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Abstract — Hydrology and water resources management ensure the sustainable use, conservation, and 

allocation of water in natural and engineered systems. Climate change, urbanization, and rising water demand 

necessitate advanced modeling approaches to enhance water security and resilience to extreme hydrological 

events. This editorial scope explores the integration of conventional hydrological models with machine learning 

to improve predictive accuracy, decision-making, and resource optimization. Physics-based models such as 

SWAT, VIC, and HEC-HMS simulate watershed processes, while hydraulic models like HEC-RAS and MIKE 

SHE assess flood risks. Groundwater models (e.g., MODFLOW) analyze aquifer dynamics, and optimization 

models support efficient reservoir and watershed management. Despite their reliability, these models require 

extensive calibration, high-resolution data, and struggle with capturing nonlinear hydrological complexities. 

Advancements in computational power and data availability enable machine learning to complement traditional 

models. Algorithms such as ANNs, SVMs, and RF enhance hydrological forecasting, while deep learning 

methods (LSTMs, CNNs) improve spatio-temporal predictions. Hybrid models integrating physical-based 

simulations with machine learning-driven corrections reduce uncertainties, enhance computational efficiency, and 

enable adaptive water management. Machine learning applications extend to flood forecasting, drought risk 

assessment, and climate change impact analysis, strengthening disaster mitigation efforts. Integrating AI with 

hydrological models offers promising advancements in real-time monitoring, infrastructure resilience, and water 

governance. However, challenges related to data availability, model interpretability, and computational 

complexity remain. Future research should focus on explainable AI, refined hybrid modeling, and machine 

learning-based decision-support systems. As AI, remote sensing, and big data evolve, their convergence with 

hydrological sciences will drive more intelligent and sustainable water management solutions. 
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1.0 INTRODUCTION  

Hydrology and water resources management are vital disciplines focused on the sustainable use, conservation, 

and distribution of water in both natural and engineered systems. With global challenges such as climate change, 

rapid population growth, and urban expansion intensifying pressure on water supplies, innovative research and 

advanced methodologies are crucial for ensuring efficient water management and bolstering resilience against 

hydrological extremes [1, 2]. 

This editorial scope spans a wide range of topics in hydrology and water resources management, addressing both 

theoretical and applied research. Areas of special interest include surface and groundwater hydrology, 

hydroclimatic variability, flood and drought forecasting, water quality assessment, and integrated water resources 

management (IWRM). 

Approaches to water resources management can generally be divided into conventional modelling and machine 

learning-based techniques. Traditional methods rely on physical-based, process-driven models to simulate 

hydrological processes and manage water distribution. These models include: (i) hydrological models such as the 
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Soil and Water Assessment Tool (SWAT) [3, 4], Variable Infiltration Capacity (VIC) model [5, 6], and the 

Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) [7, 8]; (ii) hydraulic models for 

simulating floods and river flows, including Hydrologic Engineering Center's River Analysis System (HEC-RAS) 

[9, 10] and MIKE-Systeme Hydrologique Europeen (MIKE SHE) [11, 12]; (iii) groundwater flow and transport 

models like the Modular Three-Dimensional Finite-Difference Ground-Water Flow Model (MODFLOW) [13, 

14]; and (iv) optimization and decision-support tools for managing reservoirs and watersheds [15, 16]. 

Advancements in computational power and the availability of large datasets have paved the way for machine 

learning (ML) as a powerful tool in water resources management. ML techniques offer data-driven insights and 

enhanced predictive capabilities, such as: (i) the application of Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs), and Random Forests for hydrological forecasting [17, 18]; (ii) the use of deep learning 

models, including Long Short-Term Memory (LSTMs) networks and Convolutional Neural Networks (CNNs), 

for spatio-temporal water resource predictions [19, 20]; (iii) the development of hybrid models that integrate 

conventional hydrological modeling with ML to achieve higher accuracy [21, 22]; and (iv) innovative 

applications in flood prediction, drought assessment, and evaluating the impacts of climate change [23, 24]. 

By merging traditional modeling techniques with emerging machine learning methods, modern water resources 

management achieves greater precision, efficiency, and adaptability in response to environmental changes. 

Conventional hydrological models such as SWAT, HEC-HMS, and MODFLOW often face challenges when 

dealing with complex, nonlinear processes and demand extensive calibration. In contrast, machine learning—

especially deep learning and hybrid approaches—enhances these simulations by learning from extensive datasets, 

correcting residual errors, and providing real-time forecasts with improved accuracy. This integration streamlines 

computational processes, automates feature extraction from satellite and sensor data, and refines water allocation 

through intelligent decision-support systems. Additionally, as ML-driven models continuously incorporate new 

climatic and hydrological data, they enhance flood and drought predictions, improve assessments of climate 

change impacts, and support resilient planning for water infrastructure. The synergy between conventional and 

AI-driven approaches ultimately creates a robust, data-informed, and adaptive framework for sustainable water 

resources management. 

