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Abstract - The security threats posed by malware make it imperative to build a model for efficient and effective 
classification of malware based on its family, irrespective of the variant. Preliminary experiments carried out 
demonstrate the suitability of the generic LightGBM algorithm for Windows malware as well as its 
effectiveness and efficiency in terms of detection accuracy, training accuracy, prediction time and training 
time. The prediction time of the generic LightGBM is 0.08s for binary class and 0.40s for multi-class on the 
Malimg dataset. The classification accuracy of the generic LightGBM is 99% True Positive Rate (TPR). Its 
training accuracy is 99.80% for binary class and 96.87% for multi-class, while the training time is 179.51s 
and 2224.77s for binary and multi classification respectively. The performance of the generic LightGBM 
leaves room for improvement, hence, the need to improve the classification accuracy and training accuracy 
of the model for effective decision making and to reduce the prediction time and training time for efficiency.   
It is also imperative to improve the performance and accuracy for effectiveness on larger samples. The goal 
is to enhance the detection accuracy and reduce the prediction time. The reduction in prediction time provides 
early detection of malware before it damages files stored in computer systems. Performance evaluation based 
on Malimg dataset demonstrates the effectiveness and efficiency of the hybrid model. The proposed model is 
a hybrid model which integrates XceptionCNN with LightGBM algorithm for Windows Malware classification 
on google colab environment. It uses the Malimg malware dataset which is a benchmark dataset for Windows 
malware image classification. It contains 9,339 Malware samples, structured as grayscale images, consisting 
of 25 families and 1,042 Windows benign executable files extracted from Windows environments.  The 
proposed XceptionCNN-LightGBM technique provides improved classification accuracy of 100% TPR, with 
an overall reduction in the prediction time of 0.08s and 0.37s for binary and multi-class respectively. These 
are lower than the prediction time for the generic LightGBM which is 0.08s for binary class and 0.40s for 
multi-class, with an improved 100% classification accuracy. The training accuracy increased to 99.85% for 
binary classification and 97.40% for multi classification, with reduction in the training time of 29.97s for 
binary classification and 447.75s for multi classification. These are also lower than the training times for the 
generic LightGBM model, which are 179.51s and 2224.77s for the binary and multi classification respectively. 
This significant reduction in the training time makes it possible for the model to converge quickly and train a 
large sum of data within a relatively short period of time. Overall, the reduction in detection time and 
improvement in detection accuracy will minimize damages to files stored in computer systems in the event of 
malware attack. 
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1 Introduction 
Malware, also known as malicious software can be described as any instruction set that is compromised to alter a 
computer system and impose harm on users and organizations (Abusitta, 2021). A malware is categorized based 
on its activities and execution process (Singh & Singh, 2020). The internet has made great contributions in 
communication, however, it has consequently led to the rise in malware distribution. The developments of web 
services with increasing speed have made productive advantage available to end-users. The number of people 
using the Internet was about two billion in 2010 (Chang et al., 2013). A report from Dasient, and cited by Chang 
et al. (2013), suggests that the number of malware delivering websites doubled between 2009 and 2010. “There 
were 3.424 billion people using the Internet by July 2018” (Wang, 2018). Carrying out activities on an infected 
website is a sufficient pathway for an attacker to take advantage of the weakness of a browser.  

Malware analysis is essential in order to build successful malware detection techniques. The focus of malware 
analysis is to understand the intent and activities of malware (Wong et al., 2021). Malware analysis may be static, 
dynamic, or hybrid depending on the way and manner it is carried out. Analysts use static analysis, dynamic 
analysis or a combination of both methods (hybrid) to understand and explain the mode of operation of malware 
and the effects on the system (Wong et al., 2021).  

Malware detection is the process of recognizing malicious sets of instruction from benign ones, so that a defense 
can be built, in order that the system can be protected or recovered from any malicious effects (Landage & 
Wankhade, 2013).  Malware detection techniques identify malicious codes and prevent the system from its effect 
and possible loss of information. A malware detector uses malware detection techniques to identify activities of 
malware. Figure 1 shows malware detection techniques and approach as presented by Kumar (2017).  

  

 

 

 

 

 

Figure 1: Malware detection techniques (Kumar, 2017) 

1.1 Signature-Based Detection 

A signature is a chain of information that describes the activities of a particular malware (Damodaran et al., 2017). 
In Signature-Based Detection approach, unique signatures are detached from captured malware files. The 
signatures are further used to detect malware with similar characteristics. Signature-based approach is suitable for 
generic malware which do go through significant behavioural modification (Abusitta, 2021). However, attackers 
easily manipulate malware signatures in order not to be detected by antivirus software (Abusitta, 2021). Signature-
based models are very effective in  known malware detections, but, it is unable to identify new ones (Bazrafshan 
et al., 2013). 

