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Abstract - Small and medium enterprises face the challenge of obtaining start-up fund due to the strict rules 
and conditions set by banks and financial institutions. The plight yields to the growth in popularity of online 
peer-to-peer lending platforms which are an easier way to obtain loan as they have fewer rigid rules. 
However, high flexibility of loan funding in peer-to-peer lending comes with high default probability of loan 
funded to high-risk start-ups. An efficient model for evaluating credit risk of borrowers in peer-to-peer lending 
platforms is important to encourage investors to fund loans and justify the rejection of unsuccessful 
applications to satisfy financial regulators and increase transparency. This paper presents a supervised 
machine learning model with logistic regression to address this issue and predicts the probability of default 
of a loan funded to borrowers through peer-to-peer lending platforms. In addition, factors that affect the credit 
levels of borrowers are identified and discussed. The research shows that the most important features that 
affect probability of default are debt-to-income ratio, number of mortgage account, and Fair, Isaac and 
Company Score. 

Keywords: Credit Risk Evaluation, Peer-to-Peer Lending, Logistic Regression; Explainable Machine 
Learning; Explainable AI. 

1 Introduction 
Peer-To-Peer (P2P) lending platforms are online services provided by financial institutions as an intermediary to 
initiate loans for private individuals (Bachmann et al., 2011). Loans for borrowers are funded by multiple 
investors, bound with agreed-upon terms and conditions, with profits generated from the interest made on the 
loans as the borrowers are given a certain duration to pay back the loan and interest. The higher the investment 
risk, the higher is the interest rate. Due to a reduction in loans to small businesses from banks, P2P lending has 
gained popularity for personal, small business start-ups and SMEs loans as these tend to have high failing rate to 
pay back their loans and with low credit scores. Indeed, P2P lending allows individuals and businesses to loan 
money directly from investors or lenders without going through the strict requirements and criteria of traditional 
banks and financial institutions. Although these platforms provide several instruments to assess and limit credit 
risks, they do not guarantee the repayment of loans (Meyer, 2007). 

The most common credit score for risks assessment is the “Fair, Isaac and Company” (FICO) score. The FICO 
score is not suitable for P2P lending since these platforms are meant for relatively high-risk start-ups, and for 
those that failed to secure loans from banks due to their low credit scores. Small and medium-sized enterprises 
(SMEs) which are categorized as high-risk client by financial institution play an important role in many 
economies, and to encourage their growth, a reliable and accurate clients’ credit risk evaluation is critical to build 
confidence among investors so that more funds are available on P2P lending platforms. This paper presents a 
supervised machine learning model that predicts the probability of default by considering more information related 
to the clients rather than just evaluating their credit score using FICO. The focus will be on solving the credit 
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evaluation problem for P2P lending marketplace and determine important features that contribute to the 
probability of default. 

2 Literature Review 
P2P lending has become an alternative to obtain loans from traditional financial institutions. Most of the middle-
income population lost their creditworthiness as borrowers to obtain loans from traditional financial institutions 
after the financial crisis in 2008, causing P2P lending became the choice for getting a loan for many individuals 
(Namvar, 2013). According to Emekter et al. (2014), the lack of a physical contact between lenders and borrowers 
in an online P2P lending process has posed the problem of information asymmetry between lenders and borrowers. 
Hence, having an efficient and accurate credit risk evaluation method to decrease the investment risk without 
human intervention is critical to sustain the steady development of the P2P lending industry. 

Setiawan et al. (2019) developed a P2P lending default loan classification model using data acquired from the 
Lending Club through the application of Extremely Randomised Tree (ERT) and RF methods and optimised their 
performance with Binary Particle Swarm Optimisation (BPSO) and SVM during the feature selection. BPSO is 
the binary version for particle swarm optimisation (PSO), a branch of swarm intelligence, that iteratively optimises 
the candidate solution by guiding it towards best known position and thus finally reaching to the best solution. 
The evaluation of the models revealed that the average performance of ERT can outperform RF. 

Emekter et al. (2014) carried out a binary Logistic Regression model for classifying default and non-default loans. 
The forward stepwise iterative maximum likelihood method was implemented to determine variables that have 
strong influence on the model and was analysed by backward stepwise of iterative maximum likelihood method. 
Research stated that higher credit grade is associated with lower default risk. The researchers further evaluated 
the selection bias by taking two different population samples, one contains data of the United States national 
consumers, and another contains data of Lending Club consumers. Insignificant difference of default probability 
for two sample indicates the consideration of data beyond the Lending Club platform is unnecessary.   

High-dimensionality and imbalance class of dataset from P2P lending platform is always the challenge for making 
accurate prediction of default probability. In research conducted by Zhou et al. (2019), gradient boosting decision 
trees (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM) were 
integrated with heterogeneous ensemble learning technology to address the issue. The ensemble model of GBDT, 
XGBoost and LightGBM outperformed individual classifiers of their own, proving the ability of ensemble 
learning model to optimize prediction from a high dimension and imbalance dataset.  

Dong et al. (2010) applied the logistic regression model with random coefficients (LRR) to develop credit 
scorecard. A dataset with 1000 samples was divided into 10 subsets with 9 of the subsets used as training sets 
while the remaining subset as the testing set. The random coefficients for 900 samples are generated using Gibbs 
sampling within the Bayesian inference starting with estimated coefficient of logistic regression with fixed 
coefficients (LRF). They performed empirical experiment to evaluate the prediction accuracy of LRF and LRR 
with Percent Correctly Classified (PCC) method. The LRR has the overall accuracy of 74% which outperform 
LRF with only 71% of overall accuracy. Dong et al. argue that the logistic regression is an optimal solution for 
credit scoring model for financial industry in term of result interpretability.  

Wang et al. (2015) had implemented lasso-logistic regression ensemble (LLRE) learning algorithm to predict 
default probability based on a large imbalanced dataset. Researchers clustered the majority data into sub-groups 
based on variables similarity and applied bagging method to minority data. Weighted average was computed for 
aggregation of the ensemble model. Wang et. al. created the generated variables from the original variables by 
partitioning them into specific intervals. The generated variables successfully reduced noise and non-linearity, 
thus improving the performance of the Lasso-logistic regression model. LLRE outperforms all the compared 
models (LLR, RF and the Classification and Regression Tree (CART)) in modelling imbalanced large dataset 
with significantly higher average AUC value.  

Coenen et al. (2021) evaluates performance of machine learning methods from different families, namely the 
generalized linear models, support vector machines and gradient-boosted trees, under the context of spot factoring. 
They estimated the risk for spot factoring in terms of payment overdue using the machine learning methods 
mentioned earlier to achieve three tasks namely: binary classification of probability of default, prediction of days 
of overdue, and risk ranking with pre-defined labels. They found that the regression method shows higher 
consistency in getting high scores among all the method families in all the evaluation tasks. 
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The interpretability of the model is the major concern for financial institution since they are asked to provide 
evidence and reason for rejecting loan applications. Due to the regulation and transparency with regards to loan 
applications, “black-box” machine learning models (e.g., deep learning, tree-based model, and SVM) may not be 
a suitable approach for predicting the credit risk of borrowers. However, the logistic regression model provides 
good transparency on the relationship between predictors and the process of decision making. It is easier for the 
financial institution to interpret contributing factors to the default probability. An extension from default 
probability prediction, the dynamic behavioural scoring model, which predicts when the borrowers are likely to 
default (Wang et al., 2018), an advantage over classifications into default and non-default loans only. The logistic 
regression model is capable to provide probability outcomes to indicate the degree of influence from the variables 
on the loan default probability. Table 1 shows the summary of papers reviewed in this paper. 

Table 1: Literature review summary. 

Authors Machine Learning Model Summary 
Setiawan et al.  
(2019) 

Extremely Randomised Tree 
(ERT) and Random Forest (RF) 

The evaluation of the models using Lending Club 
data revealed that the average performance of ERT 
can outperform RF. 

Emekter et al. 
(2014) 

Binary Logistic Regression Selection bias evaluation with data of the United 
States national loan consumers, and data of Lending 
Club consumers shows insignificant difference of 
default probability. Consideration of data beyond the 
Lending Club platform is unnecessary. 

Zhou et al. 
(2019) 

Gradient Boosting Decision Trees 
(GBDT) with heterogeneous 
ensemble learning technology 

Ensemble learning model optimized prediction from 
a high dimension and imbalance P2P lending 
platform dataset. 

Dong et al. 
(2010) 

Logistic Regression with Random 
Coefficients (LRR) and Fixed 
Coefficients (LRF) 

The LRR outperformed LRF with higher overall 
accuracy. Logistic regression is an optimal solution 
for credit scoring model for financial industry in term 
of result interpretability.  

Wang et  al. 
(2015) 

Lasso-logistic Regression 
Ensemble Learning algorithm 
(LLRE) 

LLRE outperforms all the compared models of other 
families to predict default probability from 
imbalanced large dataset. 

Coenen et al. 
(2021) 

Generalized Linear Models, 
Support Vector Machines and 
Gradient-boosted Trees 

Regression method shows higher consistency in 
getting high scores among all the method families in 
all the evaluation tasks. 

3 Methodology 

3.1 Model Formulation 

Evident from our literature review, the logistic regression method is used of which the model equates the logit 
transform, the log-odds of the probability of a success, to the linear component as formulated in equation 1. 

!"( !
!"#) = &$ + &#(# + &%(% + &&(&+. . . +&'(', (1) 

where p is the probability of loan to default and thus, 1-p is the probability of non-default loan occurred. The 
hypothesis function, is defined as: ℎ((() = +(, = 1 (⁄ ; &), representing the predicted probability of loan, Y, to 
default corresponding to the loan information, x, as the independent variable and parametrised by β. In supervised 
learning, Y represents the label column with the value 1, representing a default loan and 0 indicating a non-default 
loan. Here, β represents the coefficients corresponding to each feature for fitting the model. 

By rearranging equation (1), an expression for p is thus obtained as in equation (2):  

0 = #
#)*!(#$%#&'&%#('(%#)')%...%#+'+)                                            (2) 

Equating ℎ((() and p, then our hypothesis function is simplified to: 

ℎ((() =
1

1 + 1(-( (3) 

where βT is the vector of coefficients corresponding to the independent variables x. The parameters β, of a logistics 



Journal of Computing and Social Informatics (Vol 1 No 2, 2022) 
 

 4 

regression function, were estimated using the maximum likelihood method. Employing the likelihood function: 

2(&; 3|() = ∏ ( +.
#"+.

),. ⋅ (1 − 8-)...
-/# 1 (4) 

where, 

8- = *∑ '+
(.)#+0+1$

#)*∑ '+
(.)#.0+1$

, 

 

 

leading to  L (β; y | x) to be 

9(1,. ∑ 1+
(.)(+0

+1$ ) ⋅ (1 + 1∑ 1+
(.)(+0

+1$ )"..
.

-/#
 

 

. 

Taking the logarithm of the likelihood function, resulting in 

!(&) = ∑ 3-(∑ ('(-)&'4
'/$ ) − "- ⋅ !;<( 1 + 1∑ 1+

(.)(+0
+1$ ).5

-/#                                             (5) 

To determine the critical point of the likelihood function, the partial derivative of the likelihood function with 
respect to each βk, where k=1, 2, 3, …, K, are found and set them equal to zero. To simplify the process of finding 
derivative, the logarithm of likelihood function, !(&) given in equation (5), is used. 

3.2 Data 

The dataset used is provided by the Lending Club, a peer-to-peer lending company from the United States of 
America (USA). Dataset was made available on Kaggle, an online community of data scientists and machine 
learning practitioners, by George (2018). The dataset contains approved loan records starting from year 2007 until 
the year 2018. There is total of 2,260,701 records with 151 columns, each record labelled with corresponding loan 
status which are 'Fully Paid', ‘Current’, 'Charged Off', 'In Grace Period', 'Late (31-120 days)', 'Late (16-30 days)', 
'Default', 'Does not meet the credit policy. Status: Fully Paid' and 'Does not meet the credit policy. Status: Charged 
Off'.  

3.3 Model Design 

Our machine learning process follows the flow depicted in Figure 1. 

 

Figure 1: Machine learning process flow. 

As part of data pre-processing, columns with more than 49% of missing data were removed from the dataset.  Data 
rows with missing value are labelled as default record (minority label) and the missing data is imputed with mean, 
median or mode. In addition, columns which cause data leakage and column of biographical data are also removed. 
Outliers are detected using box plot and are removed from the dataset. Data rows with loan status labelled as 
‘current’ which do not indicate final status of loan are also removed. The labels are grouped into default or non-
default, with the values 1 and 0 respectively. 1, 345, 350 records with 25 columns were the size of the dataset used 
in the experiments. Refer to Table A in appendix section for the description of columns selected. Once the dataset 
was pre-processed then it was split in the ratio of 80% for training and 20% for testing. Stratified sampling was 
implemented to ensure the default and non-default records were distributed evenly. There were 268,599 (19.96%) 
default records and 1,076,751 (80.04%) non-default records. Under-sampling is applied to majority class, the non-
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default class with NearMiss-3 algorithm. M number of closest majority samples for each minority samples are 
kept. Then, majority samples with the largest average distance to k nearest-neighbours (the minority samples) are 
selected. NearMiss-3 ensures each default sample is surrounded with non-default samples and those samples 
which are more distinct are kept for model fitting. In model training, the 10-fold cross validation is implemented 
for finding the best tuned parameters. The 80% of training dataset is partitioned into 10 blocks, and validation is 
iterated for 10 times.  For each iteration, 9 blocks are used as training sets and the remaining block is held out 
from training and used as a test set. Data resampling in each iteration is done by randomly choosing 9 data blocks 
from the original dataset and are combined into a training set for cross validation, while the remaining one block 
is used as testing set.   

For feature selection, a null hypothesis, h null, is used that stated that there is no relationship between the 
independent variables and the dependent variable with 0.05 significance level. A significant level of 0.05 is chosen 
based on the recommendation from Fisher (2022) where it is approximately twice the standard deviations from 
the mean of normal distribution. Coefficients with p-values of more than 0.05 falling within the confidence level 
are eliminate with backward elimination where significant test of the independent variables started with the full 
model. Least significant variable is removed from the model until only the remaining independent variables that 
have significant contribution to the dependent variable are left. This method can show the joint behaviour of all 
variables in a full model, thus avoiding removal of variable which is less significant when it is include 
independently into the model (Chowdhury & Turin, 2020). To avoid overfitting of the model, L2 regularisation 
(also known as Ridge regularisation) was adopted. Ridge is a method which shrinks the weight of less important 
coefficient towards zero without reaching the value zero.  

Models trained using the best features selected is evaluated by plotting the Receiver Operating Characteristics 
(ROC) curve. Recall, precision, and F1-score for default loan (minority class) are used to evaluate the model 
performance and for fine-tuning decision threshold which gives the best model performance. Recall measures the 
fraction of correctly classified positive sample (true positive). Precision measures the fraction of correct 
predictions made among all the positive predictions. However, recall and precision are trade-off whereby the 
increase of recall causes decreases in precision and vice versa. Therefore, F-measure or F1-score is used to 
measure the harmonic mean of precision and recall. Logistic regression model with the highest F1-score will be 
chosen and used in the model finalisation stage. The evaluation of the model is done using unseen data.   

4 Implementation and Testing 
In this section, Pearson correlation is applied to analyse the correlation between numerical features and remove 
features which causes multicollinearity. Outliers for each numerical feature are removed based on the upper and 
lower inner fences of the data distribution. Categorical features are encoded and transformed into dummy 
variables. Missing values in the dataset are imputed with the corresponding median in the testing dataset. Medians 
for imputing the missing values in both training and testing were computed from the training set alone to avoid 
data leakage from the isolated testing set which causes the predictive model to know information of unseen dataset. 
Standardisation is applied to all numerical columns in the dataset using the formula given in equation (6), 

=6 = 7"8
9                             .                                                              (6) 

Rescaling the features using standardisation allows fair comparison of impacts of independent variables on the 
dependent variable based on weight of coefficients.  Table 2 shows the mean and variance for standardising each 
feature. 

Table 2: Mean and variance for feature scaling. 

Features Mean (5 decimal place) Variance (5 decimal place) 
loan_amt 14333.05653 69883770.0 
annual_inc_log 4.81408 0.04229 
dti 18.29155 67.23525 
pub_rec 0.20219 0.25033 
revol_bal_log 4.04207 0.12949 
revol_util 54.71481 518.36330 
mo_sin_old_il_acct 123.36687 1750.75500 
mo_sin_old_rev_tl_op 167.76806 5898.07600 
mort_acc 1.52570 3.037950 
num_rev_accts 13.84327 44.18611 
FICO_mean 694.16450 676.26580 
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The full dataset of 1,060,604 records and 47 columns (with dummy variables created from categorical variables) 
was split in stratified fashion with respect to the label column (dependent variable) where 80% was taken as the 
training dataset and the 20% was the testing dataset. Stratify splitting ensures both training and testing set have 
the same ratio of default and non-default records. The distribution of records grouped with loan status is shown 
in Table 3. Table 4 shows the distribution of under-sampled records using NearMiss-3. 

Table 3: Number of records in training and testing dataset grouped with loan status. 

Datasets Training Testing 
Non-default 679,397 169,850 
Default 169,086 42,271 

Table 4: Number of records in training and testing dataset grouped with loan status. 

Datasets Training Testing 
Non-default 169,086 169,850 
Default 169,086 42,271 

 
Receiver-Operator-Characteristic (ROC) area-under-the-curve (AUC) was used as test score in the cross-
validation. Table 5 and Table 6 show the performance of the models fitted to imbalanced and under-sampled 
balance dataset in 10-fold cross validation. 

Table 5: Logistic regression model 10-fold cross-validation performance with Ridge regularisation of 
10-5 ≤ λ ≤ 10-2

  
 

Magnitude of Penalty Term Mean Model Fitting Time 
(s) 

Mean ROC 
AUC 

Performance Ranking 

0.00001 13.4482 0.6974 13 
0.0000177828 7.9149 0.7002 10 
0.0000316228 6.5548 0.7009 9 
0.0000562341 7.0857 0.7043 6 
0.0001 6.7144 0.7051 4 
0.000177828 6.7424 0.7057 2 
0.000316228 6.2994 0.7058 1 
0.000562341 6.3834 0.7054 3 
0.001 6.2227 0.7045 5 
0.00177828 6.2059 0.7031 7 
0.00316228 5.9686 0.7014 8 
0.00562341 5.7796 0.6997 11 
0.01 4.7390 0.6980 12 

 
In Table 5, logistic regression model with λ=0.000316228 (actual value is 0.00031622776601683794) has the 
best ROC AUC score of 0.7058.  

Table 6: Logistic regression model 10-fold cross-validation performance with Ridge regularisation of 10-5 ≤ λ ≤ 
10-2

 
using NearMiss-3 under sampled training dataset. 

Magnitude of Penalty 
Term Mean Model Fitting Time (s) Mean ROC AUC Performance 

Ranking 
0.00001 6.3202 0.6719 11 
0.0000177828 5.0328 0.6704 13 
0.0000316228 4.0227 0.6715 12 
0.0000562341 3.5477 0.6747 9 
0.0001 3.2301 0.6733 10 
0.000177828 2.9689 0.6747 8 
0.000316228 2.7428 0.6771 6 
0.000562341 2.4805 0.6761 7 
0.001 2.3890 0.6779 3 
0.00177828 2.4373 0.6781 1 
0.00316228 2.5117 0.6779 2 
0.00562341 2.3430 0.6777 4 
0.01 2.1376 0.6774 5 
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In Table 6, logistic regression model with λ=0.00177828 (actual value is 0.0017782794100389228) has the best 
ROC AUC score of 0.6781. L2 logistic regression model with the best performance penalty term, λ, is fitted to 
complete imbalanced and balanced training sets. Logistic regression model is fitted to imbalanced training dataset 
with λ=0.00031622776601683794 and is fitted to under-sampled training data with λ=0.0017782794100389228.  

