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Abstract — Trip generation plays a crucial role in transportation planning, and the choice of an appropriate model 

is essential for predicting future travel patterns. This study focuses on comparing the suitability and performance 

of CatBoost and ANN for trip generation (production and attraction) modelling of Ilorin City. By incorporating 

Ilorin household and trip characteristics, population data, and maps, this study evaluates the performance of the 

models. The two models demonstrated high accuracy and performance. In terms of trip production, the CatBoost 

model displayed exceptional accuracy, attaining an R-squared value of 0.99999992016446, accompanied by an 

impressively low mean squared error (MSE) of 3.93870930136429e-05. In contrast, the neural network exhibited 

a slightly lower accuracy of 0.999873850524181, with an error value of 0.0581313408911228. Similarly, for trip 

attraction, the CatBoost model showcased remarkable accuracy and precision, achieving an accuracy score of 

0.9999999999999994 and an extremely low error value of 2.26762031965784e-13. The neural network model 

demonstrated an accuracy of 0.99999999990335 and a negligible error value of 0.000000041994. These findings 

underscore the strong predictive capabilities of both models for trip production and attraction, with the CatBoost 

model notably excelling in achieving nearly flawless accuracy and minimal error values across both aspects in 

Ilorin. Further research can explore the application of other advanced machine-learning techniques and combine 

their strengths to enhance the accuracy and robustness of trip-generation models. 
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International License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
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1.0 INTRODUCTION 

In recent years, machine learning has gained significant attention as a powerful tool for predictive modelling in 

various domains, including transportation planning [1]. Predicting future travel demand is a crucial aspect of long-

term transportation planning, aiding in devising strategies to cater to upcoming transport requirements. These 

strategies encompass land use regulations, pricing initiatives, and augmenting transportation infrastructure such as 

highways and transit services [2, 3]. With countless travellers making diverse choices regarding their travel times, 

destinations, and modes, the travel demand is substantial. These choices are influenced by various factors like 

family circumstances, traveller characteristics, and transportation options [4]. Trip generation, a fundamental aspect 

of transportation planning, refers to the estimation of the number of trips originating or ending in a particular zone 

[5]. With the surge in transportation demands attributed to factors like population growth, urbanization, and income 

per capita, the imperative lies in the development of transportation infrastructures [6]. At the core of effective 

transportation planning lies the pivotal concept of travel demand modeling. This process involves forecasting future 

travel patterns through the collection and analysis of present travel behavior data, forming the basis for creating 

predictive mathematical models [7]. These models hold a critical role in guiding decision-making for infrastructure 

enhancement and optimization. The conventional approach to travel demand modeling adheres to a sequence of 

four distinct stages: trip generation, trip distribution, modal split, and trip assignment. Among these, trip generation 

entails estimating the count of journeys originating from or destined for specific traffic analysis zones within a 

defined study region, constituting a fundamental facet of the broader travel demand modeling process [5]. 

Machine learning methods of forecasting are a focus in the current transportation industry and have been used 

successfully. Machine Learning models can handle large datasets and capture complex patterns and non-linear 

relationships [8]. However, they require careful feature selection, preprocessing, and validation to ensure accurate 
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predictions [9]. The performances of machine learning models strongly rely on manually chosen features, and there 

are currently no generally accepted rules for selecting the right features [10]. The performance of a machine 

learning model is influenced by several factors such as the nature of the particular transportation-related problem 

at hand, the nature and complexity of the input datasets and the number of influential features (independent 

variables). The support vector machine model [11], Bayesian networks [12], the K-nearest neighbors model [13–

15], the random forest model [16], as well as extreme machine learning and ensemble-based procedures [17], 

consistently yield satisfactory results for transportation-related problems. Other studies [18–25] effectively 

employed machine learning models and neural networks for transport related tasks.  

Artificial Neural Network (ANN) is a subset of Machine Learning that can learn and model large datasets based on 

algorithms that simulates the human brain neurons to perform complex tasks easily with high accuracy [26–28]. 

Neural networks usually consist of three fundamental layers, namely, the input layer ( which represents the quantity 

or values of the input variables), the hidden layer(s) (which are the intermediary nodes containing a number of 

neurons that receive and split the input values space into regions, multiplying each input value with numeric values 

called weights and passes each weighted value and a bias value unique to each neuron layer to an activation function 

which decides the final output value), and the output layer (which receives an output from the activation function 

of each preceding node) [29].  