1.2 Anomaly-Based Detection 

In Anomaly-based detection; the behaviors of malware during runtime are studied in a training phase, after which 
the executable is tagged as malicious or benign during testing phase based on extracted patterns in the training 
phase (Damodaran et al., 2017). Behavior-based method is capable of detecting new and unknown malware and 
malware that uses obfuscation techniques. The main limitations of the behavior-based detection are: a substantial 
False Positive Rate (FPR) and unnecessary testing time (Bazrafshan et al., 2013).  
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Malware issue has developed into a serious issue in computing. According to Gibert et al. (2020), machine 
learning technique is the best technique that is needed to protect a computer system due to rise in malware attack. 
Using malware images makes malware classification easier (Pant & Bista, 2021). Image-based techniques are 
robust against many types of obfuscations (Bhodia et al., 2019). Omitting irrelevant features fasten and make 
algorithm to perform better (Şahin et al., 2021). While LightGBM technique is the best of the Gradient Boosting 
Decision Tree Algorithms (GBDT) and has demonstrated its suitability for malware detection (Abbadi et al., & 
Pan et al., 2020), XceptionCNN is an effective and less complex neural network for robust feature extraction 
(Shaheed & Zhang, 2022).  
 
We conducted a preliminary study which reveals the prediction time of the generic LightGBM to be 0.08s for 
binary class and 0.40s for multi-class on the Malimg dataset with 10,381 malware samples. The preliminary study 
further reveals a classification accuracy of 99% (TPR), with training accuracy of 99.80% for binary classification 
on Malimg dataset and 96.87% for multi classification on the same malware samples. A growth in data size may 
lead to corresponding increase in time of prediction. Although the classification accuracy obtained from our 
preliminary experiment seems to be good, it could be further improved in order to enforce the effectiveness of the 
algorithm. The prediction time, performance accuracy, and training time obtained from the preliminary 
experiment also leave room for improvement. Hence, there will be a need to make the classification accuracy of 
the model better for effective decision making, reduce the prediction time for efficiency, and improve the 
performance and accuracy for effectiveness on larger samples. Our study, which hybridized XceptionCNN with 
LightGBM has the following contributions and novelty: 

• Improved training accuracy of the model for effective decision making.  
• Reduction in the detection time and improvement in detection accuracy, which will minimize damages 

to files stored in computer systems in the event of malware attack. 
• Reduction in the training time, which will enable the model to converge quickly and train a large amount 

of data within a relatively short period of time. 
• The proposed model can detect both known and new malware variants. 
• The training accuracy of the proposed model is higher than those of the existing models. 
• This study is the first to compute and improve the detection time of the LightGBM algorithm  

This study proposes a hybrid model based on LightGBM and XceptionCNN algorithms. The aim is to improve 
the efficiency and effectiveness of Windows malware detection. Our preliminary study revealed that the 
LightGBM technique which is the best of the GBDT algorithm, has proven to be suitable for Windows malware 
detection (Abbadi et al., 2020; Pan et al., 2020) and  can be improved for effective and efficient malware detection. 
ML-based classifiers use underlying features to distinguish between malicious and benign applications, and 
detecting changes in those features when malicious modifies itself. Malware possess certain features which 
Machine learning algorithm can learn and use to predict if an executable file is a malware or benign sample. Such 
that, if such an executable file behaves in a certain way or attempts to modify the system or access privilege 
instructions, they may be classified as malware or benign based on their activities. Our technique can take a 
number of these features as input, learn the properties of these features, then, build a model for prediction of new 
samples. Using the mathematical function𝑓:𝑚	 → 𝑥, where m is the given malware and x is their corresponding 
malware family, the model can also detect new variants of malware. This study will contribute to advances in 
malware detection. The proposed solution can be applied to similar studies in future.  
 
The rest of this paper is organized as follows: Section 2 presents related work in malware detection, while Section 
3 discusses experiments and implementation details. Section 4 covers the findings of our study and the 
implications of those findings, while Section 5 summarizes the study and draws conclusions based on the achieved 
objectives. 
 