 

Figure 3: ROC AUC plot for logistic regression classifier of imbalanced dataset with threshold labels. 

 

Figure 4: ROC AUC plot for logistic regression classifier of under-sampled dataset with threshold labels. 

ROC curve shown in Figure 3 indicates that the threshold of 0.2 give reasonable classification result with high 
TPR but relatively low FPR for the model trained with imbalanced dataset. Figure 4 shows that threshold of 0.5 
is the best threshold for model fitted to balanced dataset. To further evaluate the choice of suitable decision 
threshold, precision, recall and F1-score for default loan classification at each threshold was computed. F1-score 
is used to find the harmonic mean of recall and precision. F1-score ranges from 0.0 to 1.0 where 1.0 for perfect 
recall and precision. Figure 5 and Figure 6 show the changes of precision and recall against decision thresholds 
for model fitted to imbalanced and balanced dataset. 

 

Figure 5: Default class’s precision-recall curves of model trained with imbalanced data.   

 

Figure 6: Precision-recall curves of model trained with under-sampled balance data. 

High recall can trade off precision, therefore F1-score is used to seek balance between recall and precision. Thus, 
threshold which gives the highest F1-score is preferred. 
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Table 7: Default class’s precision, recall, and F1-score of model trained with imbalanced data. 

Threshold Precision Recall F1-score 
0.0 0.19928 1.00000 0.33233 
0.1 0.24036 0.91649 0.38084 
0.2 0.32084 0.62653 0.42437 
0.3 0.40435 0.35242 0.37660 
0.4 0.48275 0.16349 0.24426 
0.5 0.57200 0.04369 0.08119 
0.6 0.68000 0.00282 0.00561 
0.7 1.00000 0.000047 0.000095 

 
Result in Table 7 shows that logistic regression model fitted to imbalanced dataset gives the highest F1-score of 
0.42437 with precision of 0.32084 and recall of 0.62653 at threshold of 0.2. 

Table 8: Default class’s precision, recall, and F1-score of model trained with under-sampled balance data. 

Threshold Precision Recall F1-score 
0.0 0.19928 1.00000 0.33233 
0.1 0.19960 0.99924 0.33274 
0.2 0.20360 0.98306 0.33734 
0.3 0.21480 0.92560 0.34868 
0.4 0.23251 0.80736 0.36104 
0.5 0.25702 0.62698 0.36458 
0.6 0.29215 0.40586 0.33974 
0.7 0.34672 0.17506 0.23265 
0.8 0.45281 0.02418 0.04590 

 
From Table 8, logistic regression model fitted to balanced dataset gives the highest default class’s F1-score of 
0.36458. The respective default class’s precision is 0.25702 and 0.62698 for recall at threshold of 0.5. 

5 Results and Discussion 
Area under the Receiver-Operator-Characteristic (ROC) curve measures the ability of the classification model to 
distinguish between two classes. The larger the area under the curve (AUC), the better the proposed model to 
distinguish between the classes. The baseline of ROC curve is a straight diagonal line with AUC = 0.5, indicating 
a random classifier which makes a random guess on the distinction between the two classes. 

 

Figure 7: ROC AUC plot of model trained with imbalanced dataset. 
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Figure 8: ROC AUC plot of model trained with under-sampled balance dataset. 

Figure 7 depicts the model fitted to imbalanced dataset giving ROC AUC value of 0.706 whereas Figure 8 shows 
the model fitted to balanced dataset giving the value of ROC AUC to be 0.624. The difference in the ROC AUC 
values indicates that the model fitted to imbalanced dataset has better capability to differentiate between the 
default and non-default classes than the model fitted to balanced dataset. However, ROC AUC measures the 
overall classification performance of the model without considering the effect of majority class which cause the 
algorithm to be bias towards the non-default class. Due to the large skewed class distribution, ROC may give 
over-promising evaluation on an algorithm performance (Davis & Goadrich, 2006). 

Precision-recall curve (PRC) is a better alternative of ROC for evaluating the performance of binary classifier on 
an imbalanced dataset. Unlike fixed baseline of ROC, baseline of PRC changes with the ratio of positive (P) and 
negative (N) class in the dataset. PRC baseline is defined as y = P/ (P+N) and AUC of no-skill classifier is identical 
to y position of PRC baseline (Saito & Rehmsmeier, 2015). 

 

Figure 9: Precision-recall curve of model fitted to imbalanced dataset. 

 

Figure 10: Precision-recall curve of model fitted to balanced dataset. 

Based on the results shown in Figure 9 and Figure 10, AUC of no-skill classifier is found to be 0.2. Both models 
have AUC larger than the no-skill classifier which indicates they are not random classifier. Model fitted to the 
imbalanced dataset has larger AUC of 0.372 than model fitted to balanced dataset with AUC of 0.290. Therefore, 
the model fitted to an imbalanced dataset outperforms the model fitted to balanced dataset in distinguishing 
between two classes. 

A total of 212,121 samples of the Lending Club loan records from isolated testing dataset were used to make 
predictions using two logistic regression models where one model is fitted to imbalanced dataset and the other 
one fitted to balanced dataset. The testing set contains 169,850 non-default samples and 42,271 default samples. 
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Figure 11: Comparison of default class’s precision, recall, and F1-score of logistic regression models 
trained on imbalanced and under-sampled balance training dataset. 

Based on the histogram shown in Figure 11, recalls of both models do not have significant difference where 
0.626529 was found for imbalanced dataset and 0.626978 for balanced dataset. However, the model trained with 
imbalanced dataset has both higher F1-score and precision than model trained with balanced dataset. The result 
shows that NearMiss-3 under-sampling method does not improve the model performance on classifying default 
and non-default loan. NearMiss-3 ensures positive and negative samples with significant difference are selected 
while allowing positive samples to be surrounded by some majority samples. In exchange of keeping positive 
samples surrounded by negative samples, overlapping of both classes occurs causing a decrement for positive 
class precision. Precision evaluates fraction of exactly positive samples which are correctly classified as positive. 
Although high recall allows classification model to become more sensitive to positive class, high precision is 
important for avoiding misclassification of non-default loan and good clients. Hence, in comparison of the two 
models, it is found that the model trained with imbalanced dataset has better performance evident from the higher 
precision obtained and the evaluation of the F1-score. In feature selection, the logistic regression model fitted to 
the imbalanced dataset is employed. The model has 47 independent variables with a constant variable, which is 
the model intercept. Hypothesis testing with p-value computed from t-test is implemented to select statistically 
significant features. Defining a null hypothesis, H0, of which the feature is insignificant to the default probability 
of client, tested with p-values of the feature at significance level, α of 0.05. Backward elimination was 
implemented for feature selection where the most insignificant feature is removed, and model is retrained with 
the remaining features before the next significance test is carried out. The steps are repeated until no insignificant 
features are left. 

 

Figure 12: Changes of Recall, Precision, and F1-score in Backward Elimination. 

Figure 12 shows positive class’ recall increased from 0.62653 to 0.63235 after the elimination of insignificant 
categorical features. However, the precision decreases from 0.32084 to 0.31720 and the F1-score decreases from 
0.42437 to 0.42248. Based on the three evaluation criteria, it was found that none have shown significant changes, 
and thus, further support the hypothesis test for which employment length, loan purpose and home ownership are 
insignificant to the probability of client to default in loan. The elimination of insignificant categorical features has 
revealed that revolving account utilisation rate, “revol_util”, is insignificant with p-value of 0.866 which is larger 
than 0.05 significance level. Elimination of revolving account utilisation rate from the model causes the recall to 
drop from 0.63235 to 0.63221. There is also insignificant drop for precision and F1-score which changes from 
0.31720 to 0.31718 and 0.42248 to 0.42242 respectively. Upon the implementation of the feature selection with 
backward elimination, 19 features were selected. 

In model finalisation phase, all data samples available are used for model fitting including those from testing set 
which is isolated from model fitting previously. A list of new coefficients correspond to each feature is obtained. 
Table 9 shows the coefficients obtained by fitting the logistic regression model to the full dataset. 
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Table 9: Coefficients of logistic regression model fitted to complete dataset of Lending Club loan record from 
year 2007 until the fourth quarter of year 2018. 

 
The discourse on features is separated into two parts which are discussion on continuous numerical features and 
the other on categorical features represented in dummy variables. All continuous numerical features are 
standardised to obtain standardised regression coefficients which allow comparison of absolute values to 
determine their relative importance in the logistic regression model. According to the absolute value of 
standardised coefficients, the top three most important numerical features are found to be debt to income ratio, 
total number of mortgage account and FICO score. 

Debt-to-income ratio (DTI) with coefficient of 0.1942 has positive relation with the dependent variable which 
indicates that the higher the DTI, the higher the chance of borrower to default on loan. DTI is the ratio calculated 
by dividing monthly debt obligation with monthly gross income. Therefore, DTI reflects the ability of borrower 
to secure a loan whereby high DTI indicates the borrower is less likely to afford extra debt with the current income. 
Standardised coefficient of the total number of mortgage account is -0.1919 which defines borrower with more 
mortgages has lower loan default rate. Mortgage is a secured loan with real asset as collateral, and the evaluation 
on the ability of applicant to afford the real asset is used for mortgage application from financial institution, as it 
is suspected that borrower with several mortgage indicates that their credit records are good enough to fulfil the 
requirements of getting the mortgage loan. This explains the research outcome that the borrower with more 
mortgage account has lower probability of default (POD) than those with less mortgage record. The third 
important feature for predicting POD is the mean FICO score. Negative coefficient of -0.1782 indicates that 
borrowers with high FICO score tends to pay off the loan. Formula behind FICO credit score is kept secret from 
customers, but there are five key factors for FICO score credit report disclosed by FICO which are payment 
history, account owed, credit history, credit mix, and new credit. According to a study carried out by Avery, 
Brevoort and Canner (2012) on the effect of credit history length on credit score of foreign-born individuals in 
U.S. made, short credit history has caused lower credit score in this population. The result supports the 
consideration of length of credit history in FICO credit report where individual with longer credit history tends to 
have better credit score.  

Next, loan amount has positive coefficient of 0.1592 which indicates that loan of higher amount has greater POD. 
The larger the amount loan offered by the Lending Club, the higher the interest charged which indicates higher 
risk. Credit revolving balance is the next important independent variables for predicting POD with negative 
coefficient of -0.1002. Revolving balance is the carried forward unpaid balance after each payment cycle of a 
credit account. In general, higher debt owed leads to higher POD, but the occurrence of negative coefficient of 
credit revolving balance shows that amount of debt owed does not directly reflect the POD of a borrower. It is 
shown that the amount of outstanding credit balance is positively correlated to income and amount of real asset 
owned by an individual (Kim & Devaney, 2001). High-income population have higher credit limit, hence rising 

Features Coefficients, β Exp(β) 
Intercept -2.3733 0.0932 
Loan amount 0.1592 1.1726 
Log-transformed borrowers’ annual income -0.0730 0.9296 
Debt to income ratio 0.1942 1.2143 
Public derogatory records 0.0160 1.0161 
Log-transformed total credit revolving balance -0.1002 0.9047 
Months since oldest bank instalment account opened -0.0271 0.9733 
Months since oldest revolving account opened -0.0491 0.9521 
Number of mortgage accounts -0.1919 0.8254 
Number of revolving accounts 0.0435 1.0445 
Mean FICO score -0.1782 0.8368 
64 months payment term 0.5531 1.7386 
Credit rating: Grade B 0.3205 1.3778 
Credit rating: Grade C 0.7255 2.0658 
Credit rating: Grade D 0.9880 2.6859 
Credit rating: Grade E 1.1781 3.2482 
Credit rating: Grade F 1.2641 3.5399 
Credit rating: Grade G 1.2147 3.3693 
Income source verified by borrower’s employer 0.1353 1.1449 
Income source verified by Lending Club 0.1041 1.1097 
Joint application -0.0811 0.9221 
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their purchasing power and increase the revolving balance subsequently. With the same reason, it explains the 
finding that an increase in mortgage account implies a decrease in the probability of default, since better financial 
status allow a person to afford more mortgages. In fact, one can have high debt amount but with large available 
credit, whereas an individual who owes less debt may have less credit available or even max out credit card. Due 
to this reason, credit scoring model such as FICO score will consider credit utilisation rate which provide more 
informative debt to credit limit ratio. Number of months since oldest bank instalment account opened and number 
of months since the oldest revolving account was opened, have negative coefficient of -0.0271 and -0.0491 
respectively. These two coefficients are complementing to the fact that individuals with longer credit history have 
better credit. Credit scoring models available in market always consider length of credit account since it is opened 
and used, as well as average age of all account owned by a borrower for credit evaluation since all this information 
reflect the attitude of the individual towards their credit. Among all numerical features, the number of public 
derogatory records is the least important predictor for POD with positive coefficient of 0.0160. Public derogatory 
records include tax liens, public bankruptcy record and any financial obligation which are not paid as agreed.  It 
is reasonable that individual with more public derogatory record tends to have bad credit history resulting in loan 
repayment failure. 

Discussion on categorical features is made by comparing how each dummy variables or category level contribute 
to the probability of default. To measure the contribution of reference category to POD, only one categorical 
variable remained in the model each time. POD of reference category is determined by intercept or constant of 
the model while all numeric predictors remained zero. Since the logistic regression model calculates the log-odds 
of loan default, equation (7) is used for the transformation to POD: 

0 = #
#)*!#'-

                                                                                         (7) 

Table 10: Probability of default for each category in loan payment term. 

Category Coefficients, β Exp(β) Probability of Default 
Intercept (36 months) -1.7533 0.1732 0.1476 
64 months 0.8733 2.3948 0.2932 

 
Payment term (term) feature has two level of categories namely 36 months and 64 months. 36 months payment 
term is the reference category and “term_code_1” indicates 64 months loan payment period. From Table 10, POD 
of 36-months payment period is determined by intercept value. Loan with longer payment period, which is 64 
months, has higher POD of 29.32% than loan with 36 months payment term (POD = 14.76%). The major loan 
purpose in Lending Club is debt consolidation, which is a type of loan of combining 2 and more loans into single 
mortgage. Delinquency of mortgage loan is closely related to income volatility even for high-income profile 
(Diaz-Serrano, 2005). Since income volatility may increase over time, thus extending the loan payment period 
can subsequently increase the risk of loan. 

Table 11: Probability of default for each category in credit grade. 

Category Coefficients, β Exp(β) Probability of Default 
Intercept -2.2680 0.1035 0.0938 
Grade B 0.3743 1.4540 0.1308 
Grade C 0.8880 2.4302 0.2010 
Grade D 1.2103 3.3545 0.2577 
Grade E 1.5213 4.5782 0.3215 
Grade F 1.6699 5.3116 0.3548 
Grade G 1.5878 4.8930 0.3362 

 
According to Table 11, the reference category, Grade A has the lowest POD of 9.38% and the POD are 13.08%, 
20.1%, 25.77%, 32.15%, 35.48%, and 33.62% for grade B, C, D, E, F, and G respectively. Although Grade F is 
having the higher POD than the worst credit rating of Grade G, but the risk of default increase as the risk goes 
higher. It is reasonable to conjecture that Lending Club rating system is reliable reference for other financial 
institution while evaluating borrower’s credit. 
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Table 12: Probability of default for each category in income source verification status. 

Category Coefficients, β Exp(β) Probability of Default 
Intercept -1.6672 0.1888 0.1588 
Source Verified, income source verified by 
borrower’s employer 

0.2205 1.2467 0.1905 

Verified, income source verified by Lending Club 0.2542 1.2894 0.1958 
 
According to the Table 12, loan without income source verification has the lowest POD of 15.88% while POD of 
loan with “source verified” and “verified” are 19.05% and 19.58% respectively. The label “income source 
verified” defines that Lending Club had contacted the borrower’s employer to verify his or her claim on the 
amount of earning; “income verified” defines the situation when Lending Club verified that the earning amount 
claimed by the borrower is within an acceptable range. According to Lending Club’s company data obtained by 
Bloomberg, only 35.6% of income sources for application of popular loan types are verified in 2016 (Scully, 
2017). As explained by Lending Club, verification of income is not applied to initial application which already 
passed their screening model, and the applicant is considered by Lending Club as lower risk borrower. However, 
Blackburn and Vermilyea (2012) found out that misstated income from borrower is one of the major causes for 
default on mortgage loan. Thus, the low POD of unverified income is inappropriate to explain credit level of 
borrower who does not passed Lending Club screening model. 

Table 13: Probability of default for each category in loan application type. 

Category Coefficients, β Exp(β) Probability of Default 
Intercept -1.4981 0.2236 0.1827 
Joint application -0.1387 0.8705 0.1629 

 
Lending Club allows joint application for single loan. Lending Club considers information from one of the 
applicants or both as factors to decide whether to approve or reject the loan. Both co-borrowers have the obligation 
to pay loan payment once the loan is approved. From Table 13, POD of reference category, individual application 
is 18.27% which is riskier than joint application with POD of 16.29%. Joint application for loan usually offered 
to population with short and incomplete credit history especially to those in undeveloped region, and it is proven 
to outperform individual application in term of repayment performance (Zhou & Wei, 2020).  

The objectives of this research are to create a machine learning model which can predict probability of default 
and classifies the client’s based on their ability to pay the loan. In this research, loan applicant with POD higher 
or equal to 20% is classified as default while POD lower than 20% is classified as non-default class. 

6 Conclusions and Recommendations 

The objectives of this research were to create a less bias solution that not only define client’s credit through FICO 
score, but also a comprehensive evaluation that considers other factors related to the client for predicting 
probability of default (POD) using machine learning model. Logistic regression model fitted to imbalanced dataset 
outperforms model fitted to balanced dataset. Evaluation using area under precision-recall curve validates the 
model built for default loan classification is not a random classifier. Decision threshold value which achieves 
maximum balance between model recall and precision is selected with the highest F1-score.  

Top 3 important features that affect POD are debt-to-income ratio, number of mortgage account, and FICO score. 
High debt-to-income ratio significantly contributes to the rise of POD. Revolving balance feature provides 
evidence to support the fact that the amount of outstanding payment does not reflect credit of an individual. 
However, high buying power due to high credit limit and good financial status can cause more revolving balance 
owed by an individual. This suggests that the utilisation rate of credit account and debt-to-income ratio are better 
evaluation factors for credit risk. The research result shows that FICO score is still an important factor for credit 
evaluation in P2P lending platform. The number of months since oldest bank instalment account opened and the 
number of months since oldest revolving account opened both have negative coefficient, which support the 
consideration of credit history length as effective factor for credit evaluation.  Both mortgage number and credit 
history length explained the low credit score of inexperience borrower with short credit history and the reason 
why financial institutions prefer to allocate more resource to experienced borrowers.  

The result of our model suggests that lenders should take extra precaution while dealing with borrowers who are 
having more public derogatory records and offering higher amount of loan is riskier. Besides, lenders should also 
beware of longer loan term which can increase the risk due to uncertainty causes by borrower’s income volatility. 
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Nevertheless, credit rating model from the Lending Club is proven to have significant contribution on determining 
the risk of borrower in P2P lending platform, where the lower the grade of borrower the riskier he or she is. The 
model suggests that income source claimed by borrowers should be further verified with their employers to avoid 
misstate of income source which can increase the risk. Lack of credit score such as FICO score among SME 
entrepreneurs also posed difficulties while applying for loan. Thus, joint application of loan with better repayment 
performance is suggested as an alternative to offer loan to high-risk borrowers in online P2P lending platform. 