On the other hand, CatBoost is a novel form of gradient boosting algorithms or machines (GBMs), which are a 

type of ensemble learning algorithm designed for machine learning tasks and offer improvements over previously 

created ML tools in terms of speed, accuracy, robustness and scalability [30]. CatBoost is an open-source GBM 

that can be implemented in Python Programming Language [30, 31]. GBMs have been shown to perform accurately 

in practical regression and classification tasks in many empirical studies [32, 33]. CatBoost is an improvement on 

previous GBMs which overcome problems of target leakage, and it can be successfully and accurately applied to 

both small and diverse datasets [34, 35]. 

Several researchers have worked on using either CatBoost or ANNs, or both in various applications and purposes. 

Different types of neural networks have been used in previous transportation research, including Multi-Layer 

Perception (MLP) neural network for traffic flow predictive modelling [10], convolutional neural network for 

pedestrian traffic estimation [36], radial basis function neural network (RBFNN) [37], and convolutional long short-

term memory (LSTM) neural network [38, 39]. Other ANN-based transport-related predictions include those of 

[10, 24, 40–44]. [27] worked on the application and performance evaluation of RBFNN for trip generation 

modelling of Akure, Nigeria. 

CatBoost has found previous applications in various domains, including finance-related scenarios [45, 46], 

medicine and biology [47], electrical utilities [48], meteorology [49], manufacturing [50], and agriculture [51]. [52] 

used CatBoost and ANN for financial distress prediction, noting that CatBoost outperforms ANN for such scenario. 

[53] proposed card fraud detection models using CatBoost and deep neural networks, and suggested that both 

machine learning methods yielded highly accurate results, with CatBoost performing better. [54] used a hybrid of 

LSTM neural network and CatBoost for electricity price forecasting. Their study results showed that the hybrid 

model achieved lower errors compared to single models such as MLP neural network, ensemble tree, support vector 

regression (SVR), LSTM and gated recurrent units (GRU) neural networks. 

In the field of transportation or traffic engineering, a study by [55] successfully applied CatBoost in predicting 

traffic accident impact range and proved the high performance accuracy and remarkable predictive capability of 

CatBoost algorithm. [56] suggested that CatBoost outperforms deep neural networks in the case of driver time 

arrival prediction for transportation planning. Other CatBoost applications in transportation engineering include 

detection of anomaly in IoT-based smart homes [57], and driving style detection [58].  

This study aims to evaluate and compare the predictive performance of machine learning models for trip generation 

forecasting of Ilorin, Nigeria. The research specifically focuses on employing two prominent machine learning 

techniques: CatBoost and ANN, to develop accurate and efficient models for predicting trip generation patterns in 

urban areas. The results of the comparative analysis provide valuable insights into the efficacy of CatBoost and 

ANN models in predicting trip generation patterns. The research findings contribute to the advancement of 

transportation planning methodologies and provide urban planners with valuable tools for making informed 

decisions related to trip generation estimation. 
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2.0 MATERIALS AND METHODS  

2.1. The Study Area 

In 2006, the estimated population of Ilorin was 777,667. Projections further indicated that this number surged to 

1,287,267 by 2022, positioning the city as the seventh-largest in Nigeria in terms of population [59, 60]. The city 

is situated at geographical coordinates of 8.4679° N and 4.5656° E and encompasses a total of twenty distinct 

political wards. Notably, Ilorin boasts a well-established intra-city public transit system alongside a meticulously 

maintained major road network. The visual representation of Ilorin's city map is shown in Figure 1. 

 

Figure 1 Map of Ilorin City 

2.2. Data Collection and Analysis 

This study integrates both secondary and primary data sources to form its foundation. The secondary data pool 

encompasses statistics related to population, land use attributes, and geographical maps. These resources were 

procured from entities such as the Kwara State Chapter of the National Populations Commission, other 

governmental agencies, and Geographic Information Systems (GIS). In contrast, the primary data pertains to 

intricate details encompassing household demographics, socio-economic characteristics, traffic volume and 

composition, as well as essential characteristics of travelers' trips including weekly trip counts, purposes of trips, 

and preferences of routes. 

The collection of primary data was carried out through household surveys, with a specific focus on origin-

destination surveys. This was achieved through the administration of questionnaires to households. The 

administered questionnaires were tailored to the already established zones. The process of conducting the survey 

embraced the systematic random sampling technique [61]. This approach involves selecting every "n" household 

(e.g., every tenth household) on a given street for the purpose of questionnaire administration. To ensure proper 

management of the overall sample count per zone, Yamane's adjusted formula was utilized [62]. 