2.0 CONVENTIONAL MODELLING IN WATER RESOURCES MANAGEMENT  

Traditional water resources management relies on models as essential tools for understanding and predicting 

water system behavior, supporting decision-making in water allocation, flood mitigation, and climate adaptation 

strategies.  

Hydrological models are designed to simulate the movement and storage of water within a watershed, 

considering factors such as precipitation, infiltration, and runoff generation. The commonly used models include 

SWAT which is widely applied for evaluating land use changes and climate impacts; VIC model that is known 

for large-scale hydrological assessments; and HEC-HMS which provides detailed precipitation-runoff 

simulations for flood forecasting. Hydrological models offer a structured approach to understanding the water 

balance, including streamflow, evapotranspiration, and groundwater recharge. The models allow researchers and 

policymakers to assess the impacts of land-use changes, climate variability, and water management strategies. 

Many hydrological models incorporate satellite data to improve the accuracy of precipitation and soil moisture 

estimates [3, 5, 11]. Nevertheless, hydrological models require high-quality input data (e.g., rainfall, soil 

properties, land cover), which may be difficult to obtain in data-scarce regions. The accuracy of simulations 

depends on extensive calibration and validation, which can be time-consuming and computationally demanding. 
Also, many models assume homogeneity in watershed characteristics, leading to oversimplifications that may 

affect reliability [6, 7]. 

Hydraulic models focus on simulating water movement in rivers, floodplains, and engineered structures such as 

dams and levees. The examples of hydraulic models include HEC-RAS that is widely used for flood risk 

assessment and river hydraulic studies, and MIKE SHE which integrates surface and subsurface hydrology for 

catchment-scale simulations. The models provide detailed floodplain mapping and water surface elevation 

estimates, which are critical for disaster management. In addition, the hydraulic models assist in designing and 

evaluating flood control structures, drainage systems, and stormwater management plans. Furthermore, many 

hydraulic models now support 2D and 3D simulations, improving spatial resolution for complex hydrodynamic 

studies [9–12]. However, high-resolution hydraulic simulations require significant computational resources, 
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especially when modelling large river basins. The accuracy of hydraulic models depends on well-defined 

boundary conditions, which may be uncertain or unavailable. Also, detailed topographic and bathymetric data are 

essential for accurate hydraulic simulations, but such a dataset is often limited or costly [10, 11]. 

Groundwater models are essential for understanding subsurface water movement, aquifer storage dynamics, and 

pollutant transport. The MODFLOW is the most widely used tool for simulating groundwater flow, supporting 

studies related to groundwater depletion, contamination, and sustainability. The models provide insights into 

recharge rates, aquifer storage changes, and groundwater-surface water interactions. In addition, groundwater 

models are valuable for monitoring pollution plumes and designing remediation strategies for contaminated sites. 

The output of the models may help policymakers to evaluate the impacts of groundwater extraction, climate 

change, and land-use changes on water availability. Despite the advantages, groundwater models require detailed 

information on aquifer properties, which may not be readily available. Model accuracy depends on rigorous 

calibration using historical groundwater level and flow data, which can be time-consuming. Furthermore, many 

models use simplified assumptions about subsurface heterogeneity, which may not fully capture local 

groundwater dynamics [13, 14]. 

Optimization models and decision-support systems are designed to enhance water allocation strategies, reservoir 

management, and policy formulation. These tools incorporate multi-objective decision-making frameworks, real-

time data integration, and economic considerations to guide sustainable water resource planning. The tools 

optimize water distribution among competing users, improving resource efficiency. Decision-support systems 

integrate climate projections, helping policymakers develop adaptive water management strategies. Furthermore, 

modern decision-support tools utilize real-time sensor data and remote sensing observations for enhanced 

monitoring and forecasting. Nevertheless, large-scale optimization models require substantial processing power, 

limiting their application in real-time decision-making. The effectiveness of decision-support tools depends on 

stakeholder participation, which can be challenging to achieve. Also, many optimization models rely on 

simplified representations of socio-economic and environmental factors, potentially leading to biased outcomes 

[15, 16]. 

3.0 MACHINE LEARNING IN WATER RESOURCES MANAGEMENT 

Unlike the conventional models, which rely on explicit equations and assumptions about hydrological and 

hydraulic processes, ML techniques are data-driven and can identify complex, nonlinear relationships between 

input variables and water-related outcomes. These capabilities make ML particularly useful for improving 

hydrological forecasting, flood prediction, drought assessment, and climate change impact analysis. 