2 Related Work 
Ke et al. (2017) posited that GBDT is one of the machine learning classifiers which is extensively utilized as a 
result of its effectiveness. LightGBM is a new GBDT algorithm with Gradient-based One-Side Sampling (GOSS) 
and the Exclusive Feature Bundling (EFB) (Ke et al., 2017). The GOSS and EFB makes LightGBM considerably 
effective than eXtreme Gradient Boosting (XGBoost) with regards to speed and memory usage (Ke et al., 2017). 
In an attempt to study user’s click for click fraud detection, Minastireanu and Mesnita (2019) used the 
experimental test for LightGBM using a public dataset available on Kaggle. Their results on the GBDT Algorithm 
achieved 98% accuracy. In a different study, using the N-Gram model, Venkat et al. (2020) proposed a medicine 
approval system. In an attempt to boost the efficiency of the medicine approval system, a LightGBM model was 
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used to carry out medication examination. Ju et al. (2019) observed that single-convolution model was ineffective 
for wind power prediction; hence, they proposed a solution which integrates LightGBM algorithm with 
convolutional model to enhance the prediction accuracy and reliability. A study by Fonseca et al. (2017) showed 
that training LightGBM algorithm is faster than training XGBoost. The study did not compare the algorithms 
based on their classification time. In further study, using dataset made available through Kaggle’s competition, 
Machado et al. (2019) evaluated the accuracy of two GBDT Models: XGBoost and LightGBM algorithm in 
predicting credit card customers’ reliability status. The study assessed customer loyalty prediction accuracy 
through Root Mean Square Error and found that LightGBM achieved better than XGBoost. LightGBM-based 
method performed better than most generic methods (such as Support Vector Machine, XGBoost, or Random 
Forest) when applied fraud detection (Huang, 2020). Sun et al. (2020) also used LightGBM to combine the daily 
data of 42 kinds of primary crypto-currencies with key important pointers in order to predict the prices of crypto-
currencies and obtain relevant information about the market. Their experimental results show that the robustness 
of the LightGBM model is better than the other models. The time complexity for the LightGBM is calculated as 
O(#Data x #Features) (Meidan et al., 2018). A malware classification approach converted malware binaries to 
grayscale images before using a trained CNN to build a model for classifying malware according to its family 
(Kalash et al., 2018). A deep learning architecture applied to Malimg malware dataset and Microsoft dataset has 
performance accuracy of 98.52% for malign dataset and 99.97% accuracy for Microsoft datasets (Kalash et al., 
2018). In a similar study carried out by Bhodia et al. (2019), their deep learning architecture which was also 
experimented on the Malimg malware dataset yielded a training accuracy of 98.39% for binary classification and 
94.80% for multi-classification. A study by Lo et al. (2019) classified malware into families based on the 
integration of deep CNN with Xception model. Experimental results show that the training accuracy of the 
Xception model on the Malimg datasets is 99.37%. The study did not evaluate the classification accuracy and 
prediction time of the model. Hussain (2019) proposed a hybrid technique based on gradient boosting classifier. 
The method used information such as target of applications, privileges, static data and dynamic data to detect 
malicious application. The approach has a good detection accuracy of 96%. This result still leaves room for 
improvement. In another study, Nawaz et al. (2021) performed hybrid analysis using Android application features 
which include permissions, targets, and network features. The study extracts permissions and intent from a 
suspected file. It also obtains network related information from java files. The use of Info Gain as a feature 
selection method results in precision of 0.99. The study did not apply their model to Windows malware domain.  
An improved solution uses a small set of highly discriminant features for automated malware detection (Fang et 
al., 2019). The goal is to address the limitations of classical feature selection techniques. DQFSA interacts with 
the feature space and uses Q-learning to train an agent in order to achieve high accuracy. The proposed approach 
performs better than existing baseline feature selection methods for malware detection using small feature sets. 
The study did not apply the framework to other selection tasks. In an attempt to construct a detection framework, 
Chen et al. (2020) used the characteristics of data and features of the attention mechanism to construct a sliding 
local attention mechanism model (SLAM). The performance accuracy of the proposed model is 0.9723. The study 
did explore the used of the technique for malware detection. Bensaoud and Kalita (2022) proposed a novel deep 
learning method for classifying malware images for effective and efficient malware detection. Experimental 
results based on about 100,000 benign and malicious PE, APK, Mach-o, and ELF show that the method has the 
highest accuracy of more than 99.87%. The method is also effective at detecting different malware evasion 
techniques. The detection time of the model was not considered. Pan et al. (2020) used Logistic Regression, KNN 
and LightGBM to build models based on datasets of heartbeat and threat reports. The results obtained from the 
respective models show that LightGBM has the highest accuracy with AUC of 0.720687. The study attempted to 
enhance the training accuracy of the models, however, the detection time and detection accuracy were not 
considered. Using a custom model based on convolutional neural network with a benchmark dataset (Malimg 
dataset), Pant and Bista (2021) achieved 99.64% training accuracy while classifying malware into their respective 
families. The study did not consider the detection time of the model. The study also did not evaluate the model 
based on binary classification of the malware. A preliminary study conducted by the authors of this article reveal 
that the LightGBM achieves 0.08s prediction time for binary classification on Malimg dataset with 10,381 
malware samples and a prediction time of 0.40s for multi classification on the same malware samples. The 
preliminary experiments reveal that the classification accuracy of the generic LightGBM machine learning 
algorithm is 99% TPR. From the literature review, no study has deemed it fit to improve the classification accuracy 
or reduce the prediction time of the LightGBM algorithm for windows malware detection.   



Journal of Computing and Social Informatics (Vol 1 No 2, 2022) 
 

 46 

3 Methodology 
The research process flow in Figure 2 depicts the sequence of activities required to accomplish the overall 
objectives of the study. 
 

 

 

 

 

 

 

 

 
 

Figure 2: Research process flow 

3.1 Data Collection 

We used the Malimg malware dataset which contain 9,339 of Malware samples structured as grayscale images 
consisting of 25 malware families. Each of the malware families is made up of varying number of samples across 
the dataset. Malimg dataset is one of the most commonly used datasets for malware findings. The Malimg dataset 
was created by reading malware binaries into an 8-bit unsigned integer consisting of a matrix M ∈ Rm×n (Nataraj 
et al., 2011). The matrix could be seen as image (grayscale) having values within the range of [0, 255], where 0 
represents black, 1 represents white. In addition, benign dataset used are 1,042 windows benign executable files 
extracted from windows environment and further converted into images. Table 1 presents a breakdown of the 
Malimg dataset into families and their variants. 
 

Table 1: The Malimg Dataset (Nataraj et al., 2011). 