The data analysis process employed in this study predominantly centered around the utilization of Microsoft Office 

Excel (latest version: 365) as the principal analytical tool, complemented by the selective use of Microsoft Word 

(365) and Microsoft Powerpoint as necessary. Additionally, the Geographic Information System (GIS) software 

also played a crucial role in facilitating a wide range of tasks, including map generation, analysis, and production. 
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In order to enable a systematic and efficient spatial observation, coupled with quantitative analysis of the intricate 

interplay between land use and economic factors influencing travel characteristics in Ilorin, the city was discretely 

partitioned into eight distinct zones using the ArcGIS software. These delineated segments, referred to as traffic 

analysis zones (TAZs), were meticulously crafted to ensure consistency in administrative boundaries, closely 

aligned with Ilorin's political wards. By adopting this strategic approach, the analytical process gains the capacity 

to integrate and explore the multifaceted dimensions of land usage patterns, population distributions, and 

administrative delineations. This integration significantly enhances the study's capacity to comprehensively 

examine the travel characteristics within the city. 

2.3. Trips Generation Modeling 

Trip production and attraction values were calculated based on the variables acquired through the data collection 

process and subsequent analysis. To ensure the robustness of the selected variables, a Pearson correlation analysis 

and a check for multicollinearity were conducted on the survey data. Through this rigorous evaluation, the variables 

with the most significant impact were identified for integration into the modeling process. 

The variables subjected to correlation analysis included Household Size, Average Household Income, 

Employment, Vehicle Ownership, Number of Females, Number of Males, Average Age, Number of Males, 

Ownership of Drivers’ License, Number of Students, and Total Trips. These variables were systematically 

examined to determine their relationships and potential influences on the travel patterns observed in the study area. 

Subsequently, the CatBoost Gradient Boosting Algorithm and the Multilayer Perceptron Neural Network 

(MLPNN) models (as illustrated in Figure 2) were employed to establish and model the intricate connection 

between household and travel characteristics, and the values associated with trip generation, including both trip 

production and attraction. These advanced modeling techniques were harnessed to capture the complex interplay 

between the variables (dependent and independent). 

The implementation of both models was conducted using the Python Programming Language within the Google 

Collaboratory Notebook environment. In order to streamline and facilitate the modeling process, a comprehensive 

selection of programming libraries and machine learning tools were utilized. These encompassed widely-used 

resources such as Keras, Pandas, NumPy, TensorFlow, Sklearn, and the Google Colab library. The integration of 

these tools was seamlessly achieved within the open-source Google Colab Notebook environment, which was 

strategically chosen to optimize the efficiency and effectiveness of the modeling procedure. This environment 

provided a versatile platform for code execution, data manipulation, and model training, ensuring a cohesive and 

productive modeling experience. CatBoost module contains an already built catboost algorithm that was imported 

and then fitted to the data while the ANN architecture was built from various Python commands. 

 
 

Figure 2 Typical MLPNN model architecture 

 

 



22 

 

2.4. Validation of the Models, Performance Evaluation and Visualisation 

The research involved segregating the dataset into training and testing subsets (80-20 distribution) for model 

validation. This segregation followed an 80-20 distribution, with 80% of the data allocated for training and the 

remaining 20% designated for testing. This allocation aimed to strike a balance between model training and 

validation. The evaluation of the CatBoost and Neural Network models used key metrics like R-squared, Mean 

Squared Error (MSE), and Mean Absolute Error (MAE) to gauge predictive performance. Python libraries were 

utilized to create informative bar visualizations for a more intuitive presentation of performance differences 

between models. This comprehensive approach aimed to provide a clear understanding of the models' predictive 

capabilities and enable effective performance comparison. 

3.0 RESULTS AND DISCUSSION 

This section details the results of the data analysis, CatBoost and ANN modelling for trip production and attraction, 

and the performance of the models using selected evaluation metrics. The interpretation of the model performance 

results and visualisations are also discussed.  

3.1. Delineating Ilorin into Traffic Analysis Zones (TAZs) 

Ilorin city was first delineated into TAZs based on administrative boundries and practicability of household survey, 

data collection and traffic analysis. The administrative boundaries or political wards were used to determine the 

TAZS for easy spatial analysis of the city. Data collection or surveys were carried out based on the resulting traffic 

analysis zones. Eight TAZs were eventually taken from the 20 administrative wards as shown in Figure 3. using 

ArcGIS software. The figure shows the eight zones (labeled A to Z) as situated in Ilorin geographical map and their 

boundaries. The figure also uses different colors to distinguish betweeen the traffic analysis zones. 