Limitation of machine learning model proposed is that the model is fitted to imbalanced dataset. This causes the 
decision threshold for classifying default loan is set low to 0.2 for achieving highest F1-score. Low threshold 
value leads to higher false positive rate and causes loss of potential excellent borrowers. More appropriate 
resampling method can be applied for creating balanced dataset. As suggested by Yen and Lee (n.d.), different 
clusters in a dataset have their own characteristic where clusters with more majority samples than minority will 
behave like majority class, and a cluster will pose characteristic of minority class if it has more minority class 
samples. Under-sampling method based on clustering can be carried out to select majority class sample which 
may help the machine learning algorithm to better classifying default and non-default loan. Moreover, dataset 
from Lending Club contains loan records range from year 2007 until the fourth quarter of year 2018 which also 
includes records during the 2008 US financial crisis. Thus, it is suggested to select subset of data for model training 
based on economic situation such as economic downturn and economic upswing. 

In conclusion, logistic regression model proposed provides human-interpretable information of how borrower’s 
information and loan type affect the probability of default of loan on online P2P lending platform. Logistic 
regression model ensures the transparency of decision-making for loan approval and rejection which satisfy the 
requirement of Central Bank of Malaysia. it is hoped that the result obtained in this research can help local P2P 
lending platform in Malaysia to improve their credit screening process, hence provide a reliable online financial 
platform for both lenders and SME entrepreneurs. 
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Appendix 
Table A: Description of attributes from Lending Club 2007 to 2018 fourth quarter approved loan dataset. 

Attributes Description Datatype 
annual_inc The self-reported annual income provided by the borrower 

during registration. 
float64 

application_type 
Indicates whether the loan is an individual application or a joint 
application with two co-borrowers 

Object 

dti 

A ratio calculated using the borrower’s total monthly debt 
payments on the total debt obligations, excluding mortgage and 
the requested LC loan, divided by the borrower’s self-reported 
monthly income. 

float64 

emp_length 
Employment length in years. Possible values are between 0 and 
10 where 0 means less than one year and 10 means ten or more 
years. 

float64 

fico_range_high Highest FICO score value. float64 
fico_range_low lowest FICO score value. float64 
grade LC assigned loan grade Object 

home_ownership 
The home ownership status provided by the borrower during 
registration or obtained from the credit report.  

Object 

int_rate Interest Rate on the loan float64 
loan_amnt The listed amount of the loan applied for by the borrower. float64 
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loan_status Current status of the loan Object 
mo_sin_old_il_acct Months since oldest bank instalment account opened float64 
mo_sin_old_rev_tl_op Months since oldest revolving account opened float64 
mort_acc Number of mortgage accounts. float64 
num_bc_tl Number of bankcard accounts float64 
num_rev_accts Number of revolving accounts float64 
open_acc The number of open credit lines in the borrower's credit file. float64 
pub_rec Number of derogatory public records float64 
pub_rec_bankruptcies Number of public record bankruptcies float64 
purpose A category provided by the borrower for the loan request. Object 
revol_util Revolving line utilisation rate, or the amount of credit the 

borrower is using relative to all available revolving credit. 
float64 

tax_liens Number of tax liens float64 
revol_bal Total credit revolving balance float64 
term The number of payments on the loan. Values are in months and 

can be either 36 or 60. 
Object 

verification_status Indicates if income was verified by LC, not verified, or if the 
income source was verified 

Object 
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Abstract - Ransomware attacks constitute major security threats to personal and corporate data and 
information. A successful ransomware attack results in significant security and privacy violations with 
attendant financial losses and reputational damages to owners of computer-based resources. This makes it 
imperative for accurate, timely and reliable detection of ransomware. Several techniques have been proposed 
for ransomware detection and each technique has its strengths and limitations. The aim of this paper is to 
discuss the current trends and future directions in automated ransomware detection. The paper provides a 
background discussion on ransomware as well as historical background and chronology of ransomware 
attacks. It also provides a detailed and critical review of recent approaches to ransomware detection, 
prevention, mitigation and recovery. A major strength of the paper is the presentation of the chronology of 
ransomware attacks from its inception in 1989 to the latest attacks occurring in 2021. Another strength of the 
study is that a large proportion of the studies reviewed were published between 2015 and 2022. This provides 
readers with an up-to-date knowledge of the state-of-the-art in ransomware detection. It also provides insights 
into advances in strategies for preventing, mitigating and recovering from ransomware attacks. Overall, this 
paper presents researchers with open issues and possible research problems in ransomware detection, 
prevention, mitigation and recovery.  

Keywords: machine learning, deep learning, neural network, security, ransomware attack, ransomware 
detection 

 

 Introduction 
Ransomware is malware that hijacks data or systems and prevents legitimate owners of such data or systems from 
accessing them. Ransomware may encrypt data or lock the system using processes, tools and techniques which 
make the locking or encryption difficult for a computer expert to reverse. It may also steal sensitive data from 
victims’ computers and networks. Ransomware targets personal computers, business systems (including their data 
and applications) and industrial control systems.  It also attacks internet of things (IoT) spectrum sensors (Celdrán 
et al., 2022). A ransomware attack uses private key encryption to deny a legitimate user access to his system or 
data until he pays a ransom (money), usually in bitcoin (Richardson & North, 2017). Ransomware attacks may 
also involve data exfiltration, whereby attackers copy sensitive files from compromised devices with a threat to 
revel such files to the public if the owner fails to pay ransom. The malware spreads through email attachments, 
malicious advertisements and by clicking a link to a malicious website. It locates the drives on the victim’s system 
or network and encrypts the files in each drive to deny the legitimate owners’ access to such files (Morhurle & 
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Patil, 2017). The attacker also provides a file, (or files) which contains instructions for paying the ransom. The 
decryption key is made available to the victim once the attacker confirms the payment of the ransom. Files infected 
or encrypted by ransomware usually contain extensions such as .aaa, .micro, .encrypted,  .ttt, .xyz, .zzz, .locky, 
.crypt, .cryptolocker, .vault, or .petya. The extension of each file determines the type of ransomware that infected 
the file. Examples of ransomware are Reveton, CryptoLocker, CryptoLocker.F and TorrentLocker, CryptoWall, 
CryptoTear, Fusob and WannaCry (Andronio et al., 2017). Ransomware can be grouped into (1) crypto 
ransomware, (2) locker ransomware and (3) scareware (Andronio et al., 2017). Figure 1 illustrates the operations 
of policing (locker) ransomware and encrypting (crypto) ransomware (F-Secure Labs, 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Encrypting ransomware vs. police ransomware operation flowchart 
 
Crypto ransomware is the most common ransomware which attacks computer systems and networks. This 
category of ransomware uses symmetric and/or asymmetric cryptographic algorithm to encrypt files and data. 
Crypto ransomware renders encrypted data inaccessible even if the malicious software is removed from an 
infected device or a compromised storage media is inserted into another device. The infected device can still 
function and could be used to pay the ransom because the malware does not usually affect critical system files 
(Savage et al., 2015). Locker ransomware, on the other hand, locks a computer or any other device and prevents 
the owner from using it (Savage et al., 2015). Locker ransomware affects only the device, without rendering stored 
data inaccessible. There is also no alteration to the data after the removal of the malicious software. The data can 
often be recovered by inserting the infected storage device, such as a hard drive, into another system. This makes 
locker ransomware unattractive for extorting money from victims of attack. A scareware exploits its victims by 
displaying a warning on their computer screens that the systems have been infected and with a claim that a fake 
antivirus advertised by the attacker could be used to remove the ransomware (Brewer, 2016). The repeated display 
of the scareware alert prompts many innocent users to purchase and install the bogus antivirus. Other categories 
of ransomware include human-operated ransomware (Microsoft Ignite, 2022) and fileless ransomware 
(Crowdstrike, 2022a). Cyber criminals also use human-operated ransomware to penetrate networks or cloud 
infrastructure, perform privilege escalation and launch attacks against critical data. It is an active attack which 
targets an entire organization instead of a single system. Attackers usually leverage on incorrect security 
configurations to penetrate an entire IT infrastructure, perform lateral movement and exploit vulnerabilities. This 
results in unauthorized access to credentials of privileged users with the ultimate goal of launching ransomware 
attacks against IT infrastructures which support critical business operations. Fileless ransomware, on the other 
hand, uses native and legitimate system tools to launch attacks (Crowdstrike, 2022b). They are difficult to detect 
because the attack does not require the installation of any code on a victim’s system. Hence, anti-ransomware 
tools do not find any suspicious file to track during an attack. Human-operated ransomware and fileless 
ransomware may be used to carry out file encryption, locking or data leak depending on the motive of an attacker.   
 
Ransomware poses serious threats to files and devices used by businesses and individuals. It prevents innocent 
victims from accessing infected files or compromised devices until they pay ransom usually in the form of bitcoin. 
In many cases, hackers do not provide the decryption key even after a victim pays a ransom. At other times, an 
attempt to decrypt files using the key provided by an attacker causes further harm to files stored on the system. 
Technological innovations such as ransomware development kits, ransomware-as-a-service and bitcoins facilitate 
the persistent increase in ransomware attacks against personal computers, networks and mobile devices (Zetter, 
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2015).  Businesses and individuals suffer losses to the tune of hundreds of millions of dollars annually due to 
ransomware attacks (Fitzpatrick et al., 2016). The huge amount of money which hackers make from ransomware 
attacks fuels the frequent development of new versions of the malware. In fact, multiple versions of ransomware 
have emerged each year since 2013. The evolution of different variants of ransomware which cannot be detected 
by conventional antivirus and other intrusion detection systems, as well as the huge losses which ransomware 
attacks inflict on individuals and businesses, highlight the need for innovative, efficient and reliable techniques 
for effective detection, prevention and mitigation of ransomware attacks. 

The paper is novel in the following areas. Firstly, it presents a much more detailed and comprehensive history and 
chronology of ransomware than other related studies. A related work (Vehabovic et al., 2022) presents the history 
of ransomware from 2012 to 2021, while our work covers ransomware’s history from its inception in 1989 to the 
latest attacks in 2021. The other study also presents high-level classification of existing ransomware detection 
methods into four broad categories, with few papers (about forty-seven) reviewed for all the categories, while our 
paper surveyed almost twice this number and provides much more detailed review of each paper. A significant 
number of the papers surveyed were published in 2022, unlike the other study which reviewed only a single 2022 
paper. Secondly, our paper has a broader scope than the work of McIntosh et al. (2021), which focused primarily 
on ransomware mitigation, and Oz et al. (2021), whose focus is only on defence/prevention. Our work covers 
history, detection, defence/prevention, mitigation and recovery. Also, our paper provides an up-to-date review of 
ransomware attacks by surveying several 2022 papers, while almost all the papers reviewed in McIntosh et al. 
(2022), and Oz et al. (2021), were published before 2021. Finally, the focus of Dargahi et al. (2019) is completely 
different from that of our work. The paper presents a taxonomy of crypto-ransomware features using cyber-kill-
chain, while the emphasis of our research is on history, detection, defence/prevention, mitigation and recovery. 
The rest of our paper is divided into the following sections. Section 2 presents the methodology used for the study, 
while Section 3 covers the historical background and chronology of ransomware attacks. Section 4 discusses the 
state-of the-art in ransomware detection, while Section 5 is a review of some methods for preventing, mitigating 
and recovering from ransomware attacks. Section 6 presents suggestions for future research, while Section 7 is 
the conclusion of the study.   

Stages in Ransomware Attack 

Ransomware attack involves a number of phases. Figure 2 illustrates the flow of activities required to carry out 
such an attack.  

 
Figure 2: Phases of ransomware attack 

 
An attacker uses exploitation and infection phase to identify vulnerabilities that can be used to launch an attack 
against a victim computer. The attacker may use a malicious email attachment or an exploit kit for this purpose. 
For example, the cryptolocker ransomware uses the Angler exploit kit to access and execute on victims’ 
computers. The Angler exploit kit can exploit common vulnerabilities in Adobe Flash and Internet Explorer. The 
delivery and execution stage involves the installation and execution of the actual ransomware code on the victim’s 
system once there are known vulnerabilities that can support the execution of the malicious payload. Once the file 
malicious payload executes, it establishes connection with the attacker via the command-and-control mechanism 
and continues to do further damage. Back-up spoliation involves identification and removal of the system’s back-
up files and folders to prevent restoration of infected files from back-up. This takes place few seconds after the 
execution of the ransomware. This is to ensure that victims cannot retrieve compromised files without paying 
ransom. For example, CryptoLocker and Locky uses vssadmin tool to execute a command that deletes the volume 
shadow copies from Windows systems. Other variants of these ransomware can identify and delete files from 
backup folders in order to make recovery a herculean task. File encryption occurs after the removal of backup 
folders. The process involves a secure key exchange with the command-and-control server to generate encryption 
keys that will be used to lock the files on the local system. Most modern ransomware variants use strong 
encryption algorithms such as AES 256 or RSA 1024 which makes it difficult for victims to decrypt infected files. 
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Ransomware variants such as SamSam performs file encryption locally (on victim systems) without any need to 
access a command-and-control server via the Internet. Finally, the hacker notifies the victim of the attack and 
presents instructions for payment of ransom. This occurs after the removal of the back-up files and encryption of 
the main files. The victim is often asked to pay a ransom within a few days and failure to do so results in an 
increase in the amount charged for ransom. The payment instructions are usually stored on the hard drive or in 
the folders containing infected files. At other times, they are saved in specific locations on the hard disk. The 
malicious executable file automatically deletes itself from the infected system to avoid recovery of useful forensic 
evidence that would reconstruct the attack and protect against the malware. 

 Methodology 
The achievement of the overall objectives of the paper involved the following phases: data collection/information 
gathering, data extraction/analysis, information synthesis and reporting. Figure 3 is the research process flow, 
which illustrates the flow of activities involving the phases and the relationship between them.  
 

 
Figure 3: Research process flow 

 
Data collection was performed by selecting relevant and up-to-date journal and conference papers from reputable 
databases such as IEEE, Springer, MDPI, Elsevier, IET and Archive.org. Other sources include university-based 
journals, thesis/dissertations and blogs published by reputable organizations such as Microsoft, Crowdstrike, 
Symantec and Techspot. The materials are then grouped into two main categories, namely, non-technical sources 
and technical sources. Non-technical sources include materials containing general information on ransomware 
and as such, provide reliable information for writing the sections on introduction and ransomware 
history/chronology of attacks. Technical papers that proposed solutions for ransomware attacks are divided into 
four groups: detection, prevention, mitigation and recovery. A paper is placed in a group depending on the nature 
or purpose of solution it proposes. Papers that focus on detection are further subdivided into artificial intelligence 
(AI)-based methods and non-artificial intelligence-based approaches. AI-based approaches are then classified into 
machine learning methods, deep learning approaches and artificial neural networks approaches, while papers 
which used non-AI approaches are grouped into packet and traffic analysis categories. Data extraction involved a 
detailed analysis and summary of each technical paper by identifying the problem the paper addressed, its 
objective(s), the method/technique used, achievements of the paper in terms of the results obtained, and limitations 
of the study. Information synthesis was applied to identify similarities or relationships among papers in each group 
and, if and how a study improved upon, or addressed the limitations of another work. The reporting phase placed 
papers which addressed similar problems or used similar techniques in the same group, and presented their reviews 
in the same paragraph. This provides a good flow of communication and enhances the readability of the paper. It 
also provides readers with a clear understanding of the concepts discussed in the study.   

 Historical Background and Chronology of Ransomware Attacks  
Ransomware was first developed in 1989, when Dr. Joseph Popp created a malware called PC Cyborg or AIDS 
trojan. The malware attacked systems by hiding all folders and encrypting files on the hard disk. The ransomware 
spread via floppy disks and attackers used a script to request victims to send $189 to a post office box in Panama 
in favour of PC Cyborg Corporation [6]. The infection prevented users from accessing their computers until 
ransom was paid and attacks were reversed. The development of strong encryption algorithms has led to the 
emergence of many variants of the AIDS trojan, which makes it difficult for victims to recover encrypted files 
without paying ransom. The worst ransomware attack occurred in 2017 with the emergence of the WannaCry 
Ransomware. This malware encrypts files or systems, and denies legitimate users’ access to files or entire devices. 
A victim can access his files or system only after a ransom is paid and the attacker releases a decryption key. The 
Wannacry ransomware affected more than 2 million victims cutting across health, business, education and 
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government sectors. WannaCry encrypts user data and leaves only two files consisting of the encrypted file and a 
file containing instructions for payment of ransom. The second file also contains a threat that hijacked data will 
be deleted if the victim fails to pay ransom. The ransomware opens an original file, reads its contents, creates the 
encrypted version and closes the file (Scaife et al., 2016). India suffered the worst WannaCry ransomware attack 
with Madhya Pradesh, Maharashtra and Delhi recording 32.63%, 18.84% and 8.76% of total attacks on the country 
respectively (eScan, 2017). High net worth corporations like FedEx, Nissan, railway companies in Germany, 
Russian Railways, Megafor Telefonica were also not spared. Many NHS organisations in United Kingdom were 
severely hit. The attack also caused serious damages to computers belonging to universities and students in China. 
Well-known internet service providers like RailTel and Vodafone were the most severely affected (Mohurle & 
Patil, 2017). 
 
Table 1 presents a chronology of major ransomware attacks. The table provides important information on 
ransomware evolution based on the year a ransomware emerged, the name of the ransomware, its mode of attack, 
how it spreads, encryption strategy and method used by victims to pay ra`nsom.  
 

