmark attack are launched on
both original images and watermarked images to determine the ROC of correlation
and SVM detectors.

The types of Stirmark attacks launched on the images are Affine
transformation, Convolution filter, JPEG compression, Latest Small Random
Distortion, Median cut, Noise addition, strength of fake watermark, Self
Similarities, Lines removal, rescaling, rotation, rotation and cropping, rotation and
scaling, Small Random Distortion. In general, Stirmark generates 106 attacked
versions of a vulnerable image after the attacking process. This range of Stirmark
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attacks is far more extended compared to Fu et al. (2004) and its impact on the
detectors is studied based on the false alarm probability produced by the detectors.

Cox et al. (1997)s spread spectrum is used in all experiments due to its
implementation simplicity. When inserting the watermark, WM, into the image, I, to
obtain /™, a scaling parameter ¢ which determines the extent to which WM alters I
is set, so that I»m = [(1+aWM). The scaling parameter o is set consistent at 0.1 in
this paper. A 1000-bit watermark, WM, is generated randomly based on Gaussian
distribution. Then, the watermarked images are attacked. The existence of the
embedded watermark is determined using Cox’s correlation detector and SVM
classifier.

From the Stirmark attacked images, the detection results of Cox’s spread
spectrum are plotted as Frequency Distribution of correlation coefficients as in
Figure 13, False Positive vs False Negative graph is shown in Figure 14 and its ROC
is shown in Figure 15. The same watermarked and non-watermarked images are
used to train SVM. The detection results from the Stirmark attacked images
expressed in frequency distribution, false positive vs false negative, and ROC are
depicted in Figure 16-18 respectively.
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[ Wamermarked- -+ - - ' 4 Figure 16. Frequency distribution of SVM
o detector
Figure 13. Frequency distribution of
Cox’s detector
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Figure 14. False positive vs false Figure 17. False positive vs false negative
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Figure 15. ROC of Cox’s detector Figure 18. ROC of SVM detector

8. COMPARISON OF ROC

The relative performance of Cox’s correlation detector and SVM classifier can be
clearly assessed by comparing their ROC graphs from Figure 15 and Figure 18. ROC
shows the tradeoff of the false positive probability and false negative probability of
the detector. In all watermarking detection system, higher false positive can be
achieved with lower false negative, and vice versa. The performance of the
watermarking system can only be interpreted by considering both false positive and
false negative probabilities. The ROC graphs of Cox’s correlation and SVM
detectors are compared as in Figure 19.

Diagonal of the graph shows the smallest false positive and false negative
probability that one watermarking system could possibly achieve simultaneously.
The relative performance of both detectors can be compared based on the points x
and y that falls on the diagonal of the graphs. Point x shows 18% false positive and
negative probability for SVM while point y approximates 35% as lowest false
positive and false negative probability for correlation detector. Obviously, SVM
detector outperformed the correlation detector.
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Figure 19. ROC curves of Cox and SVM detectors

FROAD AP HE NS © <

Bt

¥ O

Fu

Lir



Perceiving Digital Watermark Detection as Image Classification Problem 21

9. CONCLUSION

With preprocessing of the training set and extensive experiments on the various
settings of SVM parameters, we found the optimal setting of SVM used for blind
watermark detection. This setting is however very different from Fu et al. (2004)s
RBF kernel setting. The optimal setting lies on the Polynomial kernel with exponent
d=2. Perceiving watermark detection as image classification poses challenges of
maintaining two important features of watermark detector that are robust to attack
and blind detection ability. This perception led to the analysis of various watermark
detectors in term of their hyperplanes. From the findings of this paper, SVM detector
has higher robustness as it survives Stirmark attacks better than the correlation
detector according to the ROC curves. SVM detector eliminates the use of the
original work during detection as this shows its blind detection ability. The SVM
detector clearly outperformed the correlation detector in the Cox’s spread spectrum
watermarking system used in this paper.
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