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Abstract - Accurate diagnosis of lung diseases via chest X-rays remains challenging due to subtle pathological
patterns, class imbalance, and the opacity of conventional deep learning models. While convolutional neural
networks excel in feature extraction, their "black-box" nature and poor interpretability hinder clinical trust,
particularly in resource-constrained settings. To address these limitations, we propose a novel hybrid
architecture integrating VGG-16 with TabNet, synergizing hierarchical spatial feature extraction with
attention-driven interpretability. The model leverages VGG-16’s convolutional layers to capture granular
details, while TabNet's sequential attention masks dynamically prioritize discriminative features, quantifying
their clinical relevance. Trained on a dataset of 2,590 chest X-rays (COPD, tuberculosis, pneumonia, and
normal cases) from Nigerian hospitals, the model achieved state-of-the-art performance with 97% accuracy,
surpassing ResNet-50 (95.7%) and standalone VGG-16 (94.7%). Preprocessing, including non-local means
denoising and targeted augmentation, mitigates noise and class imbalance, yielding F 1-scores exceeding 97%
Jfor COPD and pneumonia, with AUC values above 0.98 across all classes. The model’s interpretability is
validated through attention maps highlighting disease-specific radiological markers, such as hyperinflation
in COPD and consolidations in pneumonia, aligning with clinical expertise. Deployed as a real-time Android
application optimized for low-end devices, the solution achieves inference in <I second offline, addressing
infrastructural barriers in low-resource regions. The model advances equitable healthcare delivery,
demonstrating generalizability across demographic subgroups (accuracy deviation <1.2%) and compliance
with emerging regulatory standards for trustworthy Al. This innovation establishes a scalable paradigm for
interpretable, high-performance lung disease detection, with transformative potential for global health equity.

Keywords: TabNet, VGG-16, lung disease detection, chest X-ray, deep learning, sequential attention.

1 Introduction

Lung diseases represent a major and escalating global health crisis, driven by a complex interplay of
environmental degradation, climate change, shifting lifestyles, and limited access to diagnostic resources,
particularly in low- and middle-income countries (LMICs) (Ming et al., 2018; Al Achkar & Chaaban, 2025).
Respiratory illnesses, including tuberculosis, pneumonia, and chronic obstructive pulmonary disease (COPD),
now constitute the third leading cause of mortality worldwide, with a disproportionate burden falling on resource-
constrained settings (Rajagopal et al., 2023). COPD and asthma alone accounted for millions of deaths in recent
years, highlighting the urgent need for effective interventions (Bharati et al., 2020). This crisis is particularly acute
in sub-Saharan Africa and other LMICs, where populations face the double jeopardy of high exposure to air
pollution and prevalent poverty, creating a breeding ground for respiratory diseases (Mondal et al., 2020). The
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recent COVID-19 pandemic further underscored the vulnerability of lung health, demonstrating the devastating
consequences of respiratory viral infections and exacerbating the existing challenge of pneumonia (Chunli et al.,
2020).

Chest X-rays remain a cornerstone of lung disease diagnosis, offering a cost-effective and widely accessible
imaging modality for detecting a range of conditions, from pneumonia and tuberculosis to interstitial lung disease
and early-stage lung cancer (Zakirov et al., 2015; Rehman et al., 2023). However, the interpretation of chest X-
rays presents significant challenges. The complex and overlapping anatomical structures within the images make
accurate diagnosis difficult, even for experienced radiologists. Manual interpretation is inherently time-consuming
and susceptible to inter-observer variability, potentially leading to diagnostic delays and missed opportunities for
timely intervention (Van Ginneken et al., 2009; Gefter et al., 2023).

The advent of deep learning (DL), a subfield of artificial intelligence, has revolutionized medical image analysis,
offering the potential to automate feature extraction and improve diagnostic accuracy. Convolutional neural
networks (CNNs), such as VGG and ResNet, have demonstrated remarkable performance in detecting pathologies
from medical images, including chest X-rays, by learning hierarchical representations of anatomical structures
(Irhebor, 2021; Kim et al., 2022; Musa et al., 2025) as they can assist physicians in identifying easily missed
suspicious lesions, thereby enhancing detection accuracy (Zakirov et al., 2015; Gefter et al., 2023). Current DL
models often suffer from critical limitations that hinder their widespread clinical adoption. Many models lack
robust feature engineering at the fully connected layers responsible for final decision-making, and they struggle
with the inherent class imbalance commonly found in medical datasets, where certain diseases are significantly
more prevalent than others (Gonzalez et al., 2018). Furthermore, a major drawback of many existing DL models
is their "black box" nature. They provide accurate predictions but offer little understanding into the underlying
reasoning behind those predictions (Tariq et al., 2019). The scarcity of representative datasets from
underrepresented populations, such as those in sub-Saharan Africa, further exacerbates the problem, leading to
models that may not generalize well to diverse patient populations (Shakeel et al., 2019).