Table 1: Chronology of major ransomware attacks 

Year Ransomware 
Name 

Attack mode Mode of spread encryption 
strategy 

Ransom 
payment method 

1989 AIDS Trojan Encryption of 
file names 
 

Infected floppy disk Symmetric 
encryption 

$189 postal order 

2005 Trojan 
PGPcoder 

File encryption Spam email 
attachment 
 

Asymmetric RSA-
1024 encryption 

N/A 

2006 Trojan Cryzip Creates 
password-
protected 
archives of 
infected files  
 

Spam email 
attachment 

Password locking No payment; 
malware code 
includes password 

Archievus Encryption of 
My Documents 
folder 
 

Phishing emails Asymmetric RSA-
1024 encryption 

Purchase of 30-
digit recovery 
password 

2007 Locker Display of 
pornographic 
image on the 
machine 

Phishing attack AES and RSA SMS text message 
or calling a 
premium-rate 
phone number 
 

2008 GPcode.AK File encryption 
of subdirectory 

Email phishing Asymmetric RSA-
1024 encryption 

$100 to $200 in e-
gold or Liberty 
Reserve 
 

2011 60,000 new 
samples 

Varying attack 
modes 

Different modes of 
spread 

Varying encryption 
and locking 
methods 
 

Anonymous 
payment services 

2012 Reveton Password 
stealing 
 

Clicking malicious 
link 

Malicious 
JavaScript files 

Around $300 

Trojan.Randso
m.C 

Device locking N/A N/A calling a 
premium-rate 
phone number to 
reactivate 
Windows license 
 

2013 CyptoLocker File encryption Gameover ZeuS 
banking Trojan 
botnet;  

public and private 
cryptographic keys 

Two Bitcoins (or 
$100), CashU, 
Ukash, 
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malicious email  Paysafecard, and 
MoneyPak 
 

Locker File encryption Spam campaigns AES $150 via Perfect 
Money or QIWI 
Visa Virtual Card 
number 
 

2014 CryptoDefens
e 

File encryption Spear phishing 
email 

RSA-2048 earned $34,000 in 
its first month 
 

CryptoWall File encryption Infected USB drive, 
email, malicious 
executables, 
malicious websites 
 

RSA-2048 more than 
$1,000,000 

2015 LockerPin Device locking 
 
 
 
Encryption of 
data and web 
applications 
files 
 

Adult entertainment 
app  
 
 

AES   $500  

Linux.Encoder
.1 

Exploits the flaw in 
Magento shopping 
cart software 

AES and RSA Unspecified 
amount in bitcoin 

2016 Petya File overwriting 
and full hard 
disk encryption 
 

MEDoc tax and 
accounting software 

Master boot record 
(MBR) and file 
encryption 

$300 

KeRanger File encryption  Infected web link RSA 
 

1 bitcoin 

Xbot File encryption 
and stealing 
online banking 
details 
 

SMS messages N/A $100 

2017 WannaCry File and device 
encryption 
 

Unknown Hybrid (AES and 
RSA) 

$300 in bitcoin 

Bad Rabbit Device locking Drive-by-download 
on infected 
websites 

Locks users’ 
devices when they 
click on alicious 
Adobe Flash 
installer  
 

$280 bitcoin 

2018 GandCrab File encryption Infected phishing 
email, Microsoft 
Office macros, 
VBScript and 
ransomware-as-a-
service 
 

Installs on a device 
and encrypts user 
files when they 
access infected 
email  

$500-$600 

Katyusha File encryption Malware trojan 
encrypts and adds 
‘Katyusha’ 
extension to 
infected files 
 

Infects networks 
using EternaBlue 
and DoublePulsar 
exploits  

0.5 bitcoin 
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Ryuk File encryption Massive spam 
attacks and exploit 
kits 

Symmetric AES-
256 and asymmetric 
RSA-2048 
encryption   
 

15-50 bitcoins 

2019 Prolock/ 
PwndLocker 

File 
lock/encryption 

Qakbot Trojan Asymmetric RSA-
2048 encryption   

Bitcoin 

LockerGoga File encryption 
and file wiping 

Logs users out of 
systems, encrypts 
files and deactivate 
devices 
 

Cryptographic 
encryption and 
deletion of infected 
files  

N/A 

PewCrypt  File encryption Spam email 
messages 

Symmetric 256-bit 
Advanced 
Encryption Scheme 
(AES-256)   
 

Free 

Dharma v2019 File encryption Malicious email Symmetric AES-
256 algorithm  
 

N/A 

2020 Nefilim File encryption Remote desktop 
protocol (RDP) 
attack 

AES-256 
encryption for 
victim’s files; RSA-
2048 algorithm to 
encrypt the AES-
256 keys 
 

Via email 
communication 

Ransomware 
Name 
 

Attack mode Mode of spread encryption strategy Ransom payment 
method 

Paradise 
v2020 

File encryption Spam message 
containing internet 
query attachments 

RSA-1024 and 
RSA-2048 
algorithms 

No ransom. Tools 
are available to 
retrieve encrypted 
files 
 

Maze File encryption Exploit kits such as 
Fallout and Spelva 

RSA and ChaCha20 
stream cipher 
 

$6m - $15m 

REvil File 
encryption/file 
blocking 
 

Phishing email and 
malicious 
attachment  

AES or Salsa20 $70m in bitcoin 

Tycoon Password 
exploitation of 
file servers and 
domain 
controllers 

Insecure connection 
to an RDP server 
and a malicious 
(trojanized) Java 
Runtime 
Environment 
 

RSA N/A 

NetWalker Full Windows 
device 
encryption 

Network-wide 
executable files and 
VBS script 
attachments in 
Corona virus 
phishing emails.  
 

Salsa20 More than $30m 
total ransom since 
March 2021 

2021 Dark side File encryption 
and data 
exfiltration 
 

VPN password Lightweight 
Salsa20 with RSA-
1024  

75 bitcoin or 
$4.4m  
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ReVil File 
encryption/file 
blocking 

Vulnerability in 
Microsoft 
Exchange servers 
 

AES or Salsa20 $50m in Monero 
cryptocurrency 
demanded 

Phoenix 
locker 

File encryption 
on desktop and 
network shares 
 

Spam emails RSA-2048 
algorithm 

$40m 

ContiLocker File encryption 
and data 
exfiltration 
 

Via unprotected 
remote desktop 
protocol (RDP) port 

RSA-4096 and 
AES-256-CBC 

$2.6m 

Avaddon  File encryption, 
data exfiltration 
and DDoS 

Malicious 
JavaScript files 

AES-256 $40,000 or its 
equivalent in 
bitcoin  

 
The table shows that the development of ransomware and deployment of ransomware attacks have been on the 
rise since 1989 when the first known ransomware emerged. Most ransomware attack involves encryption of files 
and sub-directories. The devices can still function, but the infected files are inaccessible to legitimate users. A less 
common form of attack involves blocking users from gaining access to their devices, even if the files stored on 
such devices are accessible. New variants of malware have also emerged each year since 2013. This is because of 
the availability of sophisticated tools that enable attackers to easily craft ransomware scripts as well as huge 
amounts of money hackers make from ransom payment. Maze, REvil, Ryuk, Tycoon and NetWalker are currently 
the five most dangerous ransomware attacks (Ransomware Attacks, 2021). Several factors enhance the growth of 
ransomware and persistent increase in ransomware attacks. These include easy procurement of powerful 
encryption (symmetric and asymmetric) algorithms, which enables attackers to easily craft a ransomware tailored 
for a specific attack, or environment and availability of effective infection vectors such as spam email and 
malvertising, which ensure that a ransomware spreads rapidly to as many users as possible (Adamov & Carlson, 
2017). Other factors are easy accessibility of victims to cryptocurrency for ransom payments (including the ease 
with which attackers can convert cryptocurrency to cash without any trace) and the availability of Ransomware 
as a Service (RaaS) also enables unskilled and less knowledgeable attackers obtain customize ransomware and 
track victims via a user interface (Gellegos-Segovia et al., 2017). The creators of RaaS earn a percentage of profits 
from ransomware attacks launched via their platforms. 

 Ransomware Detection 
Research show that ransomware attacks are on the rise and have doubled in the first quarter of 2020 due to increase 
in remote working culture imposed by COVID-19 pandemic. Many individuals who work from home do not 
practice the same cybersecurity measures commonly imposed in the office environment. Also, most remote 
workers use personal devices which are not adequately equipped with security mechanisms such as antimalware 
packages, firewall, intrusion detection/prevention systems, password management tools and encryption software. 
Ransomware leverages on new vulnerabilities found in systems and networks, using attacks focus on both small, 
medium and big companies who imbibe the remote working culture. Apart from encrypting files and locking 
devices, ransomware can also use sophisticated techniques to carry out data exfiltration. This resulting exposure 
of sensitive information may lead to severe security concerns and privacy violations. This is addition to financial 
losses and reputation damage suffered by victims. Ransomware attack against a health facility may result in loss 
of life such as in the case of a Dusseldolf University hospital patient where an attack interrupted emergency 
services and the hospital management had to send the patient to another hospital 17 miles away (Fingers, 2020). 
The patient eventually died as a result of delay in treatment. Ransomware payment is also a means by which 
attackers extort several millions of dollars from innocent victims every year (Symantec Corporation, 2016) 
Ransomware attacks account for more than 41% of cyber insurance claims in 2020 and it is projected that total 
losses which have organizations suffer from ransomware attacks may hit $20 billion at the end of 2020 (Potoroaca, 
2020). The money which organizations use to pay ransom can be channeled to other productive ventures resulting 
in the overall growth of the business. These concerns highlight the need for efficient and reliable methods for 
ransomware detection, prevention, mitigation and recovery. Ransomware detection methods are generally 
categorized into automated and manual. Automated approaches rely on the use of tools to detect and report 
ransomware attacks. Such tools are usually software packages which may also possess the ability to block attacks. 
Manual detection methods focus on regular inspection of files and devices for obvious signs of attacks. This 
includes checking for changes in file extensions and whether authorized users can access files and devices. That 
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is, checking whether a malware attack has not modified files and authorized users have not been blocked from 
accessing their devices and files. The flow of presentation in this section is illustrated in Figure 4.  

4.1 Automated Ransomware Detection 

Existing approaches for ransomware detection predominantly focus on system level monitoring, for instance, by 
tracking the file system characteristics. Automated ransomware detection approaches can be divided into two 
major categories namely, artificial intelligence (AI)-based methods and non-artificial intelligence (non-AI)-based 
methods. AI-based methods commonly use techniques such as machine learning (ML), deep learning (DL) and 
artificial neural network (ANN) for ransomware detection. Some tools apply variants of these techniques or a 
hybrid approach using a combination of two or more techniques to address the menace of ransomware attacks. 
Non-AI methods use approaches such as packet inspection and traffic analysis to detect ransomware. A major 
strength of automated approaches is their ability to detect, block and recover from ransomware attack without 
human intervention. The tools also possess high level accuracy and reliability in terms of ransomware detection, 
prevention and recovery. 
 
 

 
 

Figure 4: Flow of presentation on ransomware detection 

4.1.1 Artificial Intelligence-Based Methods 

Artificial intelligence-based methods use machine learning (such as behavioural techniques and static and 
dynamic analysis), deep learning and artificial neural network to perform automated detection of ransomware 
attacks.   

4.1.1.1. Machine Learning Approaches 

Machine learning (ML) is a branch of artificial intelligence which provides systems with the ability to learn from, 
and detect patterns in existing data, while making decisions with little or no human intervention (Dontov, 2019). 
It is a method commonly used to automate analytical model building. ML techniques enable computers to make 
predictions based on patterns found in large datasets. The algorithms are able to adapt to changes and make 
improvements as the size of the dataset increases. The ability of ML to make predictions based on file behaviour 
as well as known and unknown datasets makes it a viable tool for detecting previously unknown ransomware 
variants. However, machine learning techniques require a minimum of between 50 and 1,000 data points to make 
reliable prediction. Few samples may result in overfitting and biased prediction. Also, training machine learning 
algorithms require significant amount of time. File behaviour detection is the major application of machine 
learning to ransomware detection. ML algorithms use specialized analysis (such as interactive debugging or post 
mortem code execution analysis) to extract large amount of salient and discriminant information in order to learn 
the behaviour of a legitimate or normal application. ML-based ransomware detection tools perform detailed 
analysis of legitimate code execution and are able to identify malicious applications. Such tools make intelligent 
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decisions and prompts specific actions by leveraging on their ability to distinguish between normal and abnormal 
program execution. The machine learning approaches explored in this study are behavioural techniques as well as 
static and dynamic analysis. 
 
Behavioural Techniques  
A normal application behaviour is measured from both user perspective and resource perspective. A normal 
behavioural baseline is established based on what represents normal or routine operations of a computer system 
or network. Such operations may include logins, file access, user and file behaviors, resource utilization, and other 
important signs of normal activity (Acronis International, 2021). The duration of the learning process depends on 
the amount of data needed to establish a baseline to represent normal system behaviour. The tool identifies and 
scrutinizes behavioural anomalies which do not fall within the normal behavioural pattern represented by the 
baseline. (Juan et al., 2017) proposed a ransomware detection and prevention model for unstructured dataset 
extracted from Ecuadorian control and regulatory institution (EcuCERT) logs. The approach uses machine 
learning techniques to detect abnormal behavioral patterns associated with Microsoft Windows-based 
ransomware. Feature selection was applied to the Log data to extract the most useful and discriminating 
information that represents a ransomware threat. The extracted information represents the feature set which serves 
as input for automatic learning algorithms. The algorithms use the input feature set to model abnormal behavioral 
patterns in order provide timely and reliable detection of ransomware. There was an attempt to address the 
limitations of signature-based methods in detecting ransomware attacks which evolve daily due to availability of 
code obfuscation techniques and creation of new polymorphic variants (Shaukat & Ribeiro, 2018). This is 
necessary because generic malware attack vectors do not adequately capture the specific behavioral patterns of 
cryptographic ransomware and as such, not sufficient or reliable enough for ransomware detection. The proposed 
approach known as RansomWall is a layered and hybrid mechanism based on the application of static and dynamic 
analyses to generate a new set of features that model ransomware behavior. The approach uses a strong trap layer 
for early detection of ransomware and is suitable for detecting zero-day attacks. An evaluation of RansomWall 
and Gradient Tree Boosting Algorithm on 574 samples of 12 Microsoft Windows operating system-based 
cryptographic ransomware produced 98.25% detection rate and very low (almost zero) false positives. It is also 
able to detect 30 zero-day attack samples, with less than 10% detection rate compared to 60 VirusTotal security 
engines. CryptoDrop was developed to provide early detection of ransomware based on suspicious file activity 
(Scaife et al., 2016). It uses a set of behavioral features to terminate any process that alters a large amount of the 
user’s data. CryptoDrop can integrate common ransomware features to support rapid detection with low false 
positives. Experimental analysis shows that CryptoDrop is an efficient tool for ransomware detection and 
prevention. It is able to prevent execution of ransomware files with a median loss of only 10 files out of almost 
5,100 tested files. Overall, the approach leverages on behavioral analysis to minimize data loss due to ransomware 
attacks. A limitation of CryptoDrop is its inability to determine the intent of attack indicated by changes in file 
behaviour. An example is a situation where the tool cannot determine whether a set of documents is encrypted by 
the user or ransomware. The system simply notifies the user who decides whether a suspicious activity is desirable 
or not. CryptoDrop flags legitimate activities such as compression whose behavior is normal, expected, desirable, 
and not actually invasive. It is necessary for future versions to possess the ability to distinguish legitimate bulk 
transformation activities such as file compression from malicious attacks. 
 
Table 2 presents a summary of previous studies on behavioural techniques for ransomware detection. 
 

Table 2: Summary of related works (behavioural techniques) 

Author Problem addressed Method used Result Limitation 
Shaukat & 
Ribeiro 
(2018) 
 

Ransomware 
detection 

Layered and hybrid 
mechanism 
(RansomWall) 

Suitable for detecting 
zero-day attacks 

N/A 

Scaife et 
al. (2016) 

Ransomware 
detection 

Evaluation of 
RansomWall and 
Gradient Tree 
Boosting Algorithm 
(CryptoDrop) 

Median loss of only 10 
files out of almost 
5,100 tested files 

Inability to 
determine the 
intent of attack 
indicated by 
changes in file 
behavior 
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Makinde et 
al. (2019) 

To detect the 
susceptibility of a real 
network system to 
ransomware attack 
 

Machine Learning Correlation above 0.8 It simulated the 
behaviour of few 
users 

Ahmad et 
al. (2019) 

To distinguish 
members of the 
Locky ransomware 

Behavioural 
ransomware 
detection approach 
(parallel classifiers) 
 

Highly accurate 
detection with low false 
positive rate 

N/A 

Zahra & 
Sha (2019) 

Detecting Cryptowall 
ransomware attack  

Command and 
control (C&C) 
server black listing 

Extracts TCP/IP header 
from web proxy server 
which serves as the 
gateway to TCP/IP 
traffic. 

The model was not 
implemented to 
demonstrate its 
accuracy and 
effectiveness in 
detecting 
ransomware and 
their modes of 
attack against 
different operating 
system 
environments 
 

Singh et 
al., (2022) 

Detection of 
previously unknown 
ransomware families 
and classification of 
new ransomware 
attacks 

Examines access 
privileges in process 
memory to achieve 
easy and accurate 
detection of 
ransomware 

accuracy ranges 
between 81.38% and 
96.28%. 
 

N/A 

 
A variant of behavioural detection approaches used a machine learning baseline model for simulating and 
predicting the individual network user behaviour pattern at the micro level in order to detect possible scenarios 
that may indicate a vulnerability or an actual ransomware attack (Makinde et al., 2019). The goal was to detect 
the susceptibility of a real network system to ransomware attack. A comparative evaluation of the results obtained 
from the simulated network and the log data obtained from the server in the real-life network system indicates a 
realistic model with a correlation above 0.8. A limitation of this approach is that it simulated the behaviour of few 
users. Future works should focus on using tools for big data analytics to simulate the behaviour of a large number 
of users. A more recent behavioural ransomware detection approach used two parallel classifiers to distinguish 
members of the Locky ransomware family according to their types (Ahmad et al., 2019). The method focused on 
early detection based on behavioural analysis of ransomware network traffic in order to prevent a ransomware 
from connecting to command-and-control servers and executing harmful payloads. The study used a dedicated 
network to collect network information and extract relevant features of network traffic. The extracted features of 
the Locky ransomware family are processed by two independent (parallel) classifiers working on data at packet 
and datagram levels. Experimental results show that the method is able to extract valid features and provides a 
high level of effectiveness in tracking the activities of ransomware on the network. It also offers highly accurate 
detection with low false positive rate. Zahra and Sha (2019) proposed a domain-specific framework for detecting 
Cryptowall ransomware attack based on the communication and behavioral analysis of the ransomware in an IoT 
environment using command and control (C&C) server black listing to detect ransomware attacks. The method 
extracts TCP/IP header from web proxy server which serves as the gateway to TCP/IP traffic. It also extracts 
source and destination IP addresses and compares them with blacklisted IP of Command-and-Control servers. A 
ransomware is detected if the source or destination IP matches ransomware attack for IoT devices. However, the 
model was not implemented to demonstrate its accuracy and effectiveness in detecting ransomware and their 
modes of attack against different operating system environments. A very recent approach to behavioural-based 
detection leverages on access privileges in process memory to achieve easy and accurate detection of ransomware 
(Singh et al., 2022). The method can also detect previously unknown ransomware families and classify new 
ransomware attacks using the access privileges a file or an application possesses and the area of memory it intends 
to access. The helps to identify the behaviour of an executable, and detect its intent before it causes serious damage 
to legitimate files and applications. Experimental results based on these multiple algorithms produced good 
detection accuracy which ranges between 81.38% and 96.28%. 
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Static and Dynamic Analysis  
A novel detection technique based on static analysis extracts features directly from raw ransomware binaries using 
frequent pattern mining (Khammas, 2020). It also uses Gain Ratio technique to select 1000 features for optimal 
ransomware detection. Random forest classifier was used to analyze the impact of trees seed numbers on the 
detection process. Experimental results show that the detection rate of proposed approach is 97.74%. Direct 
extraction of raw ransomware binaries results in a remarkable increase in the speed of detection. An enhanced 
approach to ransomware detection integrates dynamic analysis with machine learning (Hwang et al., 2020). It is 
a hybrid ransomware detection model based on Markov model and Random Forest model. The approach uses 
Windows API call sequence pattern to build a Markov model which extracts the unique features of ransomware. 
This is followed by using Random Forest to model the remaining data in order minimize error rates. The two-
stage mixed detection technique achieved good detection rates with an overall accuracy of 97.3%, 4.8% FPR 
(false positive rate) and 1.5% FNR (false negative rate). A similar approach known as EldeRan uses dynamic 
analysis to detect ransomware at run-time (Sgandurra et al., 2016). The technique leverages on the fact that run-
time features exhibited by ransomware samples are similar for all ransomware families. EldeRan performs 
dynamic analysis and ransomware detection by monitoring the actions carried out by applications when they are 
first installed and checking for obvious signs of ransomware. The result of experiments carried out on a dataset 
of 582 ransomware and 942 goodware applications, shows that the approach achieves an area under the ROC 
curve of 0.995. A major strength of the EldeRan lies in its ability to perform dynamic analysis and ransomware 
detection even if the entire dataset of a ransomware family is not available. This supports early detection of new 
ransomware variants.  
 