 

Figure 3 Ilorin TAZs, with administrative wards (Source: Ministry of Works and ArcGIS Software) 

3.2. Summary of Data from Household Survey 

The household survey was conducted using TAZs as a basis. Employing the Adjusted Yamane's Formula for sample 

size calculation and the systematic random sampling method [61] for selecting households to interview, the survey 

included 3457 individuals from 531 households across 8 zones. Among these, 54% were students, 41% were 

employed, and 5% fell into both categories. The travel diaries filled out by household members documented a total 

of 6,219 trips, with 80.96% being home-based and 19.04% non-home-based. Furthermore, the analysis revealed an 

average household size of 6.51 individuals in Ilorin. Additional details are summarized in Table 1, highlighting the 
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description of the data. Figure 4 is a pie chart representing the proportion of home-based trips versus non home-

based trips in percentage and sectors. It shows that 81% of the daily trips in the city are home-based while 19% are 

non home-based. This means that people in Ilorin travel to or from home more than they travel between non-home 

locations. 

Table 1 Descriptive Statistics of Variables from the Survey 

Variable Mean S. Error Median SD Range Min Max 

Household Size 6.510 0.218 6.387 2.268 19 2 21 

Av. Income (*1000) 239.586 19.632 238.795 228.099 2170 30 2200 

No Employed 2.674 0.159 2.613 1.441 12 1 13 

No of Students 3.531 0.170 3.438 1.883 13 0 13 

No of Vehicles 1.290 0.118 1.284 1.149 6 0 6 

No of above 12yrs 4.996 0.165 5.031 2.260 32 1 33 

No of Male 3.235 0.134 3.412 1.645 12 0 12 

No of Female 3.275 0.156 3.297 1.518 13 0 13 

Driver's Licence 1.358 0.140 1.422 1.191 12 0 12 

Total Trips 11.712 0.570 12.203 5.383 24 3 27 

Home-based 9.482 0.397 9.805 4.233 23 3 26 

Non-Home-based 2.230 0.184 2.370 2.941 16 0 16 

car trips 6.160 0.463 6.756 4.580 19 0 19 

bus trips 2.674 0.100 2.692 1.014 4 1 5 

keke (tricycle) 1.360 0.053 1.359 0.615 3 1 4 

motorcycle 0.693 0.052 0.702 0.652 2 0 2 

walking 0.832 0.058 0.834 0.799 4 0 4 

 

 

Figure 4 Pie representation of major trip purposes 

3.3. Outcome of the Pearson Correlation Analysis 

Table 2 shows the correlation analysis results for each pair of variables. Figure 5 shows a heat map representation 

of the coefficients. Once the correlation analysis was conducted, a subsequent multicollinearity check was 

performed to finalize the variables for the modeling process. The total number of trips (TT) served as the dependent 

variable for both trip production and trip attraction models. For trip production modeling, independent variables 

included Zonal Population and Average Household Income. The number of employed individuals was utilized as 

the independent variable for trip attraction modeling. These selected independent variables were identified as 

influential factors within their corresponding trip generation models. 

 

 

81%

19%

Home-based vs Non home-based Trips

Home-based Non-home-based
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Table 2 Outcome of the correlation analysis 

  TT HS AG HI NE NS NV N12 NM NF DL 

Trips/Household 1.00           

Av. Household Size 0.92 1.00          

Av. Age 0.22 0.11 1.00         

Av. Income 0.60 0.61 0.64 1.00        

No Employed 0.78 0.70 0.56 0.78 1.00       

No of Students 0.40 0.58 -0.52 -0.05 -0.14 1.00      

No of Vehicles 0.72 0.56 0.74 0.64 0.88 -0.21 1.00     

No of above 12yrs 0.92 0.87 0.30 0.61 0.69 0.44 0.74 1.00    

No of Male 0.60 0.71 0.47 0.49 0.62 0.11 0.65 0.60 1.00   

No of Female 0.77 0.79 -0.24 0.44 0.44 0.71 0.23 0.70 0.13 1.00  

Driver's Licence 0.77 0.67 0.64 0.70 0.92 -0.05 0.96 0.82 0.63 0.40 1.00 

 

Figure 5 Heat map of the correlation analysis  

3.4. Comparative Evaluation and Visualisation of the Performance of the Models 

The trip production and trip attraction components of trip generation were modeled using CatBoost and MLP 

Neural Network techniques, leveraging the analyzed household/travel dataset. The assessment outcomes of these 

models are detailed in Table 3 and Table 4, featuring the evaluation metrics highlighted in the methodology section.  