NO. Family Name Family Samples 
1 Adialer.C dialer  122 
2 Agent.FYI  Backdoor  116 
3 Allaple.A  worm  2,949 
4 Allaple.L  worm  1,591 
5 Alueron.gen!J  Trojan 198 
6 Autorun.K  worm  106 
7 C2LOP.gen!g  Trojan 200 
8 C2LOP.P  Trojan  146 
9 Dialplatform.B  Dialer 177 
10 Dontovo.A  Trojan Downloader 162 
11 Fakerean  Rogue 381 
12 Instantaccess  Dialer 431 
13 Lolyda.AA1  PWS  213 
14 Lolyda.AA2  PWS  184 
15 Lolyda.AA3  PWS  123 
16 Lolyda.AT  PWS  159 
17 Malex.gen!J  Trojan  136 
18 Obfuscator.AD  Trojan Downloader 142 
19 Rbot!gen  Backdoor 158 
20 Skintrim.N  Trojan  80 
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21 Swizzor.gen!E  Trojan Downloader 128 
22 Swizzor.gen!I  Trojan Downloader 132 
23 VB.AT  worm  408 
24 Wintrim.BX  Trojan Downloader 97 
25 Yuner.A  worm  800 
 Total  — 9,339 

 
The analysis of the families and variants of the Malimg Dataset with a total of 9,339 dataset (Nataraj et al., 2011).  
 

3.2 Data Preprocessing 

The Malimg dataset used consists of images, hence, there was no preprocessing done on the dataset. We directly 
passed the images that consist of the dataset into XceptionCNN for automatic feature extraction. Thereafter, we 
saved the extracted features as CSV and passed it for classification and training. We also separated the dataset 
into training and testing sets. Since our model require images as input, we further converted the windows benign 
executable file to images using ‘exe2image’ converter, a digital image converter software available on github 
(Malith, n.d.), operated on windows. 
 

3.3 Feature Extraction 

A total of 10,381 images of two (2) classes were used for the binary classification and the same number of images 
of twenty (26) classes were used for the multi-classification. We applied an Advanced Convolutional Neural 
Network model (Xception) which extracted the image features with distinctive pattern automatically from the 
dataset, and the extracted features were saved as CSV files. Malware that share the same family are very similar 
in layout and image (Nataraj et al., 2011). 

3.4 Training and Testing 

We trained the models on 100 epochs using the following hyperparameters : learning rate of 0.03 & Max-dept of 
10. We used a total of 10,381 data samples. We randomly selected 80% and 20% of the samples in each of the 
families for training and testing respectively, resulting in 8,304 and 2,077samples used for training and testing 
respectively. The LightGBM was used for training and testing. 
 

3.5 LightGBM Classifier  

LightGBM is a new gradient boosting framework. It is a decision tree algorithm which supports many algorithms 
like Gradient Boosting Machine (GBM), Gradient Boosting Decision Tree (GBDT), Gradient Boosted Regression 
Tree (GBRT), and Multiple Additive Regression Tree (MART). It is has high level scalability, precision, and 
efficiency (Ke et al., 2017). It is suitable for classification and other machine learning activities (Abbadi et al., 
2020). It applies a leaf-wise splitting of the tree based on the best fit, unlike other boosting algorithms which use 
depth-wise or level-wise splitting. The leaf-wise growth of LightGBM reduces the level of loss, which results in 
faster speed and higher accuracy than other boosting algorithms. Figure 3 shows the leaf-wise tree growth structure 
of the LightGBM algorithm. 
 
 
 

 

 

 

Figure 3: LightGBM Architecture (Khandelwal, 2017) 

Figure 3 shows the leaf-wise tree growth (architecture) of the LightGBM algorithm as presented by Khandelwal 
(2017).  
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Leaf-wise splits results in high complexity and overfitting, which can be addressed by using a parameter known 
as max-depth to indicate how deep the splitting should be (Microsoft, 2021). LightGBM algorithm was proposed 
by Su et al. (2018) and has been applied in different studies such as Abbadi et al. (2020) and Fonseca et al. (2017). 
Abbadi et al. (2020) used LightGBM in IoT malware detection. LightGBM uses Gradient-based One-Side 
Sampling (GOSS) and the Exclusive Feature bundling (EFB) (Sharma, 2018) to minimize the complexity of 
histogram building (O(data*feature) ). This is achieved by using GOSS and EFB to reduce the sampled data and 
feature size. Hence, the complexity becomes (O(data2 * bundles)) where data2 < data and bundles << feature 
(Sharma, 2018). LightGBM algorithm works on a supervised training set to compute an approximate function that 
minimizes the value of a specific loss function 𝐿(𝑦, 𝑓(𝑥)) as expressed: 

             𝑓- = 𝑚𝑖𝑛𝐸𝑦, 𝑥𝐿(𝑦, 𝑓(𝑥))                      (1) 

where 𝑥 represents a set of random input variable and 𝑦 represents a random output or response variable.  
LightGBM computes an approximation of the final model by combining multiple 𝑇 regression trees 
∑ 𝑓!(𝑋)"
!#$ 	which is expressed as    