An improved technique for ransomware detection used an integrated approach, which combines static and 
dynamic analysis (Bazrafshan et al., 2013). It is an analysis framework based on support vector machines, which 
uses “run-time” and “static code” features for early detection of known and previously unknown ransomware 
variants. The results of experiments based on a wide array of ransomware types suggest that the integrated 
approach provides better ransomware detection than using either static analysis or dynamic analysis individually. 
The integration of static and dynamic analysis has also been used to analyze ransomware threats against mobile 
devices and perform mobile ransomware detection (Yang et al., 2015). The proposed approach combines the 
results of static and dynamic analysis for detecting ransomware threats and attacks against mobile applications. It 
is a two-phase approach which integrates data states and software execution on the critical test path of the Android 
API. The first phase is static analysis which detects the likelihood of an attack by using API, existing attack 
patterns and dynamic analysis to execute a program in a limited and restricted scope and comparing whether the 
detected path conforms with existing attack patterns. The second phase (which is runtime dynamic analysis) uses 
dynamic inspection to detect the nature of attack and possible violation of data confidentiality (such as web 
browser cookie) without compromising sensitive and secured data sources in mobile device. A related work 
detects unknown ransomware by using the most discriminating API calls to train a classifier (Sheen & Yadav, 
2018). The approach was applied on an imbalanced dataset consisting of unequal amounts of ransomware and 
benign data.  Experimental results show that the approach is more suitable for random forest than decision tree or 
KNN. Random forest produced the best detection rate of over 98% because it is more robust against class 
imbalance than decision tree and KNN. A limitation of this study is class imbalance in the dataset due to the 
difference in the number of samples in the ransomware class and benign class. A future work should apply the 
same technique on a balanced dataset using the same classifiers and observe the outcome. An improved approach 
integrates feature generation engines and machine learning for analyzing malware samples obtained from raw 
binaries, assembly codes, libraries, and function calls in order to identify the goal malicious codes intend to 
achieve. Poudyal et al. (2018) applied different supervised ML techniques on features extracted from ransomware 
and benign binaries. Performance evaluation results show that the approach has detection accuracy which ranges 
from 76% to 97% depending on the ML classifier used. Seven out of the eight classifiers achieved a detection rate 
of at least 90%. The study also revealed better ransomware detection rates when static level analysis is applied to 
data obtained by integrating ASM-level and DLL-level features. Similarly, Dehghantanha et al. (2018) proposed 
a Decision Tree (J48) classifier known as NetConverse, for high speed and reliable detection of Windows 
ransomware. Experimental results based on conversation-based network traffic features dataset show a true 
positive detection rate of 97.1% using the Decision Tree (J48) classifier. Static and dynamic techniques can also 
be used for real time detection and prevention of ransomware attack (Lalson et al., 2019). The technique offers a 
robust and an effective protection against a variety of ransomware. The approach halts attacks before the system 
or network experiences a significant damage. However, the proposed method cannot perform the recovery of 
infected files. It is also possible for a ransomware to encrypt some files before it is actually detected or blocked. 
Lee et al. (2022) addressed the ineffectiveness of static analysis against obfuscating ransomware, which hides 
their behaviour to evade detection and low-speed detection of dynamic analysis by proposing a statistical analysis 
which uses heuristics to distinguish between normal files and those attacked by ransomware. The approach 
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provides real-time detection of known crypto-ransomware variants. It is also efficient with about 13% overhead 
required during the detection process. 
 
Recent ML approaches such as the one proposed by Rani and Dhavale (2022) used a number of machine learning 
models such as decision tree, random forest, KNN, SVM, XGBoost and Logistic Regression to build an effective 
proof of concept for a product specific ransomware. The proposed solution is efficient and reliable with an 
accuracy of 98.21%. Similarly, three different machine learning algorithms namely decision tree (J48), random 
forest and radial basis function (RBF) were applied on 1000 dominant features obtained from raw, byte-level 
ransomware data using the gain ratio feature selection method (Khammas, 2022). The results from experiments 
show that random forest is the most effective of the threes algorithms with ~ 98% accuracy and the most suitable 
feature size is 1000 attributes. An enhanced approach integrates ensemble learning with voting-based method, 
monitors memory usage, system call logs, CPU usage and performs static and dynamic analysis of text, 
permissions and network-based features (Ahmed et al., 2022). Experimental results based on malicious and benign 
features (static and dynamic) obtained from Android malware applications show that the proposed technique can 
detect unknown ransomware attacks based on the behaviour of malicious applications. The technique is also robust 
against adversarial evasion attacks as demonstrated by its high detection accuracy when tested with 1-bit, 10-bit, 
20-bit, 30-bit and 40-bit crafted ransomware data. Talabani and Abdulhadi (2022) proposed two rule-based models 
to address the low accuracy of ransomware detection tools which use data mining and machine learning 
techniques. The models known as Partial Decision Tree (PART) and Decision Table were applied to bitcoin 
dataset consisting of 61,004 samples of 29 ransomware families with ten descriptive and decision attributes. 
Experimental results show that the PART algorithm provides better performance in terms of accuracy (96.01%), 
recall (96%), precision (95.9%) and F-Measure (95.6%) than Decision Table. Experimental results show that it is 
necessary to carry out additional investigation on the application of PART to predictive modelling tasks in 
ransomware detection experiments. 
 
A summary of previous studies which used static and dynamic analysis for ransomware detection is presented in 
Table 3. 
 

Table 3: Summary of related works (static and dynamic analysis) 

Author Problem addressed Method used Result 
Khammas 
(2020) 
 

Ransomware detection  Random forest technique Detection rate is 97.74%. 

Hwang et al. 
(2020) 

An enhanced approach 
to ransomware 
detection. 

Markov model and random 
forest model 
 

Overall accuracy of 97.3%, 
4.8% FPR (false positive 
rate) and 1.5% FNR (false 
negative rate 
 

Dehghantanha 
et al. (2018) 

High speed and 
reliable detection of 
windows ransomware 

Netconverse  
(decision tree (j48) 
classifier) 

True positive detection rate 
of 97.1% 

Rahman & 
Hasan (2019) 

Improved technique 
for ransomware 
detection 

Analysis framework based 
on support vector machines 

Integrated approach provides 
better ransomware detection 
than using either static 
analysis or dynamic analysis 
individually. 
 

Jasmin (2019)  Distinguishing 
ransomware traffic 
from normal traffic 

Random forest, support 
vector machine and logistic 
regression algorithms 

Random forest has the best 
detection rate of 99.9% and a 
false positive rate of 0%. 
 

Ameer (2019) Ransomware detection  Static and dynamic 
analysis 

Detection and classification 
accuracy of 100%  
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Talabani & 
Abdulhadi 
(2022) 

Low accuracy of 
ransomware detection 
tools which use data 
mining and machine 
learning techniques 

Partial Decision Tree 
(PART) and Decision 
Table 

accuracy (96.01%), recall 
(96%), precision (95.9%) and 
F-Measure (95.6%) 

 
Several enhanced machine learning techniques have been proposed for effective and reliable detection of 
ransomware. These techniques are meant to address the weaknesses in existing ML-based ransomware detection 
methods. One of such improvements addressed the limitation of detection techniques (such as sandbox analysis 
and pipelines) due to their inability to isolate a sample and handle the delay in analyzing isolated ransomware 
samples (Adamu, 2019). The approach predicts ransomware using a dataset consisting of 30,000 attributes which 
serve as independent variables. Feature selection was used to obtain five attributes used as input to support vector 
machine algorithm. The method has promising ransomware detection rate with accuracy of 88.2%. Another 
improvement focused on detecting ransomware in cloud storage instead of the local system (Matthias, 2018). It is 
a hybrid technique which integrates 'guilt by association' assumption with content-based, metadata-based and 
behaviour-based analysis to minimize the false positive rate. This involves the use of file versioning of the cloud 
storage to delay the recovery and transferring the supervision of the recovery to the end user. The only 
responsibility of the end-user is to supervise the recovery. Users are provided with classification information 
which allows them make informed decisions and prevent false positives. The approach provides improved 
detection accuracy and reliable recovery. A novel approach used network connection information, certificate 
information and machine learning for network-level ransomware detection (Jasmin, 2019). The method can be 
used in conjunction with system-level detection to provide early detection of ransomware attacks. The technique 
extracts and models ransomware features based on three major characteristics of network traffic namely, 
connection-based, encryption-based, and certificate. It is a feature model which used random forest, support vector 
machine and logistic regression algorithms to distinguish ransomware traffic from normal traffic. Experimental 
results based on a variety of datasets showed that random forest has the best detection rate of 99.9% and a false 
positive rate of 0%. Another enhanced detection approach is a decision tree model based on big data technology, 
which exploits Argus for packet preprocessing, merging, and labeling malware file (Wan et al., 2018). Biflow was 
used to replace the packet data and reduce the data size by a factor of 1000 (that is, 1000:1). Feature selection and 
feature concatenation were employed to extract and combine the characteristics of a complete network traffic. The 
method used six feature selection algorithms in order to achieve better classification accuracy. A recent and an 
innovative ransomware detection method used machine learning to monitor power consumption of Android 
devices (Azmoodeh et al., 2018). The proposed approach distinguishes ransomware from benign applications by 
monitoring the energy consumption patterns of various Android processes. This is achieved by collecting and 
analyzing the unique local fingerprint of ransomware’s energy consumption. Experimental results show that the 
method achieved high detection and precision rates of 95.65% and 89.19% respectively. It also has better 
accuracy, recall rate, precision rate and F-measure than K-Nearest Neighbor, Neural Network, Support Vector 
Machine and Random Forest. Another enhanced solution is a novel lightweight approach known as RanDroid for 
automated detection of polymorphic ransomware (Alzahrani et al., 2018). The technique detects new ransomware 
variants on Android platforms using the structural similarity measures between features extracted from an 
application and a set of threat data extracted from known ransomware variants. The similarity measures used are 
Image Similarity Measurement (ISM) and String Similarity Measurement (SSM). Further information was 
extracted by applying linguistic analysis on the app’s code behavioural features and image textural strings. The 
approach addressed the limitations of static analysis by performing dynamic and static analyses in order to mitigate 
ransomware attacks without modifying the Android OS and its underlying security module. An evaluation of 
RanDroid based on 950 ransomware samples showed that the approach can detect ransomware based on evasive 
techniques such as sophisticated codes or dynamic payloads. A related work proposed a hybrid solution based on 
the integration of static and dynamic analysis for detecting Android ransomware and distinguishing ransomware 
from other malware (Ameer, 2019). The approach applied static analysis on permissions, text, and network-based 
features. It also applied dynamic analysis on the memory usage, system call logs, and CPU usage. The results of 
experiments based on features extracted from ransomware and benign samples show that technique can mitigate 
evasive ransomware attacks. It is also able to detect and classify unknown ransomware with 100% accuracy. 

4.1.1.2 Deep Learning Approaches 

Deep learning techniques are aimed at addressing the shortcomings of conventional supervised ransomware 
detection tools. The goal is to enhance the accuracy and reliability of results obtained from a ransomware detection 
activity. Deep learning techniques perform automatic feature generation and are very suitable for unstructured 
datasets. The techniques also require very little or no human intervention (good self-learning capabilities). Deep 
learning algorithms are very suitable for classifying audio, text and image data. This enhances their effectiveness 
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at detecting textual and image ransomware data. However, training deep learning algorithms requires a very large 
amount of data. This makes the algorithms unsuitable for general purpose applications especially those requiring 
small data points or sizes. Other limitations of deep learning include the need for high processing (CPU) power 
and inability to easily adapt to real life datasets. A recent application of this approach is a deep learning based 
semi-supervised framework, which extracts inherent, unlabeled and previously unknown features of new 
ransomware variants (Sharmeen et al., 2020). The framework also provides an adaptive detection model by 
integrating the unsupervised learned model with supervised classification. Experimental results based on real 
ransomware data with a dynamic analysis testbed shows that the method is highly accurate at detecting different 
kinds of ransomware compared to existing supervised approaches. Another deep learning approach for automated 
behavioural-based ransomware detection applied dynamic analysis on data obtained from Application 
Programming Interface (API) calls made by the executable (Maniath et al., 2017). This approach uses a word 
sequence to represent the list of API calls made by an executable file. It applied Long-Short Term Memory 
(LSTM) networks for binary sequence classification of application programming interface (API) calls a suitable 
method for detecting ransomware behavior. The approach detects ransomware behaviour using API calls obtained 
from systems logs of modified sandbox environment. It is a suitable method for reliable analysis and detection of 
large malwares samples. A related study proposed a deep learning technique based on features extracted from 
permissions and API calls for detecting Android ransomware (Wongsupa, 2018). AndroGuard (a python library) 
was used for feature extraction, while the ransomware detection framework was implemented on Keras, using 
multilayer perceptron (MLP) with back-propagation and supervised learning algorithm. The results of 
experiments on real-world applications show that the accuracy is 98% for MLPs with more than 3 hidden layers 
and moderately sized neurons. However, the use of MLPs with two hidden layers and large number of neurons 
results in low detection accuracy of between 45% and 60%. A novel deep learning approach to ransomware 
detection extracts salient behavioral features from labeled ransomware data (Aragom et al., 2016). It is a novel 
architecture which combines deep packet inspection with machine learning. The model can detect and prevent 
various types cryptographic ransomware. Experimental results show that the deep learning model achieved a 
detection accuracy of 93.92%, which makes it suitable for timely detection of unknown ransomware in high-speed 
network. Table 4 is the summary of related works which used deep learning techniques to implement automated 
ransomware detection systems. 
 

Table 4: Summary of related works (deep learning approaches) 

Author Problem 
addressed 

Method used Result Limitation 

Sharmeen et al. 
(2020) 

To enhance the 
accuracy and 
reliability of results 
obtained from a 
ransomware 
detection activity 
 

Deep learning 
based semi-
supervised 
framework 

Highly accurate at 
detecting different kinds 
of ransomware compared 
to existing supervised 
approaches 

N/A 

Maniath et al. 
(2017) 

Automated 
behavioural-based 
ransomware 
detection 

Deep learning 
techniques 

The approach detects 
ransomware behaviour 
using API calls obtained 
from systems logs of 
modified sandbox 
environment 
 

N/A 

Wongsupa 
(2018) 

Detecting Android 
ransomware.  

Deep learning 
technique and 
Supervised 
learning 
algorithm  

The results of 
experiments on real-
world applications show 
that the accuracy is 98% 
for mlps with more than 3 
hidden layers and 
moderately sized neurons 

The use of mlps with 
2 hidden layers and 
large number of 
neurons results in 
low detection 
accuracy of between 
45% and 60%. 
 

Aragom et al. 
(2016) 

Detection and 
prevention of 
various types 
cryptographic 
ransomware. 

Combines deep 
packet 
inspection with 
machine 
learning 

Detection accuracy of 
93.92%, 

N/A 
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Vinayakumar et 
al. (2017) 

Effective detection 
and classification of 
ransomware 

Enhanced deep 
learning 
technique 

Classification accuracy of 
0.98 (98%) 

The experimental 
results do not 
represent the actual 
situation involving 
more complex 
architecture settings 
 

Olani et al. 
(2022) 

Detection of 
ransomware by 
monitoring and 
analyzing changes 
in the distribution 
hardware 
performance 
counter data. 
 

Deep learning Classification accuracy of 
98.6% and recall score of 
84.41%. 

N/A 

 
An enhanced deep learning technique applied shallow and deep networks on features extracted from API calls for 
effective detection and classification of ransomware (Vinayakumar et al., 2017). The study explored a number of 
network parameters and structures to obtain the best architecture for the multi-layer perceptron (MLP). This 
involved up to 500 epochs with a learning rate between 0.01 and 0.5. The results of various experiments showed 
that MLP has very high accuracy of 1.0 (100%) in distinguishing ransomware from benign samples. It was also 
able to classify ransomware into their families with an accuracy of 0.98 (98%). This shows that the approach can 
detect and classify ransomware better than other classical machine learning techniques. However, the proposed 
approach is a very simple MLP network, which does not impose high computational burden on hardware and 
monolithic training environment. The experimental results do not represent the actual situation involving more 
complex architecture settings. A future work should focus on using more complex MLP network to perform the 
same experiments on state-of-the-art hardware in a distributed environment. A recent a deep learning model 
monitors changes in the distribution hardware performance counter data across the system and analyzes relevant 
information to achieve effective and efficient detection of ransomware (Olani et al., 2022). The information 
extracted is specifically related to events which indicate behaviour that distinguishes a ransomware from a benign 
application. The results of experiment based on different ransomware families show that the model is effective 
with ransomware classification accuracy of 98.6% and recall score of 84.41%. The model is also effective for 
detecting zero-day attack as demonstrated by experiments based on previously unknown CoronaVirus, Ryuk, and 
Dharma ransomware variants. 

4.1.1.3 Artificial Neural Network Approaches 

Neural networks have wide applications which makes them suitable for detecting different types of ransomware 
data (text or image) and ransomware variants. The ability of neural networks to perform continuous learning 
makes them suitable for adapting to new ransomware data and detecting zero-day ransomware attacks. However, 
neural network techniques are hardware dependent and susceptible to data dependency. They also deny human 
analysts from tracking data processing tasks and checking for deviations (black box nature). Agrawal (2019) 
proposed an enhanced technique which leverages on the ability of recurrent neural networks to establish a 
relationship among events which follow a particular sequence. The technique known as Attended Recent Inputs-
Long Short-Term Memory (ARI-LSTM) uses attention mechanisms to extract the pattern of events created by 
ransomware sequences. The approach leverages on the ability of recurrent neural networks to provide high 
detection accuracy for sequence learning models. An LSTM is a type of recurrent neural network which possesses 
the ability to establish a relationship among a sequence of events caused by ransomware attack (Shmidhuber & 
Cummins, 1997; Gers, 2000). ARI enhances neural cells by incorporating attention in learning from ransomware 
sequences. It uses the concept of a subsequence to extract local event patterns in ransomware sequences to learn 
from a recent history of ransomware. An evaluation of ARI-LSTM using ransomware and benign executables 
captured from Windows operating system showed that the technique has better detection rate than LSTM. A much 
finer scale evaluation of detection accuracy showed that the technique has a False Positive Rate (FPR) set of 2%. 
Generally, ARI-LSTM possesses much better performance accuracy (or detection rate) of 91% with low values 
of FPR thus establishing the potency and efficiency of attention mechanisms in learning local patterns. Similarly, 
identification of important and unique features of ransomware can be used to detect an attack (Arslan, 2020). This 
is achieved by using transfer learning based deep convolutional neural networks to perform feature engineering 
in order to analyze important properties and behaviors of a ransomware. The technique leverages on the ability of 
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neural networks to detect some attributes, states, and patterns of ransomware files. Feature engineering and 
analysis were performed on static and dynamic datasets consisting of 3646 samples (1700 Ransomware and 1946 
Goodware) and 3444 (1455 Ransomware and 1989 Goodware) samples respectively. Experimental results show 
that relevant features for ransomware detection are registry changes, application programming interface (API) 
calls, and dynamic link libraries (DLLs). It was also observed that N Gram technique can be used to detect 
important sequences in a ransomware attack. For example, a Registry Delete operation, whereby a malicious file 
attempts to delete registries, follows a particular and repeated sequence. A different observation involving benign 
files showed that Registry Delete operation does not follow any particular or repeated sequence. A reliable and 
efficient ransomware detection leverages on the nonexistence of a common Registry deleted sequence used by 
both malicious and benign files. Table 5 summarizes previous researches which proposed artificial neural network 
approaches for ransomware detection.  
 