This study addresses these critical gaps by developing a hybrid deep learning model for the detection of three
prevalent lung diseases in Africa: tuberculosis, COPD, and pneumonia. The study leverage dataset of chest X-ray
images collected from hospitals across Nigeria, while powerful feature extraction capabilities of VGG-16 (Kieu
et al., 2020) with the attention-based feature selection properties of TabNet (Arik & Pfister, 2021) were harnessed.
VGG-16 was chosen for its proven efficacy in medical imaging, leveraging its 13 convolutional layers to extract
multi-scale features from X-rays (Kieu et al., 2020). TabNet complements this by introducing sparsity-controlled
attention mechanisms, enabling feature importance quantification, a critical advancement for clinical trust (Shah
et al., 2022). This synergy addresses the opacity of conventional CNNs while maintaining high performance,
making the model both accurate and clinically actionable. This hybrid approach aims to not only enhance
diagnostic accuracy but also address the critical need for transparency and interpretability in Al-driven medical
tools.

2 Literature Review

Recent advancements in deep learning (DL) have demonstrated significant potential for classifying lung diseases;
however, substantial challenges remain concerning model generalizability, interpretability, and practical clinical
application. This review compiles existing studies that employ deep learning techniques for the detection and
classification of lung diseases through medical imaging. It examines various methodologies, architectures,
strengths, and datasets utilized in this field while also identifying critical gaps to contextualize the contributions
of the current study.

Early studies, such as Ming et al. (2018), demonstrated the effectiveness of DL features from pre-trained models
on High-Resolution Computed Tomography (HRCT) images, achieving an accuracy of 100% on binary
classification compared to 93.52% with traditional Gray-Level Co-occurrence Matrix (GLCM) features. While
such results highlighted the potential of DL, this 100% accuracy was achieved on a specific, homogeneous dataset.
More recent benchmarks on more complex HRCT datasets show state-of-the-art (SOTA) performance in the 97-
98% range, with a significant research focus shifting to reducing false positives and improving robustness (Jiang
et al., 2025; Abe & Nyathi, 2025). Regardless of SOTA in HRCT, these models are not directly applicable to
chest X-rays (CXRs), which remain the most common, cost-effective, and accessible imaging modality globally,
particularly in resource-limited settings. CXRs present distinct challenges due to lower resolution, higher noise,
and greater variability in acquisition quality (Shukla et al., 2024). Similarly, Kim et al. (2022) compared shallow
learning (Support Vector Machine) and deep learning (Convolutional Neural Network) for classifying interstitial
lung disease patterns in HRCT images from 106 patients, with CNN outperforming SVM by 6-9%, achieving
accuracy rates ranging from 81.27% to 95.12% as the number of convolutional layers increased. To substantiate
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the claim that deep learning enhances lung disease detection specifically for CXRs, Kieu et al. (2020) conducted
a comprehensive review, noting trends such as the prevalence of CNNs and transfer learning. They highlighted
critical, persistent challenges, including data imbalance, the management of large noisy image sizes, and the
scarcity of datasets. While data augmentation is a common strategy to address imbalance, recent studies affirm
that augmentation alone does not solve the fundamental challenges of "distribution drift" caused by non-
standardized data acquisition or the scarcity of geographically diverse datasets (Ahmad et al., 2025; Abe & Nyathi,
2025; Liu et al., 2024). These gaps can lead to models that perform well in one hospital system but fail when
deployed in another, particularly in regions underrepresented in training data.

The application of CNNs has emerged as the predominant method in medical image analysis due to their capacity
to learn hierarchical feature representations, particularly when combined with image augmentation [20]. Research
conducted by Rahman et al. (2020) demonstrated a remarkable 98.6% accuracy in tuberculosis detection by
employing a transfer learning approach that utilized augmentation and segmentation on various pretrained models,
showcasing the proficiency of CNNs in identifying localized pathologies. Additionally, Ganeshkumar et al. (2023)
introduced a two-stage deep learning model, focused on binary classification between normal and COVID-19
pneumonia cases, which outperformed existing methods in average accuracy and Fl-score, even providing
confidence scores for diagnoses. However, a recurring theme in these studies is the tendency to focus on binary
classification tasks, such as tuberculosis detection (Sriporn et al., 2020) or distinguishing between normal and
COVID-19 pneumonia cases (Ganeshkumar et al., 2023). While these are critical applications, they limit the
broader applicability of these models to the diverse spectrum of lung diseases encountered in clinical practice. In
contrast, Olayiwola et al. (2023) and Alshmrani et al. (2023) explored multi-class classification, comparing
various pre-trained CNNs and hybrid architectures, respectively. Olayiwola et al. (2023) identified ResNet-50 as
the most effective model for lung disease classification, achieving over 92% accuracy, while Alshmrani et al.
(2023) combined VGG with additional convolutional layers to achieve 96.48% accuracy across six lung diseases.
This highlights the potential of CNNs for automated diagnosis of multiple lung pathologies. Furthermore, Al-
Sheikh et al. (2023) demonstrated the efficacy of combining chest X-rays with CT scans with impressive
accuracies between 98.4% and 98.8% in multi-class lung disease classification. This suggests that integrating
multi-modal imaging data could significantly improve diagnostic performance. Concurrently, SOTA approaches
have explored new architectures, with newer studies demonstrating the power of Vision Transformers (ViT) and
hybrid models (e.g., LungMaxViT) on CXR datasets, achieving accuracies between 95% and 98% for multi-class
lung disease classification (Aslan, 2024; Shukla et al., 2024; Ko et al., 2024).