Supervised ML algorithms, such as ANNs, SVMs, and RF, have been widely employed in hydrology for 

streamflow prediction, precipitation forecasting, and water quality assessment. The models learn patterns from 

historical datasets and generalize them to make future predictions. Supervised ML models can efficiently capture 

nonlinear relationships between hydrological variables, leading to improved forecasting performance. Once 

trained, ML models can generate real-time predictions much faster than conventional model simulations. The 

models can integrate diverse data sources, including remote sensing, satellite observations, and sensor networks, 

enhancing prediction reliability. Neverthesless, the accuracy of ML models heavily depends on the quality and 

quantity of available training data. Data scarcity or bias can lead to unreliable predictions. Unlike process-based 

models, ML techniques do not explicitly account for hydrological principles, making it a challenge to interpret 

results from a scientific perspective. Furthermore, if not properly trained and validated, ML models may overfit 

to historical patterns and fail to generalize to new conditions  [17, 18]. 

Deep learning models, such as LSTMs and CNNs, are particularly effective for capturing complex spatiotemporal 

patterns in hydrological data. LSTMs excel in processing time-series data (e.g., river discharge trends, 

precipitation variations), while CNNs are useful for spatial pattern analysis (e.g., flood extent mapping using 

satellite imagery). Deep learning models outperform traditional ML techniques in detecting intricate spatial and 

temporal dependencies in hydrological systems. Unlike conventional models that require manual selection of 

input variables, deep learning automatically extracts relevant features from raw data. In addition, the models can 

handle massive datasets from satellite sensors, remote sensing platforms, and IoT-based hydrological monitoring 

networks. However, there are some drawbacks for the deep learning models which training these models requires 

substantial computational resources, including powerful GPUs and large memory capacity. Also, deep learning 

models require extensive hyperparameter tuning and optimization, which can be time-consuming and resource-
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intensive. While deep learning models perform well in data-rich environments, they may struggle in regions with 

limited historical observations [19, 20]. 

A promising research direction involves hybrid modelling, where ML techniques are combined with traditional 

physical-based hydrological models to enhance accuracy, reduce uncertainty, and improve computational 

efficiency. These models leverage the process-based understanding of traditional hydrological simulations while 

incorporating ML-based corrections and uncertainty quantification. Hybrid models outperform standalone ML or 

traditional models by leveraging the strengths of both approaches. By integrating ML with physical-based 

constraints, hybrid models maintain the interpretability of traditional hydrological frameworks. The integrated 
ML techniques can help correct systematic biases in traditional ML models, improving overall prediction 

reliability. However, hybrid approaches require expertise in both hydrological modelling and ML, making the 

implementation more challenging. The integration process must be carefully calibrated to ensure that ML-based 

adjustments do not introduce inconsistencies into the physical model. While hybrid models improve accuracy, 

they may still require significant computational resources depending on the size and complexity of the dataset 

[21, 22]. 

Machine learning has proven highly effective in flood prediction, drought assessment, and climate change impact 

analysis by integrating historical climate data, real-time hydrological monitoring, and remote sensing 

observations. ML models can provide early warnings for floods and droughts, improving disaster preparedness 

and mitigation strategies. By analyzing historical climate trends, ML models help policymakers design adaptive 

water management strategies. Also, ML algorithms enhance the accuracy of flood extent mapping, groundwater 

depletion assessments, and land use change detection. However, ML-based climate models are subjected to 

uncertainties due to incomplete climate datasets, changing atmospheric conditions, and model extrapolation 

errors. The implementation of AI-driven disaster management strategies requires stakeholder collaboration, data 

transparency, and regulatory frameworks to ensure equitable water distribution. In addition, ML models trained 

on historical data may fail to account for future hydrological extremes influenced by climate change [22, 23]. 

4.0 CONCLUDING REMARKS 

While conventional water resources management models provide robust, physics-based approaches for 

understanding hydrological and hydraulic processes, they also have inherent limitations in computational 

efficiency, uncertainty handling, and data requirements. The integration of machine learning in water resources 

management offers significant improvements in prediction accuracy, computational efficiency, and adaptability 

to environmental changes. However, challenges such as data dependency, model interpretability, and 

computational complexity must be addressed to maximize ML's potential. Future research should focus on 

developing hybrid ML-hydrological models by combining ML with physical-based models to enhance prediction 

robustness and uncertainty quantification. Also, in order to improve the interpretability of ML model, explainable 

AI (XAI) techniques can be used to make ML predictions more transparent and scientifically justifiable. On the 

other hand, expanding ML applications in water policy and governance can be achieved by integrating ML-

driven decision support tools into real-time water allocation, disaster response, and infrastructure resilience 

planning. As advancements in artificial intelligence, remote sensing, and big data analytics continue to evolve, 

ML will play an increasingly vital role in shaping resilient, data-driven, and adaptive water management 

strategies for the future. 
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