Table 5: Summary of related works (artificial neural network approaches) 

Author Problem addressed Method used Result 
Agrawal (2019) Establishing a 

relationship among 
events which follow 
a particular sequence 

Attended Recent 
Inputs-Long Short-
Term Memory 
(ARI-LSTM) 
 

High detection accuracy for 
sequence learning models 

Schmidhubar & 
Cummins, 
(1997; Gers 
(2000)  

Establishing a 
relationship among 
events which follow 
a particular sequence 

Attended Recent 
Inputs-Long Short-
Term Memory 
(ARI-LSTM) 

Have better detection rate than 
LSTM. 
False Positive Rate (FPR) set of 
2%. 

Arslan (2020) Using unique 
features of 
ransomware to detect 
an attack 
 

Transfer learning 
based deep 
convolutional neural 
networks 

Detects some attributes, states, and 
patterns of ransomware files. 

4.1.2 Non-Artificial Intelligence-Based Methods 

Non-AI methods use approaches such as packet inspection and traffic analysis to detect ransomware. One of such 
methods aims at detecting ransomware using a network of decoy and bogus computer systems known as honeypot. 
The goal was to create and monitor honeypot folder for changes that could be used to detect the presence of 
ransomware (Moore, 2016). The study performed the manipulation of the Windows Security logs using the File 
Screening service of the Microsoft File Server Resource Manager feature and EventSentry. Although honeypot is 
a useful tool for tracking network activity, the method offers a limited view of ransomware and their activities on 
the network as the absence of attack alerts does not mean that a honeypot is not a target of ransomware attack. A 
related work proposed an algorithm that probes networks for passive monitoring of traffic in order to detect the 
presence of ransomware (Morato et al., 2018). Experimental analysis using 19 different ransomware families show 
that it takes the proposed algorithm less than 20 seconds to detect the presence of ransomware. It was also observed 
that not more than 10 files are lost within the 20 second duration. The method allows recovery of lost files as their 
contents were stored in the network traffic. It also has low false positives based on experiments conducted on 
traffic data from real-life corporate networks. A very recent neural network approach to ransomware detection is 
the novel Bayesian Neural network known as the Radial Spike and Slab Bayesian Neural Network (Nazarovs et 
al., 2022). The proposed solution is suitable for large and/or complex architectures as it provides better 
performance than the generic Bayesian Neural Network and other deep learning techniques. It also provides 
enough information to trigger the suspicion of investigators and confirm whether an incident is actually a 
ransomware attack or not. Overall, the technique helps to overcome the limitation of insufficient ransomware 
datasets for deep learning experiments by eliminating the likelihood of overfitting even if small-sized samples are 
used for training and classification. A limitation of the approach is the need for human intervention to disable 
systems and prevent network access in the event of a suspected ransomware attack. A summary of previous studies 
based on non-AI techniques is presented in Table 6. 
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Table 6: Summary of related works (non-artificial neural network approaches) 

Author Problem 
addressed 

Method used Result Limitation 

Moore 
(2016) 

Ransomware 
Detection  

Honeypot N/A Method offers a limited 
view of ransomware and 
their activities on the 
network 

Morato 
et al. 
(2018) 

Detecting the 
presence of 
ransomware and 
preventing attacks 
 

N/A Less than 20 seconds 
to detect the presence 
of ransomware.  

N/A 

Cabaj et 
al. 
(2017) 

Software-Defined 
Network (SDN) 
environment  

Rapid response to 
ransomware threats 

Detection rates of 
between 97% and 
98% as well as 4–5% 
false alarm rates 
 

N/A 

Chen et 
al. 
(2018) 

Systematic 
characterization 
and real-time 
detection of 
Android 
ransomware 

Novel technique 
for real time 
detection of 
encrypting 
ransomware 

Abnormal encryption 
activities can be 
detected before a 
ransomware causes 
significant damages. 
The analysis of 
runtime performance 
also demonstrated the 
usability of 
ransomprober 
 

Attempt at detecting 
mobile ransomware is 
constrained by the 
unavailability of a 
comprehensive dataset 
and limited understanding 
of real-time ransomware 
attack. 

(Kharra
zet al., 
2015) 

HELDROID Distinguish known 
and unknown 
scareware and 
ransomware 
samples from 
goodware 

Provides reliable 
protection against 
many zero-day 
ransomware attacks 

N/A 

 
A slightly different detection method used the modes of ransomware communication in a Software-Defined 
Network (SDN) environment to provide a rapid response to ransomware threats (Cabaj et al., 2017). The proposed 
method observes the network communication patterns of CryptoWall and Locky ransomware families between 
an infected host and an attacker’s command and control server. Threat detection involves an analysis of the HTTP 
message sequences and the sizes of their respective contents. The results of experiments based on actual 
ransomware data showed high detection rates of between 97% and 98% as well as 4–5% false alarm rates. This 
shows that the approach is simple, realist and effective in preventing ransomware attacks. Chen et al., (2018) 
proposed a novel real-time detection system called RansomProber, which analyzes the user interface widgets of 
related activities and the coordinates of users’ finger movements. The technique is suitable for a systematic 
characterization and real-time detection of Android ransomware. The results of the analysis of these samples from 
different perspectives revealed details such as the ransomware scale, classification, and features. The study also 
designed a novel technique for real time detection of encrypting ransomware. The goal is to monitor a device’s 
sensitive files and determine the user’s intention. The technique can accurately and reliably detect whether a file 
encryption activity initiated by users or ransomware. Experimental evaluation showed that proposed method can 
detect abnormal encryption activities before a ransomware causes significant damages. The analysis of runtime 
performance also demonstrated the usability of RansomProber. However, attempt at detecting mobile ransomware 
is constrained by the unavailability of a comprehensive dataset and limited understanding of real-time ransomware 
attack. A related work (Kharraz et al., 2015) proposed a mobile ransomware detection approach known as 
HELDROID to distinguish known and unknown scareware and ransomware samples from goodware in a quick, 
efficient and fully automated manner. The approach monitors abnormal file system behaviour to offer protection 
against a large number of ransomware. It also provides reliable protection against many zero-day ransomware 
attacks by examining I/O requests and protecting master file table in the NTFS file system. A very recent non-AI 
technique addressed the limitations of entropy-based ransomware detection such as misclassification due to high-
level entropy of some legitimate files and impracticality of a wholesome evaluation of large files to detect 
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ransomware due to high cost of such effort (Kim et al., 2022). This was achieved by proposing EntropySA and 
DistSA as byte-frequency-based indicators which explore the properties of “sample areas" (SAs) of suspicious 
files. The discriminant feature used to distinguish a benign file from an infected file is the degree of randomness 
of information in the sampled sub-area of the files. An experimental evaluation of the proposed method showed 
that benign files whose sampled area includes information such as file header have relatively low degree of 
randomness despite the high level of randomness exhibited by the entire file. The main advantage of the approach 
is its ability to detect a ransomware based on each file it attacks. This makes the technique able to provide effective 
and accurate detection of ransomware attacks irrespective of the order in which a ransomware attacks files in the 
system. It is also robust against obfuscating ransomware which hide their behaviour to evade detection. However, 
the approach is unable to record 100% detection of files attacked by the DMA Locker2 ransomware because the 
ransomware places a unique signature string at the beginning of a file in order to evade detection. It is also unable 
to detect smaller (less than 256 bytes) files. 

 Prevention, Mitigation and Recovery Strategies 
It is not only necessary to detect a ransomware attack after it has caused significant damages to data and systems, 
but also important to put strategies in place to prevent attacks from occurring. This makes it critical to devise 
approaches for preventing the occurrence of ransomware attacks and mitigating potential damages caused by 
ransomware. It is also important to ensure recovery of files and systems after attacks without any need to pay 
ransom. One of such methods focuses on preventing ransomware and protecting computer systems by identifying 
and blocking an attack (Patel & Tailor, 2020). The strategy involves fooling an attacker to encrypt a large dummy 
file over a long period of time. This provides sufficient time to render the remaining contents of the file system 
inaccessible to the ransomware. Performance evaluation of the proposed technique in a real-time environment 
showed that the approach is effective against ransomware attacks. A similar study used the behaviour of a system 
under advanced Petya ransomware attack to propose strategies for minimizing the susceptibility of systems and 
organizations to ransomware attacks (Aidan et al., 2018). The approach prevents Petya ransomware attack by 
blocking the server message block (SMB) ports (that is, UDP port 137, 138 and TCP 139, 445) or disabling 
SMBv1. Additional measure includes preventing the execution of perfc.dat and psexec.dat files from sysinternals. 
Perfc.dat and psexec.dat files are created as a result of ransomware attack. It is possible to prevent the creation of 
the ransomware files by self-creating perfc.dat and psexec.dat files and changing their access permissions to 
READONLY. Other mitigation strategies include using Software Restriction Policies (SRP) to disable binaries 
from executing %APPDATA%, %PROGRAMDATA% and %TEMP% paths, as well as restricting malicious 
files by deploying email and web filtering on the network. File- and behavior-based detection methods do not 
have the ability to detect or prevent previously unknown ransomware variants and ransomware which attack 
cloud-based data storage. This challenge was addressed by proposing a machine learning technique for 
ransomware prevention known as file entropy analysis (Lee et al., 2019). The method can retrieve infected files 
that have been synchronized to the backup server whether or not the host system is infected by ransomware. 
Similarly, Du et al. (2022) presented a number of defensive strategies which are able to detect a ransomware 
before it actually attacks an endpoint system. One of such is a hybrid machine learning solution based on 
intelligent KNN and density-based algorithms. The approach integrates data pre-processing and feature 
engineering techniques with KNN algorithm. It has high ransomware attack prediction accuracy of 98%, which 
makes it a suitable anti-malware and anti-ransomware solution. Another method used in the study is random forest 
which records a good accuracy of 99%. The study proposed K-means and DBSCAN clustering algorithms to 
provide effective detection of previously unknown ransomware variants. A very recent preventive solution is the 
system-architecture-based risk transference which relocates sensitive data from the system to highly protected 
storage locations (Sreejith Gopinath & Aspen Olmstead, 2022). This minimizes the susceptibility of such data to 
ransomware attacks. The information is also stored in a context-free manner in order to discourage attackers from 
attempting to hold such data hostage. Experimental results show that the proposed architecture allows for easy 
recovery of a system under ransomware attack.  
 
The method proposed by Gómez‐Hernández et al. (2022) supports early reaction to ransomware incidents and 
reduces damage to files during an attack. It is an enhanced tool which deploys a large number of “honey files” in 
close proximity to sensitive system and application files in order to achieve early detection of and timely response 
to ransomware attacks. The capability of the tool was extended by adapting it to Windows platforms and 
improving the system-wide management of the “honey files” to provide adequate protection of system files. 
Additional enhancements include semi-automation of defence mechanisms against ransomware using dynamic 
white‐/black‐lists, which minimizes the need for human intervention in the event of an attack. WmRmR (weighted 
minimum Redundancy maximum Relevance) is a mitigation strategy used to estimate the importance of dominant 
or most discriminating features in data captured at the onset of ransomware attacks (Ahmed et al., 2022). It is a 
hybrid solution based on the integration of two different techniques namely, enhanced minimum redundancy 
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maximum relevance (EmRmR) and Term Frequency-Inverse Document Frequency (TF-IDF). The approach uses 
TF-IDF to evaluate weights generated by EmRmR algorithm and eliminate noisy features that may impair 
performance. The results of experiments show that the proposed solution has simple implementation, low false 
positive rate and is effective for early detection of ransomware attacks.  
 
A simple technique for easy recovery from ransomware attacks irrespective of the availability of attacker’s tools 
on the victim system to prevent recovery from such attacks has also been proposed (Wecksten, 2016). The study 
revealed that common cypto ransomware attack involves the installation of tools on a victim’s device to make 
recovery from ransomware attack a herculean task. Hence the need for a technique to provide easy recovery from 
ransomware infections by renaming the system tool which handles shadow copies of files. A similar strategy for 
ransomware recovery proposed by Kim et al. (2022) enables a partial (95%) recovery of the master key used by 
attackers to launch Hive ransomware. This was achieved by analyzing the encryption process used by Hive 
ransomware and discovering its vulnerabilities. The result of this effort is the creation of a decryption key for 
recovering files held by the ransomware without the need to obtain the attacker’s RSA private key or pay a ransom 
to the attacker. A very recent recovery method is the novel framework proposed as an efficient technique for 
recovering XML documents that have been compromised by ransomware attack (Al-Dwairi et al., 2022). The 
approach uses the concepts of links to support the distributed storage of different versions of the same file. 
Adequate access control is also put in place to prevent the file versions from unauthorized encryption or deletion. 
Experimental results show that the time required for decrypting an encrypted XML file is directly proportional to 
the actual size of the file before encryption. Generally, files that less than 1 MB requires less than 120 ms and 
decryption of bzip2 encrypted files required the highest CPU utilization. Decrypting zip and gzip encrypted files 
requires almost the same amount of memory (~ 6.8 KBs), while decryption of bzip2 encrypted files increases the 
memory usage to 28 KBs.  Overall, the approach is efficient in terms of storage overhead, processing time, CPU 
utilization, and memory usage.   

 Future Research Directions 
Path enumeration for creation of decoy file proposed by Lalson et al. (2019) takes several hours in very large file 
systems. Hence, there is a need to maintain a balance between the file size and the computation time for creating 
large decoy files. The threshold can be tweaked to suit the peculiarities of each system. For example, a high 
threshold may be used in critical systems to minimize the false positive rate, while home systems may have 
threshold values lower than those of critical systems. Future research works should also consider enhancing the 
technique for detecting multi-stage crypto ransomware attacks suggested by Zimba et al. (2018) to prioritize the 
security of production network devices using a cascaded network segmentation approach. Research effort should 
also concentrate on detecting network-level ransomware attacks because many ransomware now communicate 
with the command-and-control server via encrypted channels such as the HTTPS protocol. The work of Makinde 
et al. (2019) is limited by the fact that the simulation involved few users. A future work should focus on using 
tools for big data analytics to simulate the behaviour of large number of users. The solution proposed by Sheen 
and Yadav (2018) applied class imbalance due to unequal number of samples in ransomware dataset and benign 
dataset. The same technique should be applied on a balanced dataset using the same classifiers and observe the 
outcome. 
 
Although the Deep Packet Inspection technique proposed in Aragom et al. (2016) has 93% accuracy, the model 
currently supports static analysis. It can be extended to handle dynamic analysis by implementing it on a software 
defined network to support real time ransomware detection. Another possible extension is to improve the feature 
selection process applied to pcap files, such that the enhanced method compares the extracted features with those 
obtained from preceding or successive packets in order to obtain a better detection rate. The results obtained from 
the simple MLP network proposed in Vinayakumar et al. (2017) do not represent the actual situation involving 
more complex architecture settings. Future works should focus on using more complex MLP networks to perform 
the same experiments on state-of-the-art hardware in a distributed environment. Zahra and Sha (2017) proposed 
an IoT ransomware detection technique without actual implementation and deployment in a real-world 
environment. The proposed technique should be prototyped and deployed in a real-world IoT environment in 
order to evaluate and refine it. A future work should focus on increasing the accuracy of Randroid proposed by 
Alzahrani et al. (2018) by adding of more samples of malicious images and strings to the ISM database and the 
SSM database respectively. The new images should include logos of governments and icons of law enforcement 
agencies. This will help detect ransomware variants that exploit false positives such as fake FBI notes. Additional 
consideration should be given to the application of text recognition techniques on more images and texts to verify 
the ability of the dynamic analysis component to detect dynamic payloads. Chen et al. (2018) suggested that 
detecting mobile ransomware is constrained by the unavailability of a comprehensive dataset and limited 
understanding of real-time ransomware attack. Future research should consider creating a comprehensive and up-
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to-date dataset of mobile ransomware and developing a deep understanding of real-time ransomware attack against 
mobile devices.  
 
Recent studies also have limitations and gaps which may be explored by future research. Future research based 
on the work of Rani and Dhavale (2022) should consider the integration of the model with Elasticsearch Logstash 
Kibana (ELK) to develop a practical tool for real-life ransomware detection. ELK can serve as the backend for 
filtering and collecting useful log data for the ransomware detection system. The detection system will then 
process logs of suspicious activities to determine whether such events are actually ransomware attacks. The work 
of Ahmed et al. (2022) focused only on the use of static and dynamic features for detecting unknown attacks by 
malicious Android malware. The study can be extended to explore distinct and detailed features of known 
ransomware samples, attacks that can be launched by such ransomware samples, qualitative and economical 
strategies for feature extraction, and malicious feature estimation. Researchers may also propose suitable metrics 
to determine the resistance of ransomware against countermeasures as well as the performance of defence 
mechanisms against ransomware attacks. The inability of the byte-frequency-based indicators proposed by Kim 
et al. (2022) to detect smaller (less than 256 bytes) files also represents an important research problem. This is 
because attackers may evade detection by using small-sized ransomware files to exploit computer systems. The 
approach can also be enhanced to address its inability to detect the DMA Locker2 ransomware. The novel 
Bayesian Neural network known as the Radial Spike and Slab Bayesian Neural Network (Nazarovs et al., 2022) 
requires human intervention for disabling and isolating systems in the event of ransomware attack. Future works 
should explore an enhanced solution which automatically disables systems and prevent access to the network once 
there is a suspected ransomware attack. Techniques which use enhanced feature extraction methods for better 
ransomware detection also require improvements. The two-stage particle swarm optimization proposed by Abbasi 
et al. (2022) requires improvements such as the use of more feature sets in the experimental dataset to capture 
additional behavioral traits such as communication involving critical servers or command and control centre. Also, 
certain future sets may be removed from the dataset and observe the impact of such removal on performance. In 
addition to this, intending researchers may explore the use system call sequences as additional features for 
classifying ransomware into families.  

 Conclusion 
Ransomware attacks have done and are still doing significant damages to computers as well as data and 
information they process. These include unauthorized access, disclosure and destruction of vital, sensitive and 
critical computer and hardware resources. Both individuals and corporations have suffered grave financial losses 
and reputational damages due to ransomware attacks. Hence, several methods have been proposed for accurate, 
timely and reliable ransomware detection techniques. The background discussion on ransomware as well as the 
historical background and chronology of ransomware attacks presented in this study provide readers with the 
much-needed introduction to ransomware detection. The detailed and critical review of recent papers provide 
readers with an up-to-date knowledge of the current trends in automated ransomware detection. This will equip 
readers with the knowledge of the state-of-the-art in automated ransomware detection, prevention, mitigation and 
recovery. Also included in this study is an exposé on future research directions to provide intending researchers 
with open issues and possible research problems in detection, prevention, mitigation of and recovery from 
ransomware attacks.     
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Abstract - The security threats posed by malware make it imperative to build a model for efficient and effective 

classification of malware based on its family, irrespective of the variant. Preliminary experiments carried out 

demonstrate the suitability of the generic LightGBM algorithm for Windows malware as well as its 

effectiveness and efficiency in terms of detection accuracy, training accuracy, prediction time and training 
time. The prediction time of the generic LightGBM is 0.08s for binary class and 0.40s for multi-class on the 

Malimg dataset. The classification accuracy of the generic LightGBM is 99% True Positive Rate (TPR). Its 

training accuracy is 99.80% for binary class and 96.87% for multi-class, while the training time is 179.51s 

and 2224.77s for binary and multi classification respectively. The performance of the generic LightGBM 

leaves room for improvement, hence, the need to improve the classification accuracy and training accuracy 

of the model for effective decision making and to reduce the prediction time and training time for efficiency.   