Despite these advancements, a critical limitation persists: the "black box" nature of many CNN models. These
models, while achieving high accuracy, often provide limited understanding into their decision-making processes,
hindering clinical trust and adoption. Clinicians require transparency and interpretability to understand why a
model arrives at a particular diagnosis (Liu et al., 2024). This has spurred a dedicated research thrust into
eXplainable Al (XAI) for medical imaging (Colin & Surantha, 2025). While many models rely on post-hoc XAl
methods like Grad-CAM (Aslan, 2024), these only show where a model is looking, not how it weighs different
features. Architectures like TabNet (Arik & Pfister, 2021) were designed for high-performance, interpretable
learning on tabular data, but their application in a hybrid structure for medical image analysis remains nascent.
Another significant challenge is the reliance on large, balanced, and high-quality datasets for optimal CNN
performance. This is particularly problematic in resource-limited settings, where data scarcity and class imbalance
are common (Ahmad et al., 2025). The study by Bharati et al. (2020), which proposed a hybrid CNN-VGG-Spatial
Transformer Network (VDSNet) for lung disease classification, underscores this issue. They reported a 73%
validation accuracy on a noisy X-ray dataset, highlighting the difficulties in handling large, noisy datasets and the
need for further model refinement.

Recognizing the inherent challenges posed by data limitations, particularly the prevalence of poor-quality data in
real-world medical imaging, researchers have increasingly explored hybrid architectures to enhance the robustness
of deep learning models. For instance, Shakeel et al. (2019) demonstrated the efficacy of combining mean
enhancement with an improved clustering technique prior to deep learning, achieving an impressive accuracy of
98.42%. This approach specifically addressed the critical issue of low-quality image processing, a common
obstacle in clinical settings. Similarly, Choudhuri and Paul (2021) developed a multi-class image classification
system utilizing VGG16, achieving 98.3% accuracy in classifying COVID-19, pneumonia, and normal cases,
thereby surpassing the performance of a standalone CNN model, which achieved 96.6% accuracy. While hybrid
architectures can enhance performance, they often inherit the interpretability challenges associated with CNNs
and may not explicitly quantify feature importance. Additionally, Tariq et al. (2019) incorporated advanced
preprocessing techniques, such as mean reduction using spectrogram features from audio data, into a CNN model
for lung sound classification; however, this approach is not directly applicable to image-based lung disease
detection. Also, Gonzalez et al. (2018) demonstrated accurate COPD detection using CNNs on CT scans,
achieving a C-statistic of 0.856. Although effective, the binary classification approach and reliance on CT scans
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limit broader applicability and restrict the study’s relevance to settings where chest X-rays are more commonly
used. Sriporn et al. (2020) explored the incorporation of techniques such as Mish activation and seven different
optimizers into a pretrained CNN model, resulting in improved performance and an accuracy of 98% in lung
lesion detection. However, hardware limitations posed challenges for large-scale image analysis.

The challenge of interpretability in many DL models remains a primary barrier to clinical trust (Liu et al., 2024).
Furthermore, the limited scope of many studies, often trained on homogenous datasets from high-income regions,
restricts generalizability. As highlighted by Kieu et al. (2020) and Al-Sheikh et al. (2023), these deficiencies can
introduce biases into models, leading to suboptimal performance for underrepresented patient populations. The
integration of image enhancement techniques, which could potentially alleviate the effects of poor-quality data
and enhance diagnostic accuracy, remains underexplored. A critical factor contributing to the limited
generalizability of many deep learning models is the geographic bias inherent in their training datasets. The vast
majority of these models are trained on data predominantly sourced from high-income regions, neglecting the
diverse patient populations found in low- and middle-income countries. As Kieu et al. (2020) revealed in their
extensive survey of 98 studies, the representation of African and South Asian cohorts is alarmingly low,
exacerbating existing diagnostic disparities. This situation underscores the urgent need for geographically diverse
datasets, particularly those originating from under-resourced countries, to ensure the equitable deployment of Al-
driven diagnostic tools. The development of such datasets is crucial for creating reliable and generalizable models
that can effectively address the global burden of lung diseases.