                                          𝑓"(𝑥) = 	∑ 𝑓!(𝑥)%
!#$                             (2) 

The regression trees could be expressed as 𝑤&((),𝑞 ∈ {1,2, … , 𝑗}	where	𝑗 denotes the number of leaves, 𝑞 represents 
the decision rules of the tree and 𝑤 is a vector that denotes the sample weight of leaf nodes. Hence, LightGBM 
would be trained in an additive form at step 𝑡 as follows: 

             ɼ! = ∑ 𝐿(𝑦+,𝐹!,$		@𝑥+,A 	+	𝑓!,	(𝑥+,)).
+#$                 (3) 

In LightGBM, the objective function is rapidly approximated using Newton’s method. After removing the 
constant term in the last equation for simplicity, the formulation can be represented as  

                 ɼ! ≅ ∑ (𝑔+𝑓!@𝑥+,A +	
$
/
ℎ+𝑓!/	(𝑥+,)).

+#$                  (4) 

where 𝑔+ and ℎ+	denote the first and second-order gradient statics of the loss function.  
 
Let 𝐼0 denote the sample set of leaf 𝑗, (4) could be expressed as  

             ɼ! = ∑ ((	∑ 𝑔+)𝑤0+∈2! +		$
/
G∑ ℎ+ + ʎ)	𝑤0/+∈2! I)0

0#$             (5)  

For a certain tree structure𝑞(𝑥), the optimal leaf weight scores of each leaf node  𝑤0∗ and the extreme value of  
ɼ! can be expressed as:  

              𝑤"∗ =	−
∑ %!!∈#$
∑ &!'ʎ!∈#$

                        (6) 

              	
ɼT∗=	−

1
2	∑

"∑ $%%∈'! (

∑ )%*ʎ%∈'!

j
j=1

2                         (7) 

where 
ɼ5		∗ is the scoring function that measures the quality of the tree structure q. Finally, the objective function after 
adding the split is:  

              G =	 $
/
K
6∑ 7%%∈', 8

-

∑ 9%:ʎ%∈',
+	

6∑ 7%%∈'. 8
-

∑ 9%:ʎ%∈'.
− (∑ 7%%∈' )-

∑ 9%:ʎ%∈'
M             (8) 

where 𝐼< and 𝐼= are the sample sets of the left and right branches respectively. Unlike traditional GBDT based 
techniques such as XGboost and GBDT which grow trees horizontally, LightGBM adopts a vertical approach to 
grow the tree, which makes the algorithm effective for handling large datasets and features. LightGBM increases 
training performance and minimizes memory requirements by using algorithms based on the histogram. The 
advantages of LightGBM as presented by Khandelwal (2017) are as follows: 
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i. Higher efficiency: It uses histogram-based algorithm to convert continuous feature values into discrete bins 
which results increases the speed of training a dataset. 

ii. Reduced memory requirements - the replacement of continuous values with discrete bins results in low 
memory utilization. 

iii. Higher accuracy than similar techniques – by using leaf-wise instead of level-wise splitting to compute more 
complex trees.  

iv. Suitable for large datasets – performs well on large datasets and minimizes the training time considerably 
when compared to XGBOOST. 

v. It supports parallel learning. 
 

3.6  Architecture of XceptionCNN 

Xception model was developed using an 'extreme' interpretation of Google’s Inception model (Chollet, 2017). Its 
structure is a linear stack of 36 independent convolution layers which use depth-wise splitting method and are 
linked together by residual connections. The layered stack is responsible for feature extraction on the network. 
The 36 independent convolution layers are grouped into 14 modules, which are joined by linear residual 
connections, with the exception of the first and last modules (Chollet, 2017). XceptionCNN diagrammatic 
representation is shown in figure 4.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: XceptionCNN Architecture (Chollet, 2017) 

 

Figure 4 shows the Xception architecture. It is divided into 3 components (entry flow, middle flow and exit flow), 
14 modules and 36 convolutional layers. It uses the layers with a depth of 126 to perform feature extraction. Its 
input format is a 299x299 RGB image. A global average pooling layer is substituted for the fully-connected layer 
to reduce the parameter size, while the softmax function is used to predict the output. The flow of data from the 
entry flow to the middle flow is repeated eight times before it finally passes through the exit flow. The number of 
convolutional layers in the entry flow, middle flow and exit flow are 8, 8*3= 24 and 4 respectively. The model 
uses depth-wise separable convolution to reduce the operational cost of the convolution process.  

3.7 Design of the XceptionCNN - LightGBM Experiments  

To reduce the prediction time and take advantage of the efficiency of XceptionCNN, we combine XceptionCNN 
with LightGBM. We use the XceptionCNN to extract features automatically; it uses less resource and time as 
compared to the already available methods. The XceptionCNN is hybridized with the LightGBM model. We 
directly passed the images that comprise the dataset into XceptionCNN model for automatic feature extraction, 
thereafter, saved the extracted features as CSV and passed it to the LightGBM model for classification and 
training.  