It is also imperative to improve the performance and accuracy for effectiveness on larger samples. The goal 

is to enhance the detection accuracy and reduce the prediction time. The reduction in prediction time provides 

early detection of malware before it damages files stored in computer systems. Performance evaluation based 

on Malimg dataset demonstrates the effectiveness and efficiency of the hybrid model. The proposed model is 

a hybrid model which integrates XceptionCNN with LightGBM algorithm for Windows Malware classification 
on google colab environment. It uses the Malimg malware dataset which is a benchmark dataset for Windows 

malware image classification. It contains 9,339 Malware samples, structured as grayscale images, consisting 

of 25 families and 1,042 Windows benign executable files extracted from Windows environments.  The 

proposed XceptionCNN-LightGBM technique provides improved classification accuracy of 100% TPR, with 

an overall reduction in the prediction time of 0.08s and 0.37s for binary and multi-class respectively. These 

are lower than the prediction time for the generic LightGBM which is 0.08s for binary class and 0.40s for 

multi-class, with an improved 100% classification accuracy. The training accuracy increased to 99.85% for 

binary classification and 97.40% for multi classification, with reduction in the training time of 29.97s for 

binary classification and 447.75s for multi classification. These are also lower than the training times for the 

generic LightGBM model, which are 179.51s and 2224.77s for the binary and multi classification respectively. 

This significant reduction in the training time makes it possible for the model to converge quickly and train a 

large sum of data within a relatively short period of time. Overall, the reduction in detection time and 
improvement in detection accuracy will minimize damages to files stored in computer systems in the event of 

malware attack. 

Keywords: Anomaly-based Detection, LightGBM, Machine Learning, Malware Detection, XceptionCNN. 
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1 Introduction 
Malware, also known as malicious software can be described as any instruction set that is compromised to alter a 
computer system and impose harm on users and organizations (Abusitta, 2021). A malware is categorized based 
on its activities and execution process (Singh & Singh, 2020). The internet has made great contributions in 
communication, however, it has consequently led to the rise in malware distribution. The developments of web 
services with increasing speed have made productive advantage available to end-users. The number of people 
using the Internet was about two billion in 2010 (Chang et al., 2013). A report from Dasient, and cited by Chang 
et al. (2013), suggests that the number of malware delivering websites doubled between 2009 and 2010. “There 
were 3.424 billion people using the Internet by July 2018” (Wang, 2018). Carrying out activities on an infected 
website is a sufficient pathway for an attacker to take advantage of the weakness of a browser.  

Malware analysis is essential in order to build successful malware detection techniques. The focus of malware 
analysis is to understand the intent and activities of malware (Wong et al., 2021). Malware analysis may be static, 
dynamic, or hybrid depending on the way and manner it is carried out. Analysts use static analysis, dynamic 
analysis or a combination of both methods (hybrid) to understand and explain the mode of operation of malware 
and the effects on the system (Wong et al., 2021).  

Malware detection is the process of recognizing malicious sets of instruction from benign ones, so that a defense 
can be built, in order that the system can be protected or recovered from any malicious effects (Landage & 
Wankhade, 2013).  Malware detection techniques identify malicious codes and prevent the system from its effect 
and possible loss of information. A malware detector uses malware detection techniques to identify activities of 
malware. Figure 1 shows malware detection techniques and approach as presented by Kumar (2017).  

  

 

 

 

 

 

Figure 1: Malware detection techniques (Kumar, 2017) 

1.1 Signature-Based Detection 

A signature is a chain of information that describes the activities of a particular malware (Damodaran et al., 2017). 
In Signature-Based Detection approach, unique signatures are detached from captured malware files. The 
signatures are further used to detect malware with similar characteristics. Signature-based approach is suitable for 
generic malware which do go through significant behavioural modification (Abusitta, 2021). However, attackers 
easily manipulate malware signatures in order not to be detected by antivirus software (Abusitta, 2021). Signature-
based models are very effective in  known malware detections, but, it is unable to identify new ones (Bazrafshan 
et al., 2013). 

1.2 Anomaly-Based Detection 

In Anomaly-based detection; the behaviors of malware during runtime are studied in a training phase, after which 
the executable is tagged as malicious or benign during testing phase based on extracted patterns in the training 
phase (Damodaran et al., 2017). Behavior-based method is capable of detecting new and unknown malware and 
malware that uses obfuscation techniques. The main limitations of the behavior-based detection are: a substantial 
False Positive Rate (FPR) and unnecessary testing time (Bazrafshan et al., 2013).  
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Malware issue has developed into a serious issue in computing. According to Gibert et al. (2020), machine 
learning technique is the best technique that is needed to protect a computer system due to rise in malware attack. 
Using malware images makes malware classification easier (Pant & Bista, 2021). Image-based techniques are 
robust against many types of obfuscations (Bhodia et al., 2019). Omitting irrelevant features fasten and make 
algorithm to perform better (Şahin et al., 2021). While LightGBM technique is the best of the Gradient Boosting 
Decision Tree Algorithms (GBDT) and has demonstrated its suitability for malware detection (Abbadi et al., & 
Pan et al., 2020), XceptionCNN is an effective and less complex neural network for robust feature extraction 
(Shaheed & Zhang, 2022).  
 
We conducted a preliminary study which reveals the prediction time of the generic LightGBM to be 0.08s for 
binary class and 0.40s for multi-class on the Malimg dataset with 10,381 malware samples. The preliminary study 
further reveals a classification accuracy of 99% (TPR), with training accuracy of 99.80% for binary classification 
on Malimg dataset and 96.87% for multi classification on the same malware samples. A growth in data size may 
lead to corresponding increase in time of prediction. Although the classification accuracy obtained from our 
preliminary experiment seems to be good, it could be further improved in order to enforce the effectiveness of the 
algorithm. The prediction time, performance accuracy, and training time obtained from the preliminary 
experiment also leave room for improvement. Hence, there will be a need to make the classification accuracy of 
the model better for effective decision making, reduce the prediction time for efficiency, and improve the 
performance and accuracy for effectiveness on larger samples. Our study, which hybridized XceptionCNN with 
LightGBM has the following contributions and novelty: 

• Improved training accuracy of the model for effective decision making.  
• Reduction in the detection time and improvement in detection accuracy, which will minimize damages 

to files stored in computer systems in the event of malware attack. 
• Reduction in the training time, which will enable the model to converge quickly and train a large amount 

of data within a relatively short period of time. 
• The proposed model can detect both known and new malware variants. 
• The training accuracy of the proposed model is higher than those of the existing models. 
• This study is the first to compute and improve the detection time of the LightGBM algorithm  

This study proposes a hybrid model based on LightGBM and XceptionCNN algorithms. The aim is to improve 
the efficiency and effectiveness of Windows malware detection. Our preliminary study revealed that the 
LightGBM technique which is the best of the GBDT algorithm, has proven to be suitable for Windows malware 
detection (Abbadi et al., 2020; Pan et al., 2020) and  can be improved for effective and efficient malware detection. 
ML-based classifiers use underlying features to distinguish between malicious and benign applications, and 
detecting changes in those features when malicious modifies itself. Malware possess certain features which 
Machine learning algorithm can learn and use to predict if an executable file is a malware or benign sample. Such 
that, if such an executable file behaves in a certain way or attempts to modify the system or access privilege 
instructions, they may be classified as malware or benign based on their activities. Our technique can take a 
number of these features as input, learn the properties of these features, then, build a model for prediction of new 
samples. Using the mathematical function!:#	 → &, where m is the given malware and x is their corresponding 
malware family, the model can also detect new variants of malware. This study will contribute to advances in 
malware detection. The proposed solution can be applied to similar studies in future.  
 
The rest of this paper is organized as follows: Section 2 presents related work in malware detection, while Section 
3 discusses experiments and implementation details. Section 4 covers the findings of our study and the 
implications of those findings, while Section 5 summarizes the study and draws conclusions based on the achieved 
objectives. 
 

2 Related Work 
Ke et al. (2017) posited that GBDT is one of the machine learning classifiers which is extensively utilized as a 
result of its effectiveness. LightGBM is a new GBDT algorithm with Gradient-based One-Side Sampling (GOSS) 
and the Exclusive Feature Bundling (EFB) (Ke et al., 2017). The GOSS and EFB makes LightGBM considerably 
effective than eXtreme Gradient Boosting (XGBoost) with regards to speed and memory usage (Ke et al., 2017). 
In an attempt to study user’s click for click fraud detection, Minastireanu and Mesnita (2019) used the 
experimental test for LightGBM using a public dataset available on Kaggle. Their results on the GBDT Algorithm 
achieved 98% accuracy. In a different study, using the N-Gram model, Venkat et al. (2020) proposed a medicine 
approval system. In an attempt to boost the efficiency of the medicine approval system, a LightGBM model was 
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used to carry out medication examination. Ju et al. (2019) observed that single-convolution model was ineffective 
for wind power prediction; hence, they proposed a solution which integrates LightGBM algorithm with 
convolutional model to enhance the prediction accuracy and reliability. A study by Fonseca et al. (2017) showed 
that training LightGBM algorithm is faster than training XGBoost. The study did not compare the algorithms 
based on their classification time. In further study, using dataset made available through Kaggle’s competition, 
Machado et al. (2019) evaluated the accuracy of two GBDT Models: XGBoost and LightGBM algorithm in 
predicting credit card customers’ reliability status. The study assessed customer loyalty prediction accuracy 
through Root Mean Square Error and found that LightGBM achieved better than XGBoost. LightGBM-based 
method performed better than most generic methods (such as Support Vector Machine, XGBoost, or Random 
Forest) when applied fraud detection (Huang, 2020). Sun et al. (2020) also used LightGBM to combine the daily 
data of 42 kinds of primary crypto-currencies with key important pointers in order to predict the prices of crypto-
currencies and obtain relevant information about the market. Their experimental results show that the robustness 
of the LightGBM model is better than the other models. The time complexity for the LightGBM is calculated as 
O(#Data x #Features) (Meidan et al., 2018). A malware classification approach converted malware binaries to 
grayscale images before using a trained CNN to build a model for classifying malware according to its family 
(Kalash et al., 2018). A deep learning architecture applied to Malimg malware dataset and Microsoft dataset has 
performance accuracy of 98.52% for malign dataset and 99.97% accuracy for Microsoft datasets (Kalash et al., 
2018). In a similar study carried out by Bhodia et al. (2019), their deep learning architecture which was also 
experimented on the Malimg malware dataset yielded a training accuracy of 98.39% for binary classification and 
94.80% for multi-classification. A study by Lo et al. (2019) classified malware into families based on the 
integration of deep CNN with Xception model. Experimental results show that the training accuracy of the 
Xception model on the Malimg datasets is 99.37%. The study did not evaluate the classification accuracy and 
prediction time of the model. Hussain (2019) proposed a hybrid technique based on gradient boosting classifier. 
The method used information such as target of applications, privileges, static data and dynamic data to detect 
malicious application. The approach has a good detection accuracy of 96%. This result still leaves room for 
improvement. In another study, Nawaz et al. (2021) performed hybrid analysis using Android application features 
which include permissions, targets, and network features. The study extracts permissions and intent from a 
suspected file. It also obtains network related information from java files. The use of Info Gain as a feature 
selection method results in precision of 0.99. The study did not apply their model to Windows malware domain.  
An improved solution uses a small set of highly discriminant features for automated malware detection (Fang et 
al., 2019). The goal is to address the limitations of classical feature selection techniques. DQFSA interacts with 
the feature space and uses Q-learning to train an agent in order to achieve high accuracy. The proposed approach 
performs better than existing baseline feature selection methods for malware detection using small feature sets. 
The study did not apply the framework to other selection tasks. In an attempt to construct a detection framework, 
Chen et al. (2020) used the characteristics of data and features of the attention mechanism to construct a sliding 
local attention mechanism model (SLAM). The performance accuracy of the proposed model is 0.9723. The study 
did explore the used of the technique for malware detection. Bensaoud and Kalita (2022) proposed a novel deep 
learning method for classifying malware images for effective and efficient malware detection. Experimental 
results based on about 100,000 benign and malicious PE, APK, Mach-o, and ELF show that the method has the 
highest accuracy of more than 99.87%. The method is also effective at detecting different malware evasion 
techniques. The detection time of the model was not considered. Pan et al. (2020) used Logistic Regression, KNN 
and LightGBM to build models based on datasets of heartbeat and threat reports. The results obtained from the 
respective models show that LightGBM has the highest accuracy with AUC of 0.720687. The study attempted to 
enhance the training accuracy of the models, however, the detection time and detection accuracy were not 
considered. Using a custom model based on convolutional neural network with a benchmark dataset (Malimg 
dataset), Pant and Bista (2021) achieved 99.64% training accuracy while classifying malware into their respective 
families. The study did not consider the detection time of the model. The study also did not evaluate the model 
based on binary classification of the malware. A preliminary study conducted by the authors of this article reveal 
that the LightGBM achieves 0.08s prediction time for binary classification on Malimg dataset with 10,381 
malware samples and a prediction time of 0.40s for multi classification on the same malware samples. The 
preliminary experiments reveal that the classification accuracy of the generic LightGBM machine learning 
algorithm is 99% TPR. From the literature review, no study has deemed it fit to improve the classification accuracy 
or reduce the prediction time of the LightGBM algorithm for windows malware detection.   
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3 Methodology 
The research process flow in Figure 2 depicts the sequence of activities required to accomplish the overall 
objectives of the study. 
 

 

 

 

 

 

 

 

 
 

Figure 2: Research process flow 

3.1 Data Collection 

We used the Malimg malware dataset which contain 9,339 of Malware samples structured as grayscale images 
consisting of 25 malware families. Each of the malware families is made up of varying number of samples across 
the dataset. Malimg dataset is one of the most commonly used datasets for malware findings. The Malimg dataset 
was created by reading malware binaries into an 8-bit unsigned integer consisting of a matrix M ∈ Rm×n (Nataraj 
et al., 2011). The matrix could be seen as image (grayscale) having values within the range of [0, 255], where 0 
represents black, 1 represents white. In addition, benign dataset used are 1,042 windows benign executable files 
extracted from windows environment and further converted into images. Table 1 presents a breakdown of the 
Malimg dataset into families and their variants. 
 

Table 1: The Malimg Dataset (Nataraj et al., 2011). 

NO. Family Name Family Samples 
1 Adialer.C dialer  122 
2 Agent.FYI  Backdoor  116 
3 Allaple.A  worm  2,949 
4 Allaple.L  worm  1,591 
5 Alueron.gen!J  Trojan 198 
6 Autorun.K  worm  106 
7 C2LOP.gen!g  Trojan 200 
8 C2LOP.P  Trojan  146 
9 Dialplatform.B  Dialer 177 
10 Dontovo.A  Trojan Downloader 162 
11 Fakerean  Rogue 381 
12 Instantaccess  Dialer 431 
13 Lolyda.AA1  PWS  213 
14 Lolyda.AA2  PWS  184 
15 Lolyda.AA3  PWS  123 
16 Lolyda.AT  PWS  159 
17 Malex.gen!J  Trojan  136 
18 Obfuscator.AD  Trojan Downloader 142 
19 Rbot!gen  Backdoor 158 
20 Skintrim.N  Trojan  80 
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21 Swizzor.gen!E  Trojan Downloader 128 
22 Swizzor.gen!I  Trojan Downloader 132 
23 VB.AT  worm  408 
24 Wintrim.BX  Trojan Downloader 97 
25 Yuner.A  worm  800 
 Total  — 9,339 

 
The analysis of the families and variants of the Malimg Dataset with a total of 9,339 dataset (Nataraj et al., 2011).  
 

3.2 Data Preprocessing 

The Malimg dataset used consists of images, hence, there was no preprocessing done on the dataset. We directly 
passed the images that consist of the dataset into XceptionCNN for automatic feature extraction. Thereafter, we 
saved the extracted features as CSV and passed it for classification and training. We also separated the dataset 
into training and testing sets. Since our model require images as input, we further converted the windows benign 
executable file to images using ‘exe2image’ converter, a digital image converter software available on github 
(Malith, n.d.), operated on windows. 
 

3.3 Feature Extraction 

A total of 10,381 images of two (2) classes were used for the binary classification and the same number of images 
of twenty (26) classes were used for the multi-classification. We applied an Advanced Convolutional Neural 
Network model (Xception) which extracted the image features with distinctive pattern automatically from the 
dataset, and the extracted features were saved as CSV files. Malware that share the same family are very similar 
in layout and image (Nataraj et al., 2011). 

3.4 Training and Testing 

We trained the models on 100 epochs using the following hyperparameters : learning rate of 0.03 & Max-dept of 
10. We used a total of 10,381 data samples. We randomly selected 80% and 20% of the samples in each of the 
families for training and testing respectively, resulting in 8,304 and 2,077samples used for training and testing 
respectively. The LightGBM was used for training and testing. 
 

3.5 LightGBM Classifier  

LightGBM is a new gradient boosting framework. It is a decision tree algorithm which supports many algorithms 
like Gradient Boosting Machine (GBM), Gradient Boosting Decision Tree (GBDT), Gradient Boosted Regression 
Tree (GBRT), and Multiple Additive Regression Tree (MART). It is has high level scalability, precision, and 
efficiency (Ke et al., 2017). It is suitable for classification and other machine learning activities (Abbadi et al., 
2020). It applies a leaf-wise splitting of the tree based on the best fit, unlike other boosting algorithms which use 
depth-wise or level-wise splitting. The leaf-wise growth of LightGBM reduces the level of loss, which results in 
faster speed and higher accuracy than other boosting algorithms. Figure 3 shows the leaf-wise tree growth structure 
of the LightGBM algorithm. 
 
 
 

 

 

 

Figure 3: LightGBM Architecture (Khandelwal, 2017) 

Figure 3 shows the leaf-wise tree growth (architecture) of the LightGBM algorithm as presented by Khandelwal 
(2017).  
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Leaf-wise splits results in high complexity and overfitting, which can be addressed by using a parameter known 
as max-depth to indicate how deep the splitting should be (Microsoft, 2021). LightGBM algorithm was proposed 
by Su et al. (2018) and has been applied in different studies such as Abbadi et al. (2020) and Fonseca et al. (2017). 
Abbadi et al. (2020) used LightGBM in IoT malware detection. LightGBM uses Gradient-based One-Side 
Sampling (GOSS) and the Exclusive Feature bundling (EFB) (Sharma, 2018) to minimize the complexity of 
histogram building (O(data*feature) ). This is achieved by using GOSS and EFB to reduce the sampled data and 
feature size. Hence, the complexity becomes (O(data2 * bundles)) where data2 < data and bundles << feature 
(Sharma, 2018). LightGBM algorithm works on a supervised training set to compute an approximate function that 
minimizes the value of a specific loss function ((*, !(&)) as expressed: 

             !- = #/01*, &((*, !(&))                      (1) 

where & represents a set of random input variable and * represents a random output or response variable.  
LightGBM computes an approximation of the final model by combining multiple 2 regression trees 
∑ !!(4)"
!#$ 	which is expressed as    

                                          !"(&) = 	∑ !!(&)%
!#$                             (2) 

The regression trees could be expressed as 5&((),6 ∈ {1,2, … , ;}	where	; denotes the number of leaves, 6 represents 
the decision rules of the tree and 5 is a vector that denotes the sample weight of leaf nodes. Hence, LightGBM 
would be trained in an additive form at step = as follows: 

             ɼ! = ∑ ((*+,?!,$		@&+,A 	+	!!,	(&+,)).
+#$                 (3) 

In LightGBM, the objective function is rapidly approximated using Newton’s method. After removing the 
constant term in the last equation for simplicity, the formulation can be represented as  

                 ɼ! ≅ ∑ (D+!!@&+,A +	
$

/
ℎ+!!/	(&+,)).