This study directly responds to these challenges. First, we bridge the accuracy-interpretability divide by
integrating VGG-16 with TabNet. This novel hybrid architecture moves beyond post-hoc explanations by
quantifying feature importance through TabNet's inherent attention mechanisms, addressing the "trust gap" in Al
diagnostics. Second, we confront dataset bias by curating a Nigerian cohort of 2,590 chest X-rays (COPD,
tuberculosis, pneumonia, and normal cases), one of the largest Nigerian imaging datasets for this purpose. This
diversity directly mitigates the geographic bias highlighted by Kieu et al. (2020) and Liu et al. (2024), enhancing
generalizability to underserved populations. Class imbalance and noisy, low-quality data which is a persistent
issue (Bharati et al., 2020; Ahmad et al., 2024) are alleviated through targeted augmentation and local-means
denoising, ensuring robust performance. Finally, we prioritize real-world impact by deploying the model as an
Android application optimized for low-end devices. Unlike cloud-dependent solutions, the app performs inference
locally in under 1 second, even without internet access. This design choice reflects the realities of healthcare in
regions like sub-Saharan Africa, where connectivity and advanced hardware are scarce.

3 Research Methodology

This study employs a methodological approach that mirrors established image recognition pipelines prevalent in
traditional recognition applications, ensuring a structured framework. The methodology is characterized by a
series of defined procedural steps, encompassing critical components such as data preprocessing, feature
extraction, model training, and comprehensive evaluation as depicted in Figure 1.

e N
1. Dataset and Image Acquisition

2590 chest X-ray images (DICOM): COPD (715), Pneumonia (555), TB (570), Normal (750)
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Figure 1: Pipeline of the proposed solution

3.1 Image Acquisition

This study employed a dataset of 2,590 chest X-ray images, a collection painstakingly assembled from the
radiology departments of three general hospitals in Kaduna State, Nigeria. The inclusion criteria were : (1)
posterior-anterior (PA) view X-rays from patients aged 18 years and above; (2) confirmed diagnosis of COPD,
Tuberculosis, or Pneumonia based on a combination of radiological reports, spirometry (for COPD), and
microbiological tests (for TB), as per hospital records; (3) "Normal" X-rays were selected from patients with no
documented history of lung disease who underwent chest X-rays for pre-employment or routine check-ups.
Exclusion criteria included: (1) lateral view X-rays; (2) images with severe artifacts, implants, or foreign objects
obscuring the lung fields; (3) cases with incomplete or ambiguous diagnostic information. These images were
categorized into COPD (715), Normal (750), Pneumonia (555), and Tuberculosis (570) classes, which were
initially stored in DICOM format and subsequently converted to PNG for processing. This dataset addresses a
spectrum of lung diseases recognized for their significance in respiratory health in the Nigerian context, mirroring
the prevalence observed in tertiary hospitals (Desalu et al., 2009). These conditions are noted as primary
contributors to mortality and morbidity among adults attending tertiary hospitals in Nigeria. Recognizing the
importance of demographic diversity, we ensured the dataset captured variations in age and gender, thereby aiming
to bolster the model's generalizability in the detection and classification of lung pathologies.

COPD Normal Pneumonia Tuberculosis

715 750 555 570

Figure 2: The four categories and distribution of Lungs X-ray images sourced

3.2 Pre-processing

The pre-processing of X-ray images for lung classification involved several key steps to improve their quality and
usefulness. First, image cropping and resizing were performed to create a 224x224 pixel region of interest (ROI)
focused on the lung area. This step optimized computational efficiency and directed the model's attention to
relevant anatomical structures. Second, Noise in medical images can arise from various sources, including
acquisition equipment and environmental factors, and it can interfere with the accurate interpretation of the images
(Mingliang et al., 2016). Non-local means denoising leverages similarities between image patches to effectively
remove noise while preserving important image features as shown in Figure 3.

non-local means non-local means
noisy (slow) (slow, using Oest)

‘ l’ ‘ l’
original non-local means non-local means
(noise free) (fast) (fast, using Oest)
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Figure 3: Non-Local Means Denoising applied on X-ray chest images

Finally, a data augmentation pipeline was implemented on the training dataset to mitigate overfitting and enhance
model generalizability. Geometric transformations, including random rotations (+15°), horizontal/vertical flips,
and translations (+£10% of image dimensions) were applied to simulate variations in patient positioning and
radiographic acquisition angles. Photometric adjustments, such as brightness modulation (+20% delta) and
contrast scaling (0.8—1.2x), were additionally incorporated to account for inconsistencies in imaging equipment
and exposure settings. This augmentation strategy, aligned with established practices in medical image analysis
(Shah et al., 2022), and serve dual objectives in improving reliability to intra-class variability by diversifying the
feature space, and compensating for limited dataset size through synthetic data generation, critical for
underrepresented classes.