In order to demonstrate that the XceptionCNN-LightGBM can reduce prediction time and training time, improve 
the performance and improve the training accuracy, experiments with XceptionCNN-LightGBM were conducted. 
We compared XceptionCNN-LightGBM models with the generic LightGBM models (preliminary experiment) to 
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verify that using XceptionCNN-LightGBM can reduce prediction time and training time, improve classification 
accuracy and training accuracy. We also compared our results with similar studies to show that our model 
performs better on the Malimg dataset than the previous ones.   

In our experiments, we chose LightGBM because of its better accuracy than any other boosting algorithm 
(Khandelwal, 2017). And also because of, its performance and effectiveness in Robust Intelligent Malware 
Detection as studied by (Abbadi et al., 2020). Similarly, we chose XceptionCNN because of its efficiency in 
extracting image features automatically, it is less time consuming and effective (Lo et al., 2019). Figure 5 shows 
our approach in accomplishing our enhanced LightGBM model. 

 
 
 
 
 
 

 

 

 

    

Figure 5: Design of the Proposed XceptionCNN-LightGBM model 

3.8 Performance Evaluation  

A Confusion matrix N x N (where N is the number of target classes) is used to evaluate the performance of the 
proposed model. A 2 x 2 matrix is required to perform binary classification. The confusion matrix is used to 
evaluate the ability of our model to classify the data based on its assigned labels. Each Cmn is the data instances 
which belong to group m (true label) and predicted belonging to group n (predicted label) (Harikrishnan, 2019). 
C00, C01 and C10 denote the number of true negatives, false positives, and false negatives respectively.  

The basic terminologies used for defining Confusion Matrix include (1) True Positive (TP), which refers to the 
point at which the predicted positive value matches the real value; (2) True Negative (TN), when the predicted 
negative value matches the real value; (3) False Positive (FP) - where the real value is negative but the model 
predicted positive (also referred to as Type 1 error); and (4) False Negative (FN) – a situation where the real value 
is positive but the model predicted negative (commonly referred to as Type 2 error).  
 

3.8.1 Evaluation Metrics 

Evaluation metrics assess the quality of machine learning model in order to obtain necessary feedback and 
determine its effectiveness and efficiency.  We explain the metrics used in evaluating our models below : 

i. Accuracy: The machine learning model accuracy for a given classification task is given as 
>?@AB%CDEC%%BF!G%BH+F!+C.

"C!IJ>?@AB%CDG%BH+F!+C.KIHB
 

             Accuracy  =   ">:"G
">:LG:"G:L>

                    (9) 

 Where, TN, TP, FN, and FP represent True Negative, True Positive, False Negative and False Positive data 
points respectively.  

ii. True Positive Rate: True Positive Rate corresponds to the proportion of positive data points that are 
correctly predicted as positive, with respect to all positive data points.  

             True Positive Rate (TPR) = "G
"G:L>

                   (10) 
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 TP and FN are as described in (9). 

iii. False Positive Rate (FPR): False Positive Rate corresponds to the proportion of negative data points that 
are mistakenly predicted as positive, with respect to all negative data points.  

             False Positive Rate (FPR) =  LG
">:LG

                  (11) 

 TN and FP are as described in (9). 

iv. Precision: used to measure the positive patterns that are correctly predicted from the total predicted patterns 
in a positive class (Hossin, 2015). It is calculated as the ratio of the correct positive results to the number of 
positive results predicted by the classifier.   

              Precision = "G
"G:LG

                        (12) 

 TP and FP are as described in (9). 

v. Recall - used to measure the fraction of positive patterns that are correctly classified (Hossin, 2015). It is 
the number of correct positive results divided by the number of all relevant samples (all samples that should 
have been identified as positive).  

               Recall =  "G
"G:L>

                           (13) 

 TP and FN are as described in (9) 

vi. F1 Score: measures the accuracy and effectiveness of a classifier (Mishra, 2018). The value ranges between 
0 and 1. A high F1 score indicates that the model has good performance. It is calculated as the Harmonic 
Mean of precision and recall. it can be expressed mathematically as: 

             F1 Score =  2 * 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	:	𝑹𝒆𝒄𝒂𝒍𝒍

                   (14) 

vii. Training Time (TT): The training time of a model is the total amount of time required for a model to be 
completely trained. It is the difference between the end time and the start time of training the model. 

               TT =   EndTime(ET) – StartTime(ST)               (15) 

3.9 Implementation Environment 

We conducted experiments on Google Co-laboratory (COLAB) environment with TPU v3, 32GB HMB. COLAB 
is a machine learning education and research platform based on Jupyter Notebook (Carneiro et al., 2018). It is 
pre-configured with necessary machine learning and artificial intelligence libraries, such as TensorFlow, 
Matplotlib, and Keras. It provides a CPU, GPU and TPU accelerated Python 2 and 3 runtime.  
 

4 Results and Discussion 
We performed two experiments involving the Malimg dataset, with binary/multi classification level, using hybrid 
(XceptionCNN - LightGBM) learning technique. In this section, each experiment will be discussed in detail and 
results will be presented for the two separate experiments. Each experiment represents the Malimg dataset, 
binary/multi classification level. The results from our preliminary LightGBM experiments on the Malimg malware 
dataset are presented in Table 2.  