The outcomes indicate that both CatBoost and MLPNN models demonstrate remarkable accuracy in modeling trip 

generation data, encompassing both production and attraction scenarios. Additionally, these models showcase 

minimal error values, underlining their effectiveness in predicting trip generation values. 

Table 3 CatBoost Models Performance 

Accuracy measure Trip Production model Trip Attraction model 

R-squared value 0.999999920164465 0.9999999999999994 

Mean Absolute Error (MAE) 0.001659427440268973 3.8097102541101434e-07 

Mean Square Error (MSE) 3.938709301364293e-05 2.267620319657848e-13 
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Table 4 Neural Network Models Performance 

Accuracy measure Trip Production model Trip Attraction model 

R-squared value 0.9998738505241817 0.9999999999033522 

Mean Absolute Error (MAE) 0.17869409918785095 0.00015423298464156687 

Mean Square Error (MSE) 0.05813134089112282 4.199481651312453e-08 

By visualizing accuracy (R-squared) and mean squared error (MSE) values, a comprehensive performance 

comparison of the models was conducted. WPS Office Software was used to create charts to illustrate the models' 

performance evaluations, as depicted in Figure 6(a)-(c). Specifically, for trip production, the visual representations 

unveiled closely matched and high R-square values for both CatBoost and MLPNN models, although CatBoost 

slightly outperforms MLPNN in accuracy, while the accuracy values were more closely matched for trip attraction 

(although the accuracy of CatBoost model was still slightly higher). Nonetheless, an intriguing observation 

emerged regarding error values: the CatBoost models demonstrated remarkably lower error values compared to 

MLPNN models , holding true for both trip production and attraction scenarios. In summary, both machine learning 

models demonstrated exceptional accuracy and low error values, yet the CatBoost Algorithm emerged as the 

stronger performer based on error metrics, outshining the MLPNN. 
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(c) 

Figure 6 Models’ Performance Comparison for Production and Attraction Cases by: (a) R-squared values (b) Mean Absolute 

Error (c) Mean Squared Error 

 

4.0 CONCLUSION 

This study explored the application and performance of CatBoost and Multilayer Perceptron Neural Network 

(MLPNN) in modelling trip production and attraction for Ilorin’s transportation system planning. Major data used 

for the study was obtained from household/travel surveys. The data was explored and analysed, and 

correlation/multicollinearity analysis was done to choose the most influential variables in the data for the actual 

modelling process. The data was then used to develop the CatBoost and MLPNN models for trip production and 

trip attraction values. The performance of the models was then evaluated using evaluation metrics such as R-

squared value, mean absolute error (MAE) and mean squared error (MSE). The performance results were visualised 

using Python library bar plots. The two models were then compared in terms of their accuracy and error values. 

The comparative analysis of the CatBoost and neural network models for trip production and attraction revealed 

notable insights into their predictive capabilities. For trip production, the CatBoost model exhibited an exceptional 

accuracy level with an R-squared value of 0.99999992016446, accompanied by a remarkably low mean squared 

error (MSE) value of 3.93870930136429e-05. In contrast, the Neural Network demonstrated a slightly lower 

accuracy of 0.999873850524181, while its error value stood at 0.0581313408911228. Similarly, for trip attraction, 

the CatBoost model displayed remarkable accuracy and precision, boasting an accuracy of 0.9999999999999994 

and an impressively low error value of 2.26762031965784e-13. The neural network model, on the other hand, 

showcased an accuracy of 0.99999999990335 and a negligible error value of 0.000000041994. These results 

underscore the high proficiency of both models in predicting trip production and attraction. However, the CatBoost 

model particularly excelled in terms of achieving near-perfect accuracy and minimal error values for both trip 

production and attraction of Ilorin Metropolis. 

Based on the comprehensive analysis conducted, it is recommended to consider the CatBoost model as the preferred 

choice for trip generation modelling in Ilorin Metropolis. Its exceptional performance is vital for robust 

transportation planning, ensuring that future travel patterns are accurately predicted. 

Further research can explore the application of other advanced machine-learning techniques and combine their 

strengths to enhance the accuracy and robustness of trip-generation models. 
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