3.3 Feature Extraction

LeCun et al. (2015) defined deep learning as a subset of machine learning employing multiple layers for image
and object classification. In this study, VGG-16 architecture, pre-trained on ImageNet was used, for its established
capacity to extract hierarchical spatial features via its deep convolutional layers (Simonyan & Zisserman, 2014).
This makes it particularly suitable for identifying subtle pathological patterns in chest X-rays, such as
consolidations in pneumonia or cavitary lesions in tuberculosis. VGG-16 was truncated after the fourth max-
pooling layer (Figure 4), retaining only the feature extraction portion to leverage transferable low- and mid-level
features, while discarding the fully connected layers to mitigate overfitting. This specific layer choice was
empirically determined to provide an optimal balance between preserving fine-grained anatomical details, like
bronchial structures, and encoding high-level semantic features, such as lobar opacities (Ragab et al., 2022). The
convolutional layers processed the pre-processed images, resulting in a 7x7x512 feature map which were
subsequently flattened into a 25,088-dimensional vector.

Input 224x224x3
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Figure 4: Feature extraction on VGG-16 architecture

3.4 TabNet Classification

Building on the hierarchical features extracted by VGG-16, TabNet was employed to quantify feature relevance
and classify lung diseases. The process comprises three core stages: feature transformation, attention-based
selection, and sequential decision-making (Arik & Pfister, 2021; Shah et al., 2022), as illustrated in Figure 5. The
flattened 25,088-dimensional feature vectors from VGG-16 preserved spatial relationships while TabNet’s
initial feature transformer applied a linear projection to reduce dimensionality to 128 features as represented in
Equation 1:

Frequcea = Wproj : Fflat + bproj (1
where W,

oroj € R128*23088 and b, € R'8 are learnable parameters. This reduction is to retain 92% of the
variance while mitigating overfitting risks inherent in high-dimensional medical data.

TabNet employed a 3-step decision process to iteratively refine feature selection (Arik & Pfister, 2021):

i.  Feature Masking: At each step t, a sparse attention mask M, € R128

activation as in Equation 2 (Martins & Astudillo, 2016):

was generated using Sparsemax

M, = Sparsemax (%’;”dm) )

where W, € R128>128 h e R128bt € R1?8, and d = 128. Sparsemax enforces sparsity, ensuring only 15-20%
of features were active per step.

ii. Feature Aggregation: Selected features were processed by a shared feature transformer block connected
with ReLU and summed across steps.

1il. Class Prediction: The aggregated features were passed through a softmax layer to compute probabilities
for the four classes: COPD, Pneumonia, Tuberculosis, and Normal.
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Figure 5: TabNet architecture on the extracted features

3.5 Model Evaluation

For model evaluation, a dataset split of 60/20/20 for training, validation, and testing, respectively was used. The
test set serves as the primary focus for evaluation, assessing the model's ability to generalize to unseen data and
mitigate overfitting risks. We utilize a comprehensive set of metrics including accuracy, sensitivity, precision,
AUC (Area Under Curve), and confusion matrix.
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3.5.1 Class-wise analysis

In this subsection, a class-wise analysis of the proposed method was employed. For this, Accuracy (3), precision
(4), recall (5), and F1-score (6) were used for evaluation, defined as follows:

a) Accuracy: The ratio of correct predictions to the total number of predictions.

TP+TN

Accuracy = ———— 3
TP+TN+FP+FN

b) Precision: It is about how precise or how often is the prediction correct? It is a ratio of True Positives (TP)
to the sum of the True Positives (TP) and False Positives (FP). It calculated as

Precision = — 4)
TP+FP

¢) Recall: When the actual value is positive, how often is the prediction correct? It is the ratio of TP to the sum
of TP and False Negatives (FN) computed mathematically as

TP
TP+FN ©)

Recall =

d) F1-Score: F1-Score is also known as F1 Score. It is the harmonic mean of precision and recall. The harmonic
mean is appropriate for situations where the average of rates (a ratio between two related quantities) is desired.
It is calculated as
2XPrecision XRecall

F1Score =——F————— (6)

(Precision+ Recall)

Following the initial training phase, post-processing involved fine-tuning the model's hyperparameters to optimize
diagnostic accuracy, achieved through subsequent training iterations utilizing the parameters detailed in Table
1. These hyperparameters (e.g., learning rate, batch size) were initially set based on common practices for fine-
tuning VGG-16 and TabNet, and were then optimized via a grid search focused on maximizing validation
accuracy.

Table 1: Parameters setting details in our method

Experimental parameters Setting

Batch size 12 (limited by GPU memory constraints)

Optimizer Adam

Epoch 20 with early stopping if validation loss plateaued for 5 epochs.