Table 2 presents the results (binary & multi-class) obtained from our preliminary experiment using LightGBM 
Algorithm.  
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Table 2: Results of LightGBM (Preliminary) Experiments 
 
 

Metric 

Binary Multi-Class 

Recall 99.80% 96.87% 
Precision 99.80% 96.75% 
F1_Score 99.80% 96.51% 
Training Accuracy 99.80% 96.87% 
Training Time 179.51s 2224.77s 
Prediction time 0.08s 0.40s 

For the binary classification results in Table 1, training time of 179.51s means the model spent a total of 179.51s 
for training. It obtained a training accuracy of 99.80%, a precision of 99.80% which is the positive patterns 
correctly predicted from the total predicted patterns in a positive class, and a recall of 99.80%, which means 
99.80% fraction of positive patterns, were correctly classified. The Harmonic Mean between this precision and 
recall which is the F1_score, is 99.80%. The greater the F1 Score, the better the performance of the model. The 
corresponding multiclass model spent a total of 2224.77s of training time, with training accuracy of 96.87% and 
a precision of 96.75%, which is the positive patterns correctly predicted from the total predicted patterns in a 
positive class, with a recall of 96.87%, which implies 96.87% fraction of positive patterns were correctly 
classified. The Harmonic Mean between precision and recall which is the F1 Score is 96.51%. Similarly, the 
greater the F1 Score the better the performance of the model. The prediction time of 0.08s and 0.40s for binary 
and multi classification respectively show the time taken for predictions to occur. 

4.1 Experiments on XceptionCNN – LightGBM   

In these experiments, we improved the LightGBM model by hybridizing it with XceptionCNN. We installed 
LightGBM as an independent model on the colab notebook for implementation. 

4.1.1 Binary Classification 

Binary classification is used to distinguish malware from benign samples. We created the malware class by placing 
all Malimg families into one malware set. There are 1042 benign samples which are converted to images.  
 

4.1.2 Multi-Classification  

We also used the XceptionCNN – LightGBM algorithm to classify malware samples into distinct families. It is a  
multi-classification problem consisting of  26 classes, The actual Malimg dataset consist of 25 malware families, 
while the benign set is considered an additional “family” resulting in a total of 26 classes. We present the results 
obtained from our hybrid experiments in the Table 3. 

Table 3: Results of XceptionCNN – LightGBM Experiments 

 
 

Metric 

Binary Multi-Class 

Recall 99.85% 97.40% 
Precision 99.85% 97.29% 
F1_Score 99.85% 97.29% 
Training Accuracy 99.85% 97.40% 
Training Time 29.97s 447.75s 
Prediction time 0.08s 0.37s 

 
Table 3 presents the results (binary & multi-class) obtained from our experiments using our hybrid model.  

For the binary classification results in Table 3, training time of 29.97s means the model spent a total of 29.97s for 
training. It obtained a training accuracy of 99.85%, a precision of 99.85% which is the positive patterns correctly 
predicted from the total predicted pattern in a positive class and a recall of 99.85%, which means 99.85% fraction 
of positive pattern were correctly classified. The Harmonic Mean between this precision and recall, which is the 

Classification 

Classification 
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F1_score is 99.85%. The greater the F1 Score the better the performance of the model. The corresponding multi-
class model spent a total of 447.75s training time, with training accuracy of 97.40% and a precision of 97.29% 
which is the positive patterns correctly predicted from the total predicted patterns in a positive class. A recall of 
97.40% was obtained, which means 97.40% fraction of positive patterns were correctly classified. The Harmonic 
Mean between precision and recall which is the F1 Score is 97.29%. Similarly, the greater the F1 Score the better 
the performance of the model. The prediction time of 0.08s and 0.37s for binary and multi classification 
respectively show the time and how fast predictions occur. 

4.2  Comparison of Results 

The results in Table 3 are comparable to those obtained in our generic LightGBM preliminary experiment (Table 
2) and serves to confirm our hybrid model implementation. Table 4 shows the results comparison. 

Table 4: Results Comparison 
 

 LightGBM (Preliminary 
Experiment) 

Xception – LightGBM 

                Classification 
 
Metric 

Binary Multi-Class Binary Multi-Class 
 

Recall 99.80% 96.87% 99.85% 97.40% 
Precision 99.80% 96.75% 99.85% 97.29% 
F1_Score 99.80% 96.51% 99.85% 97.29% 
Training Accuracy 99.80% 96.87% 99.85% 97.40% 
Training Time 179.51s 2224.77s 29.97s 447.75s 
Prediction time 0.08s 0.40s 0.08s 0.37s 

 
Table 4 presents the results obtained from the various training techniques used. This study shows that it is effective 
to combine pre-trained XceptionCNN model with LightGBM algorithm to improve detection and classification 
of windows malware. It leverages on the strengths and benefits of XceptionCNN (Shaheed & Zhang, 2022) and 
the LightGBM algorithm (Abbadi et al., 2020). Comparing the experimental results obtained in this study with 
the preliminary experiments, Table 4 shows that combining the pre-trained XceptionCNN model with LightGBM 
obtains better classification accuracy than applying the generic LightGBM algorithm. Results clearly indicate that 
extracting image features using XceptionCNN and performing classification using LightGBM provides the best 
performance for malware detection. In order to evaluate our model, we chose Accuracy, Precision, F1-score, 
Recall, Training time and Detection time as evaluation criteria. From the results of these experiments in Table 4, 
we can see that our model achieves a good performance result compared to the preliminary experiments based on 
the generic LightGBM algorithm. Although the detection time of the binary class looks the same with the 
LightGBM, figure 7 shows that our hybrid approach outperforms it in terms of detection accuracy of 100%. This 
is due to the use of pre-trained XceptionCNN model. XceptionCNN extracted fewer misleading features than the 
generic LightGBM. Hence, fewer misleading data improves modeling accuracy. 