+#$                  (4) 

where D+ and ℎ+	denote the first and second-order gradient statics of the loss function.  
 
Let F0 denote the sample set of leaf ;, (4) could be expressed as  

             ɼ! = ∑ ((	∑ D+)50+∈2! +		$
/
G∑ ℎ+ + ʎ)	50/+∈2! I)0

0#$             (5)  

For a certain tree structure6(&), the optimal leaf weight scores of each leaf node  50∗ and the extreme value of  
ɼ! can be expressed as:  

              ""∗ =	−
∑ %!!∈#$
∑ &!'ʎ!∈#$

                        (6) 

              	
ɼT∗=	−

1
2	∑

"∑ $%%∈'! (
∑ )%*ʎ%∈'!

j
j=1

2                         (7) 

where 
ɼ5		∗ is the scoring function that measures the quality of the tree structure q. Finally, the objective function after 
adding the split is:  

              G =	 $
/
K
6∑ 7%%∈', 8

-

∑ 9%:ʎ%∈',
+	

6∑ 7%%∈'. 8
-

∑ 9%:ʎ%∈'.
− (∑ 7%%∈' )-

∑ 9%:ʎ%∈'
M             (8) 

where F< and F= are the sample sets of the left and right branches respectively. Unlike traditional GBDT based 
techniques such as XGboost and GBDT which grow trees horizontally, LightGBM adopts a vertical approach to 
grow the tree, which makes the algorithm effective for handling large datasets and features. LightGBM increases 
training performance and minimizes memory requirements by using algorithms based on the histogram. The 
advantages of LightGBM as presented by Khandelwal (2017) are as follows: 
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i. Higher efficiency: It uses histogram-based algorithm to convert continuous feature values into discrete bins 
which results increases the speed of training a dataset. 

ii. Reduced memory requirements - the replacement of continuous values with discrete bins results in low 
memory utilization. 

iii. Higher accuracy than similar techniques – by using leaf-wise instead of level-wise splitting to compute more 
complex trees.  

iv. Suitable for large datasets – performs well on large datasets and minimizes the training time considerably 
when compared to XGBOOST. 

v. It supports parallel learning. 
 

3.6  Architecture of XceptionCNN 

Xception model was developed using an 'extreme' interpretation of Google’s Inception model (Chollet, 2017). Its 
structure is a linear stack of 36 independent convolution layers which use depth-wise splitting method and are 
linked together by residual connections. The layered stack is responsible for feature extraction on the network. 
The 36 independent convolution layers are grouped into 14 modules, which are joined by linear residual 
connections, with the exception of the first and last modules (Chollet, 2017). XceptionCNN diagrammatic 
representation is shown in figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: XceptionCNN Architecture (Chollet, 2017) 

 

Figure 4 shows the Xception architecture. It is divided into 3 components (entry flow, middle flow and exit flow), 
14 modules and 36 convolutional layers. It uses the layers with a depth of 126 to perform feature extraction. Its 
input format is a 299x299 RGB image. A global average pooling layer is substituted for the fully-connected layer 
to reduce the parameter size, while the softmax function is used to predict the output. The flow of data from the 
entry flow to the middle flow is repeated eight times before it finally passes through the exit flow. The number of 
convolutional layers in the entry flow, middle flow and exit flow are 8, 8*3= 24 and 4 respectively. The model 
uses depth-wise separable convolution to reduce the operational cost of the convolution process.  

3.7 Design of the XceptionCNN - LightGBM Experiments  

To reduce the prediction time and take advantage of the efficiency of XceptionCNN, we combine XceptionCNN 
with LightGBM. We use the XceptionCNN to extract features automatically; it uses less resource and time as 
compared to the already available methods. The XceptionCNN is hybridized with the LightGBM model. We 
directly passed the images that comprise the dataset into XceptionCNN model for automatic feature extraction, 
thereafter, saved the extracted features as CSV and passed it to the LightGBM model for classification and 
training.  

In order to demonstrate that the XceptionCNN-LightGBM can reduce prediction time and training time, improve 
the performance and improve the training accuracy, experiments with XceptionCNN-LightGBM were conducted. 
We compared XceptionCNN-LightGBM models with the generic LightGBM models (preliminary experiment) to 
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verify that using XceptionCNN-LightGBM can reduce prediction time and training time, improve classification 
accuracy and training accuracy. We also compared our results with similar studies to show that our model 
performs better on the Malimg dataset than the previous ones.   

In our experiments, we chose LightGBM because of its better accuracy than any other boosting algorithm 
(Khandelwal, 2017). And also because of, its performance and effectiveness in Robust Intelligent Malware 
Detection as studied by (Abbadi et al., 2020). Similarly, we chose XceptionCNN because of its efficiency in 
extracting image features automatically, it is less time consuming and effective (Lo et al., 2019). Figure 5 shows 
our approach in accomplishing our enhanced LightGBM model. 

 
 
 
 
 
 

 
 

 

    

Figure 5: Design of the Proposed XceptionCNN-LightGBM model 

3.8 Performance Evaluation  

A Confusion matrix N x N (where N is the number of target classes) is used to evaluate the performance of the 
proposed model. A 2 x 2 matrix is required to perform binary classification. The confusion matrix is used to 
evaluate the ability of our model to classify the data based on its assigned labels. Each Cmn is the data instances 
which belong to group m (true label) and predicted belonging to group n (predicted label) (Harikrishnan, 2019). 
C00, C01 and C10 denote the number of true negatives, false positives, and false negatives respectively.  

The basic terminologies used for defining Confusion Matrix include (1) True Positive (TP), which refers to the 
point at which the predicted positive value matches the real value; (2) True Negative (TN), when the predicted 
negative value matches the real value; (3) False Positive (FP) - where the real value is negative but the model 
predicted positive (also referred to as Type 1 error); and (4) False Negative (FN) – a situation where the real value 
is positive but the model predicted negative (commonly referred to as Type 2 error).  
 

3.8.1 Evaluation Metrics 

Evaluation metrics assess the quality of machine learning model in order to obtain necessary feedback and 
determine its effectiveness and efficiency.  We explain the metrics used in evaluating our models below : 

i. Accuracy: The machine learning model accuracy for a given classification task is given as 
>?@AB%CDEC%%BF!G%BH+F!+C.

"C!IJ>?@AB%CDG%BH+F!+C.KIHB
 

             Accuracy  =   ">:"G

">:LG:"G:L>
                    (9) 

 Where, TN, TP, FN, and FP represent True Negative, True Positive, False Negative and False Positive data 
points respectively.  

ii. True Positive Rate: True Positive Rate corresponds to the proportion of positive data points that are 
correctly predicted as positive, with respect to all positive data points.  

             True Positive Rate (TPR) = "G

"G:L>
                   (10) 
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 TP and FN are as described in (9). 

iii. False Positive Rate (FPR): False Positive Rate corresponds to the proportion of negative data points that 
are mistakenly predicted as positive, with respect to all negative data points.  

             False Positive Rate (FPR) =  LG

">:LG
                  (11) 

 TN and FP are as described in (9). 

iv. Precision: used to measure the positive patterns that are correctly predicted from the total predicted patterns 
in a positive class (Hossin, 2015). It is calculated as the ratio of the correct positive results to the number of 
positive results predicted by the classifier.   

              Precision = "G

"G:LG
                        (12) 

 TP and FP are as described in (9). 

v. Recall - used to measure the fraction of positive patterns that are correctly classified (Hossin, 2015). It is 
the number of correct positive results divided by the number of all relevant samples (all samples that should 
have been identified as positive).  

               Recall =  "G

"G:L>
                           (13) 

 TP and FN are as described in (9) 

vi. F1 Score: measures the accuracy and effectiveness of a classifier (Mishra, 2018). The value ranges between 
0 and 1. A high F1 score indicates that the model has good performance. It is calculated as the Harmonic 
Mean of precision and recall. it can be expressed mathematically as: 

             F1 Score =  2 * MNOPQRQST∗UOPVWW
MNOPQRQST	:	UOPVWW

                   (14) 

vii. Training Time (TT): The training time of a model is the total amount of time required for a model to be 
completely trained. It is the difference between the end time and the start time of training the model. 

               TT =   EndTime(ET) – StartTime(ST)               (15) 

3.9 Implementation Environment 

We conducted experiments on Google Co-laboratory (COLAB) environment with TPU v3, 32GB HMB. COLAB 
is a machine learning education and research platform based on Jupyter Notebook (Carneiro et al., 2018). It is 
pre-configured with necessary machine learning and artificial intelligence libraries, such as TensorFlow, 
Matplotlib, and Keras. It provides a CPU, GPU and TPU accelerated Python 2 and 3 runtime.  
 

4 Results and Discussion 
We performed two experiments involving the Malimg dataset, with binary/multi classification level, using hybrid 
(XceptionCNN - LightGBM) learning technique. In this section, each experiment will be discussed in detail and 
results will be presented for the two separate experiments. Each experiment represents the Malimg dataset, 
binary/multi classification level. The results from our preliminary LightGBM experiments on the Malimg malware 
dataset are presented in Table 2.  

Table 2 presents the results (binary & multi-class) obtained from our preliminary experiment using LightGBM 
Algorithm.  
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Table 2: Results of LightGBM (Preliminary) Experiments 
 
 

Metric 

Binary Multi-Class 

Recall 99.80% 96.87% 
Precision 99.80% 96.75% 
F1_Score 99.80% 96.51% 
Training Accuracy 99.80% 96.87% 
Training Time 179.51s 2224.77s 
Prediction time 0.08s 0.40s 

For the binary classification results in Table 1, training time of 179.51s means the model spent a total of 179.51s 
for training. It obtained a training accuracy of 99.80%, a precision of 99.80% which is the positive patterns 
correctly predicted from the total predicted patterns in a positive class, and a recall of 99.80%, which means 
99.80% fraction of positive patterns, were correctly classified. The Harmonic Mean between this precision and 
recall which is the F1_score, is 99.80%. The greater the F1 Score, the better the performance of the model. The 
corresponding multiclass model spent a total of 2224.77s of training time, with training accuracy of 96.87% and 
a precision of 96.75%, which is the positive patterns correctly predicted from the total predicted patterns in a 
positive class, with a recall of 96.87%, which implies 96.87% fraction of positive patterns were correctly 
classified. The Harmonic Mean between precision and recall which is the F1 Score is 96.51%. Similarly, the 
greater the F1 Score the better the performance of the model. The prediction time of 0.08s and 0.40s for binary 
and multi classification respectively show the time taken for predictions to occur. 

4.1 Experiments on XceptionCNN – LightGBM   

In these experiments, we improved the LightGBM model by hybridizing it with XceptionCNN. We installed 
LightGBM as an independent model on the colab notebook for implementation. 

4.1.1 Binary Classification 

Binary classification is used to distinguish malware from benign samples. We created the malware class by placing 
all Malimg families into one malware set. There are 1042 benign samples which are converted to images.  
 

4.1.2 Multi-Classification  

We also used the XceptionCNN – LightGBM algorithm to classify malware samples into distinct families. It is a  
multi-classification problem consisting of  26 classes, The actual Malimg dataset consist of 25 malware families, 
while the benign set is considered an additional “family” resulting in a total of 26 classes. We present the results 
obtained from our hybrid experiments in the Table 3. 

Table 3: Results of XceptionCNN – LightGBM Experiments 

 
 

Metric 

Binary Multi-Class 

Recall 99.85% 97.40% 
Precision 99.85% 97.29% 
F1_Score 99.85% 97.29% 
Training Accuracy 99.85% 97.40% 
Training Time 29.97s 447.75s 
Prediction time 0.08s 0.37s 

 
Table 3 presents the results (binary & multi-class) obtained from our experiments using our hybrid model.  

For the binary classification results in Table 3, training time of 29.97s means the model spent a total of 29.97s for 
training. It obtained a training accuracy of 99.85%, a precision of 99.85% which is the positive patterns correctly 
predicted from the total predicted pattern in a positive class and a recall of 99.85%, which means 99.85% fraction 
of positive pattern were correctly classified. The Harmonic Mean between this precision and recall, which is the 

Classification 

Classification 
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F1_score is 99.85%. The greater the F1 Score the better the performance of the model. The corresponding multi-
class model spent a total of 447.75s training time, with training accuracy of 97.40% and a precision of 97.29% 
which is the positive patterns correctly predicted from the total predicted patterns in a positive class. A recall of 
97.40% was obtained, which means 97.40% fraction of positive patterns were correctly classified. The Harmonic 
Mean between precision and recall which is the F1 Score is 97.29%. Similarly, the greater the F1 Score the better 
the performance of the model. The prediction time of 0.08s and 0.37s for binary and multi classification 
respectively show the time and how fast predictions occur. 

4.2  Comparison of Results 

The results in Table 3 are comparable to those obtained in our generic LightGBM preliminary experiment (Table 
2) and serves to confirm our hybrid model implementation. Table 4 shows the results comparison. 

Table 4: Results Comparison 
 

 LightGBM (Preliminary 
Experiment) 

Xception – LightGBM 

                Classification 
 
Metric 

Binary Multi-Class Binary Multi-Class 
 

Recall 99.80% 96.87% 99.85% 97.40% 
Precision 99.80% 96.75% 99.85% 97.29% 
F1_Score 99.80% 96.51% 99.85% 97.29% 
Training Accuracy 99.80% 96.87% 99.85% 97.40% 
Training Time 179.51s 2224.77s 29.97s 447.75s 
Prediction time 0.08s 0.40s 0.08s 0.37s 

 
Table 4 presents the results obtained from the various training techniques used. This study shows that it is effective 
to combine pre-trained XceptionCNN model with LightGBM algorithm to improve detection and classification 
of windows malware. It leverages on the strengths and benefits of XceptionCNN (Shaheed & Zhang, 2022) and 
the LightGBM algorithm (Abbadi et al., 2020). Comparing the experimental results obtained in this study with 
the preliminary experiments, Table 4 shows that combining the pre-trained XceptionCNN model with LightGBM 
obtains better classification accuracy than applying the generic LightGBM algorithm. Results clearly indicate that 
extracting image features using XceptionCNN and performing classification using LightGBM provides the best 
performance for malware detection. In order to evaluate our model, we chose Accuracy, Precision, F1-score, 
Recall, Training time and Detection time as evaluation criteria. From the results of these experiments in Table 4, 
we can see that our model achieves a good performance result compared to the preliminary experiments based on 
the generic LightGBM algorithm. Although the detection time of the binary class looks the same with the 
LightGBM, figure 7 shows that our hybrid approach outperforms it in terms of detection accuracy of 100%. This 
is due to the use of pre-trained XceptionCNN model. XceptionCNN extracted fewer misleading features than the 
generic LightGBM. Hence, fewer misleading data improves modeling accuracy. 

4.3 Confusion Matrix  

We also present the confusion matrix for our experiments in Figure 6 and Figure 7, to show the improved 
classification accuracy of our XceptionCNN – LightGBM algorithm. 

Figure 6 shows the classification accuracy of the generic LightGBM model. It shows a total data point of 2,077, 
which corresponds to the 20% (testing data) of the total dataset. The generic LightGBM model performed 
reasonably well in this malware classification, correctly identifying 99% of the malware samples (True Positive 
Rate of 99%). 

The classification accuracy of the hybrid model is presented in Figure 7. It shows a total of 2,077 data points, 
which correspond to the 20% (testing data) of the total dataset. Our hybrid model shows an improved classification 
accuracy of 100% True Positive Rate. This means our model correctly identifies 100% samples that are truly 
malware. 
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Figure 6: Generic LightGBM Confusion matrix 
 
 

 

 

 

 
 
 
 
 
 
 
 

Figure 7: XceptionCNN –LightGBM Confusion Matrix 
 

4.4 Comparison with Related Works 

In Table 5, we compare our method with similar studies using the Malimg dataset for Windows Malware detection. 
Our results maintain higher accuracy than all the approaches in the related work. Our hybrid approach further 
maintains 100% TPR (see Figure 7).  

Table 5: Comparison with Related Works. 
 

Training Techniques Classification Training Accuracy 
LightGBM (Preliminary Experiment) Binary 99.80% 

Multi-Class 96.87% 
XceptionCNN -LightGBM (Ours) Binary 99.85% 

Multi-Class 97.40% 
M-CNN (Kalash et al., 2018) Binary 98.25% 
DL (Bhodia et al., 2019) Binary 98.39% 
XceptionCNN (Lo et al., 2019) Binary 99.37% 

Multi-Class 94.80% 
 

199 2 

2 1874 

223 3 

0 1851 
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The results as presented in Table 5 show that the XceptionCNN – LightGBM model is more effective and robust 
than previous solutions.   
 
The XceptionCNN – LightGBM model accepts image data as input. The Malimg dataset is available publicly as 
benchmark Windows malware image dataset used in many studies for image based malware classification.  Many 
machine learning and deep learning algorithms have been presented to develop models for effective malware 
detection. In this study, we combined XceptionCNN and LightGBM algorithms for binary and multi classification 
approach for effective and efficient malware detection. The proposed approach was compared with current 
methods in the literature. Table 5 summarizes the comparison of our performance results with current methods in 
the literature in terms of Training accuracy. Our model outperforms the state–of–the–art approaches with the best 
training accuracy. These significant improvements are attributed to the usage of the pre-trained XceptionCNN 
model and the LightGBM algorithm which aided in producing an excellent outcome. This is because 
XceptionCNN which is a pre-trained model for image based feature extraction, extracts the best image features 
needed for training the model by the LightGBM algorithm. The XceptionCNN model extracted adequate and less 
redundant image features from the dataset which were further trained by LightGBM. Less redundant data means 
fewer tendencies to make decision based on noise, reduced overfitting and improved robustness. Similarly, 
Quality training using the LightGBM algorithm produces a highly reliable model, resulting in fast and accurate 
classification.  
 

5 Conclusion 
This study proposed XceptionCNN – LightGBM model for Windows malware detection. The proposed hybrid 
technique addresses the limitations of the generic LightGBM algorithm in terms of classification accuracy, 
prediction time, training accuracy and training time. The model was tested on 9,339 malware samples across 25 
malware families and 1,042 benign samples. Preliminary experiments based on the generic LightGBM algorithm 
show a classification accuracy of 99% TPR with prediction time of 0.08s and 0.40s for binary and multi 
classification respectively. Experimental results show that the hybrid technique provides improved classification 
accuracy of 100% and reduced prediction time of 0.08s and 0.37s for binary and multi classification respectively. 
The training accuracy improved by 0.5% and achieved a reduced training time of 29.97s from 179.51s for binary 
classification and 447.75s from 2224.77s for multi classification. The practical implication of this study is that the 
hybrid approach provides accurate and reliable detection of malicious software that attack computer systems and 
compromise the confidentiality, integrity and availability of information stored in them. The reduction in detection 
time provides early detection of a malware before it causes significant damage to files stored in computer systems. 
This minimizes the losses an organization will suffer in case of malware attack. The reduction in the training time 
enables the model to converge quickly and train a large amount of data in a relatively short period of time. A 
future study will consider using two or more malware datasets to conduct the experiments. This will further 
enhance the validity and reliability of the proposed model.  
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