Learning rate (LR) 0.0001, decayed by 10% per epoch

Image size 244 x 244

Loss Categorical cross entropy

Validation/Test split 0.2/0.2

Regularization Sparsity loss (A=0.0001) penalized excessive feature usage, enhancing
interpretability.

3.6 Model Deployment and Computational Efficiency

The trained lung disease detection model was deployed as an Android mobile application using TensorFlow Lite,
enabling real-time inference. The Keras model was converted to a TensorFlow Lite format, and quantization was
applied to reduce its size and improve latency. Developed with Android Studio and Kotlin, the application allows
users to analyze X-ray images either captured directly or selected from their device, with all inference running
locally and offline. The model demonstrated significant computational efficiency; training the VGG-16-TabNet
model took just 2.3 hours on a single GPU using Google Colab Pro. Furthermore, the Android deployment
achieved inference times of less than 1 second on a Snapdragon 888 processor, making it highly suitable for real-
time applications. This blend of efficiency, high accuracy, and interpretability positions the model for widespread
adoption in clinical settings, especially in low-resource environments.
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4 Results and Discussion

This section presents the results of the proposed lung disease detection model using a VGG-16-TabNet
architecture and discusses its performance in the context of existing studies. The findings are supported by tables
and figures, providing a comprehensive evaluation of the model’s accuracy, generalization, and practical
applicability.

4.1 Model Performance and Comparison

The VGG-16-TabNet model outperformed state-of-the-art models across all metrics. As shown in Table 2, the
proposed model achieved the highest accuracy (97.0%) and F1-Scores for COPD (98%) and pneumonia (97%).
ResNet-50, while competitive, lagged slightly with an accuracy of 95.7%, and VGG-16 (baseline) achieved
94.7%. EfficientNetB0, with an accuracy of 92.6%, demonstrated the lowest performance among the models
evaluated. The superior performance of the VGG-16-TabNet model is stable and consistent on four chest X-ray
image classes can be attributed to its ability to our model ability to leverage a smaller size of the filter of the VGG-
16 model, which is appropriate to capture interesting regions of Chest X-ray images and also, because the extracted
features from VGG-16 is further quantified by TabNet's attention mechanisms, which dynamically prioritize
clinically relevant features. Furthermore, Figure 6 depicted that Our VGG-16-TabNet model's diagnostic strength
is clear in the AUC-ROC curves. We achieved near-perfect AUCs for COPD and tuberculosis (0.99), and excellent
scores for pneumonia and normal cases (0.98), far surpassing random chance. This shows the model's ability to
balance sensitivity and specificity, crucial for accurate diagnoses here in Nigeria. High true positive rates with
low false positives, especially for critical conditions like COPD and tuberculosis, demonstrate the model's
reliability. TabNet's attention mechanism effectively identifies key disease markers, vital for building trust in our
healthcare settings.

1.0 -

7

0.75
Legend

= COPD (AUC: 0.99)
Pneumonia (AUC: 0.98)

Tuberculosis (AUC: 0.99)

Normal (AUC: 0.98)

True Positive Rate
o
3

Random Chance

025 ||

®
00
00 025 False P8'55|8ve Rate 015 10 Q
Figure 6: AUC-ROC for different disease classes for the proposed model
Table 2: Performance comparison with state-of-the-art pretrained models.
F1-Score F1-Score (TB) F1-Score
o,
Siceel Ay () (COPD) (Pneumonia)
EfficientNetBO 92.6 93 88 95
98
ResNet-50 [17] 95.7 94 96
VGG-16 (baseline) [16] | 94.7 94 94 95
VGG-16-TabNet 97.0 98 7 97
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4.2 Generalizability and Bias Mitigation

The model exhibited consistent performance across demographic subgroups, with accuracy deviations of
<1.2% (see Figure 7).

Accuracy Deviations £1.2% Across Demographic Groups

Performance by Age Group Performance by Gender

99% 99%
98% 98%
97% oo 0% 96.5% 97% 96.9% 96.7%
96% 96%
95% 95%
94% 94%

18-30 31-45 46-60 60+ Male Female

Baseline Accuracy: 97.0%

Figure 7: Model performance across demographic subgroup

This demonstrates its robustness to variations in age and gender critical for real-world clinical applications. Data
augmentation played a significant role in mitigating class imbalance, particularly for pneumonia, reducing the
false-negative rate from 8.3% to 2.1%. This improvement underscores the importance of augmentation techniques
in enhancing model generalizability, especially for underrepresented classes in medical datasets.