4.3 Confusion Matrix  

We also present the confusion matrix for our experiments in Figure 6 and Figure 7, to show the improved 
classification accuracy of our XceptionCNN – LightGBM algorithm. 

Figure 6 shows the classification accuracy of the generic LightGBM model. It shows a total data point of 2,077, 
which corresponds to the 20% (testing data) of the total dataset. The generic LightGBM model performed 
reasonably well in this malware classification, correctly identifying 99% of the malware samples (True Positive 
Rate of 99%). 

The classification accuracy of the hybrid model is presented in Figure 7. It shows a total of 2,077 data points, 
which correspond to the 20% (testing data) of the total dataset. Our hybrid model shows an improved classification 
accuracy of 100% True Positive Rate. This means our model correctly identifies 100% samples that are truly 
malware. 
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Figure 6: Generic LightGBM Confusion matrix 
 
 

 

 

 

 
 
 
 
 
 
 
 

Figure 7: XceptionCNN –LightGBM Confusion Matrix 
 

4.4 Comparison with Related Works 

In Table 5, we compare our method with similar studies using the Malimg dataset for Windows Malware detection. 
Our results maintain higher accuracy than all the approaches in the related work. Our hybrid approach further 
maintains 100% TPR (see Figure 7).  

Table 5: Comparison with Related Works. 
 

Training Techniques Classification Training Accuracy 
LightGBM (Preliminary Experiment) Binary 99.80% 

Multi-Class 96.87% 
XceptionCNN -LightGBM (Ours) Binary 99.85% 

Multi-Class 97.40% 
M-CNN (Kalash et al., 2018) Binary 98.25% 
DL (Bhodia et al., 2019) Binary 98.39% 
XceptionCNN (Lo et al., 2019) Binary 99.37% 

Multi-Class 94.80% 
 

199 2 

2 1874 

223 3 

0 1851 
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The results as presented in Table 5 show that the XceptionCNN – LightGBM model is more effective and robust 
than previous solutions.   
 
The XceptionCNN – LightGBM model accepts image data as input. The Malimg dataset is available publicly as 
benchmark Windows malware image dataset used in many studies for image based malware classification.  Many 
machine learning and deep learning algorithms have been presented to develop models for effective malware 
detection. In this study, we combined XceptionCNN and LightGBM algorithms for binary and multi classification 
approach for effective and efficient malware detection. The proposed approach was compared with current 
methods in the literature. Table 5 summarizes the comparison of our performance results with current methods in 
the literature in terms of Training accuracy. Our model outperforms the state–of–the–art approaches with the best 
training accuracy. These significant improvements are attributed to the usage of the pre-trained XceptionCNN 
model and the LightGBM algorithm which aided in producing an excellent outcome. This is because 
XceptionCNN which is a pre-trained model for image based feature extraction, extracts the best image features 
needed for training the model by the LightGBM algorithm. The XceptionCNN model extracted adequate and less 
redundant image features from the dataset which were further trained by LightGBM. Less redundant data means 
fewer tendencies to make decision based on noise, reduced overfitting and improved robustness. Similarly, 
Quality training using the LightGBM algorithm produces a highly reliable model, resulting in fast and accurate 
classification.  
 

5 Conclusion 
This study proposed XceptionCNN – LightGBM model for Windows malware detection. The proposed hybrid 
technique addresses the limitations of the generic LightGBM algorithm in terms of classification accuracy, 
prediction time, training accuracy and training time. The model was tested on 9,339 malware samples across 25 
malware families and 1,042 benign samples. Preliminary experiments based on the generic LightGBM algorithm 
show a classification accuracy of 99% TPR with prediction time of 0.08s and 0.40s for binary and multi 
classification respectively. Experimental results show that the hybrid technique provides improved classification 
accuracy of 100% and reduced prediction time of 0.08s and 0.37s for binary and multi classification respectively. 
The training accuracy improved by 0.5% and achieved a reduced training time of 29.97s from 179.51s for binary 
classification and 447.75s from 2224.77s for multi classification. The practical implication of this study is that the 
hybrid approach provides accurate and reliable detection of malicious software that attack computer systems and 
compromise the confidentiality, integrity and availability of information stored in them. The reduction in detection 
time provides early detection of a malware before it causes significant damage to files stored in computer systems. 
This minimizes the losses an organization will suffer in case of malware attack. The reduction in the training time 
enables the model to converge quickly and train a large amount of data in a relatively short period of time. A 
future study will consider using two or more malware datasets to conduct the experiments. This will further 
enhance the validity and reliability of the proposed model.  
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