4.3 Convergence Analysis

To assess the generalizability of our VGG-16-TabNet model, a comparative analysis with other pre-trained
methods was conducted. Figures 8-9 illustrate the training and validation accuracy/loss curves for each model.
The proposed model demonstrates a significantly smaller gap between training and validation metrics compared
to the other methods. This reduced gap indicates a more consistent learning pattern and suggests superior
generalization capabilities. This observation reinforces the robustness of the hybrid architecture and its potential
for reliable performance on unseen data.
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Figure 8: Accuracy and loss per epoch of our proposed model against EfficientNetB0 model
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Among the four models, the proposed model stands out as it exhibits consistent convergence behavior and strong
generalization, and shows best fit on the images with a minimal gap between training and validation accuracy.
The proposed VGG16-TabNet Model achieves high accuracy while maintaining stability throughout training,
making it a reliable choice for the prediction of lung diseases. Furthermore, the EfficientNetBO Model also
performs reasonably well, but its initial anomaly and slightly wider gap between training and validation accuracy
make it less preferable. ResNet-50 showed signs of overfitting, while VGG-16, although stable, has a wider gap
between training and validation accuracy.
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Figure 9: Accuracy and loss per epoch of ResNet-50 model and VGG-16 model

These findings indicate that the proposed model not only learns the training data efficiently but also generalizes
well to new unseen data instances as compared to other models. This is a key indicator of the reliability of the
proposed approach in the context of lung disease classification, showcasing its potential for broader applicability
in medical image analysis and diagnosis.

The obtained results across the metrics in 1, 2, and 3 are presented in Table 3, offering a glimpse into the
performance of the proposed model across the X-ray lungs image dataset. Upon careful examination of the table,
several noteworthy observations come to the fore. Firstly, the proposed model exhibits the highest precision for
COPD and the Normal class, while also having the highest recall rate for pneumonia. This highlights the model's
exceptional ability to precisely classify instances within these specific categories. Simultaneously, it is worth
noting that the proposed model showcases substantial performance across all other classes evidenced by its
impressive recall and F1-score metrics. These metrics underscore the model's capacity to effectively identify and
retrieve instances belonging to various classes with a notable degree of accuracy.

To obtain a more comprehensive understanding of how the predicted images are distributed across various classes,
the study utilizes confusion matrices, as illustrated in Figure 10. A detailed analysis of these three confusion
matrices uncovers a noteworthy trend: the proposed approach consistently demonstrates superior performance in
terms of correctly classifying images into their respective categories.

Table 3: Performance metrics comparison of the models used across all classes of Lung X-ray images

S/N Model Classes Results

1 EfficientNetBO COPD Precision: 94 Recall: 92 F1-Score: 93
Normal Precision: 98 Recall: 93 F1-Score: 95
Pneumonia Precision: 95 Recall: 95 F1-Score: 95
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TB Precision: 84 Recall: 92 F1-Score: 88
2 VGG-16 COPD Precision: 96 Recall: 92 F1-Score: 94
Normal Precision: 97 Recall: 95 F1-Score: 96
Pneumonia Precision: 94 Recall: 96 F1-Score: 95
TB Precision: 92 Recall: 97 F1-Score: 94
3 ResNet-50 COPD Precision: 95 Recall: 92 F1-Score: 94
Normal Precision: 95 Recall: 97 F1-Score: 96
Pneumonia Precision: 94 Recall: 97 F1-Score: 96
TB Precision: 100 Recall: 96 F1-Score: 98
4 Proposed COPD Precision: 98 Recall: 97 F1-Score: 98
VGG16-TabNet Normal Precision: 99 Recall: 95 F1-Score: 97
Pneumonia Precision: 93 Recall: 100 F1-Score: 97
TB Precision: 97 Recall: 96 F1-Score: 97

These discoveries collectively emphasize the effectiveness of the proposed model when evaluated using
precision, recall, and F1-score metrics, highlighting its exceptional capability to differentiate between distinct
classes and make accurate classifications.

Confusion Matrix for EfficientNet Model

Confusion Matrix for VGG-16 Model
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Figure 10: Confusion metrics comparison of the four models

An analysis of the confusion matrix (Figure 10) revealed that the most common misclassification occurred
between Tuberculosis (TB) and Normal cases, accounting for 12 of the 16 total errors on the test set. Specifically,
5 TB cases and 7 Normal cases were misclassified. This confusion is clinically plausible because early-stage TB
often presents with subtle radiological findings, such as minor infiltrates or granulomas, that can be easily
overlooked or mistaken for normal anatomical variations. Conversely, some normal chest X-rays may exhibit
benign conditions or technical artifacts that resemble TB-like features, leading to false positives. The model's
perfect classification of pneumonia cases, which typically present with more pronounced and distinct
consolidations, underscores its ability to detect clear pathological patterns. This dichotomy in performance
highlights the challenge in distinguishing subtle abnormalities in TB from normal cases and suggests the potential
need for incorporating additional clinical data or more advanced feature extraction to improve TB detection.
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4.4 Interpretability and Feature Relevance

The interpretability of the VGG-16-TabNet model is one of its most significant strengths, providing clinicians
with inference into its decision-making process. Attention Masks were generated to reflect clinically meaningful
patterns for each disease. For COPD, the attention masks highlighted diffuse bilateral lung patterns, with a strong
emphasis on hyperinflation, consistent with the disease's hallmark features. For tuberculosis, the masks focused
on the upper lobes, where cavitations and infiltrates are typically observed. For pneumonia, the attention was
localized to areas of consolidation, aligning with the clinical presentation of alveolar opacities and air
bronchograms.

To further quantify the model's interpretability, Quantitative Feature Analysis was performed (QFA), measuring
specific clinical features for each disease. For COPD, key metrics included hyperinflation (23.3%), flattened
diaphragm (42.3%), and bullae (12.3%). For tuberculosis, the model quantified upper lobe infiltrates (26.3%),
cavitation (49.3%), and fibrosis (16.1%). For pneumonia, consolidation (17.0%), air bronchograms (37.4%), and
alveolar opacities (6.9%) were measured. These metrics provide a detailed breakdown of the features contributing
to the model's predictions, enabling clinicians to understand the rationale behind each diagnosis

The interpretability of the model was further enhanced through Enhanced Visualizations, which included multi-
panel displays combining the original X-ray image, attention maps, and overlays. Disease probability bar charts
were used to visualize the model's confidence in each diagnosis, while feature quantification heatmaps provided
a detailed breakdown of the clinical features contributing to the prediction. Radar charts were also employed to
compare key features across diseases, offering an overview of the model's decision-making process. These
visualizations improve the model's usability and also facilitate its integration into clinical workflows, where
interpretability is critical for trust and adoption as shown in Figure 11.
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Figure 11: A sample of interpretability and feature quantification of COPD image

4.5 Model Deployment

The proposed model was successfully deployed as an Android application, enabling real-time inference on mobile
devices. The app allows healthcare professionals to capture or select X-ray images and receive diagnostic results
in under 1 second (see Figure 12). Testing on both emulators and real Android devices confirmed the app's
reliability and efficiency. The deployment demonstrates the model's potential for integration into clinical
workflows, particularly in resource-limited settings where access to advanced diagnostic tools is limited. The
Android app also generates a clinical interpretability report, providing disease probabilities, feature quantification,
and diagnostic recommendations, further enhancing its utility in real-world healthcare applications. These reports
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synthesize multi-layered analyses and delivering a better understanding for clinical practice. Each report begins
with quantified disease probabilities, reflecting the model's confidence across diagnostic categories. This
probabilistic output is then contextualized by quantified feature metrics, which delineate the contribution of
clinically relevant patterns, such as hyperinflation or cavitation. For example, in one case, the model classified an
X-ray image as pneumonia with a confidence score of 0.60. The report included disease probabilities (COPD:
0.10, Tuberculosis: 0.10, Pneumonia: 0.60, Normal: 0.20) and quantified clinical features such as air
bronchograms (37.4%) and alveolar opacities (6.9%). The report also provided block-level analysis, highlighting
the contribution of each feature block to the diagnosis. This level of interpretability not only enhances clinician
trust but also facilitates informed decision-making, particularly in complex cases.

Classified as:
Normal

@ O <

Figure 12: App classification results on the sample X-ray image

5 Conclusions

This study addresses critical challenges in Al-driven lung disease diagnosis by developing hybrid VGG-16-
TabNet architecture that synergizes hierarchical feature extraction with interpretable attention mechanisms. It
leverages a dataset of 2,590 chest X-rays from Nigerian hospitals, one of the largest cohorts for lung disease
classification in Nigeria. The model achieves state-of-the-art performance of 97% accuracy while overcoming
class imbalance, data noise, and the "black box" limitations of conventional deep learning approaches. The
integration of TabNet’s sparsity-controlled attention not only enhances diagnostic precision but also quantifies
clinically relevant features, such as hyperinflation in COPD and consolidations in pneumonia, aligning model
decisions with radiological expertise. The deployment of this model as a real-time android application underscores
its practical utility in resource-constrained settings, offering offline inference in under one second and bridging
the gap between Al innovation and clinical adoption. The study prioritize interpretability and also leverage
geographically diverse data to mitigates biases inherent in models trained on high-income populations in order to
advance equitable healthcare solutions. Future research could extend this paradigm in several directions. First,
integrating multimodal imaging data, such as combining chest X-rays with CT scans, could be achieved through
a dual-input architecture where separate feature extractors for each modality are fused using cross-attention
mechanisms before the final TabNet classifier. Second, diagnostic granularity can be refined by incorporating
structured, patient-specific clinical data (e.g., smoking history, symptoms) as tabular features alongside the image-
derived feature vectors within the TabNet framework. Finally, exploring federated learning approaches would
allow the model to learn from data across multiple hospitals without centralizing it, preserving privacy while
further improving generalizability and mitigating dataset bias.
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