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Abstract — In rainfall frequency analysis, the choice of a suitable probability distribution and parameter 
estimation method is critical in forecasting design rainfall values for varying return periods at every location. 
Previously, some researchers in Nigeria used the method of moments (MoM) while others used the L-moment 
method (LMM) as parameter estimators. However, a more accurate result is obtainable if both estimators are used 
and their results are compared and ranked to obtain the most appropriate distribution models for each location This 
study compared the performance of two forms of parameter estimation, namely the method of moments (MoM) 
and the L-moment method (LMM). This was aimed at identifying and selecting the best fit probability distribution 
models among three distribution models for the design of hydraulic structures. These models are Generalized Pareto 
(GPA), Generalized Extreme Value (GEV), and Gumbel Extreme Value (EVI). Annual rainfall series of ten 
gauging stations with data from 33-50 years from ten southern States of Nigeria obtained from NIMET were used 
for Rainfall Frequency Analysis (RFA). At five locations, the best fit probability model was the GPA probability 
distribution model with L-Moment. EVI and GEV probability distribution models with the method of moments 
were the most appropriate probability models at two locations each. EVI probability distribution model with the L-
moment was the most appropriate probability model at one place. The findings confirmed that no single distribution 
outperformed all others at all stations. Since no single model is regarded preferable for all practical purposes, the 
best-fit probability model with parameter estimator at any location is site-specific. Consequently, available models 
and parameter estimators are filtered based on the situation at hand and the type of data available. The identified 
best fit models with the most appropriate parameter estimator would be a tool to help decision-makers in sizing 
hydraulic structures in the area. 
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1.0 INTRODUCTION 

Flood of extreme events from higher rainfall is a major concern in Nigeria where almost all the cities in the Southern 
part are annually flooded. Most hydraulic structures originally designed to handle the volume of water from this 
extreme rainfall event have collapsed due to poor design caused by inaccurate estimations of rainfall frequency 
values and flood design values. On account of these, it is required that adequate rainfall frequency analysis be 
conducted to estimate the peak flood values of rainfall which is a tool to help decision-makers in sizing hydraulic 
structures such as culverts, dams, spillways, and bridges. 

Estimation of rainfall peak values for accurate engineering design of water carrying hydraulic structures has 
remained one of the most challenging issues as sufficient hydrological data is limited. This is the paradigm in most 
gauging stations in Nigeria, where most of the sites are poorly gauged or not gauged at all.  

Previously, some researchers in Nigeria used the method of moments (MoM) while others used the L-moment 
method (LMM) as parameter estimators. However, a more accurate result is obtainable if both estimators are used 
and their results are compared and ranked in order to obtain the most appropriate distribution models for each 
location. 
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This study was aimed to carry out an at-site frequency analysis of observed rainfall data at ten stations selected in 
Southern Nigeria using three probability distribution models where parameters were estimated by the Method of 
Moment and L-Moment approach. 

The objectives of the study are to:  

I. Derive annual maximum daily Rainfall series for observed rainfall data at selected stations in Southern Nigeria; 

II. Estimate sample L-moments and L-Moment ratios namely: L-coefficient of variation (L-CV), L-coefficient of 
skewness(L-Skew), and L-coefficient of kurtosis(L-Kurtosis) and compute the descriptive statistics for MOM in 
favour of the selected stations; 

III. Fit three (3) commonly utilized probability distribution models namely: Generalized Pareto (GPA), Generalized 
Extreme Value (GEV), and Gumbel Extreme Value (EVI) distribution models to the sample data at each station 
using Method of Moment and L-Moment’s approach; 

IV. Select the best fit probability distribution model at each station using statistical goodness of fit criteria or 
measures namely: root mean square error (RMSE), relative root mean square error (RRMSE), probability plot 
correlation coefficient (PPCC), maximum absolute error (MAE), mean absolute deviation index (MADI) and 
Diagnostic-Index(D-Index) tests and a scoring ranking scheme; and 

V. Predict values of rainfall return level (RT) for return periods (T) of engineering importance (T = 2 years, 5 years, 
10 years, 25 years, 50 years, 100 years, and 200 years) for each station using the best fit distribution model obtained. 

For successful operation and cost-effective design of important hydraulic infrastructures such as dams, reservoirs, 
spillways, bridges, culverts, and urban drainage systems, realistic estimates of rainfall magnitude for a specific 
return time are required. 

One of the most basic and well-known approaches for estimating parameters in statistical hydrology is the method 
of moments. Using this method, a sample is fitted with a probability distribution by equating the sample moments 
to the theoretical distribution moments and the parameters are calculated. Even though this technique is simple and 
the computations are straightforward, it has been discovered that sample instant numerical values may differ 
dramatically from those of the population from which the sample was drawn. This is especially true when the 
sample size is small and/or the sample skewness is significant [1]. Compared to traditional moments, L-moments 
can characterize a broader range of distributions. The L-moments can be utilized to determine the distribution even 
if any of the conventional moments are absent. [2]. 

Furthermore, L-moments are more resistant to data outliers than traditional moments [3] and allow for more 
trustworthy inferences about an original probability distribution from tiny data. The benefits of L-moments over 
conventional moments in hypothesis testing, boundedness of moment ratios, and distribution identification have 
all been thoroughly studied. [2,4,28,33]. Stedinger [5] outlined the links between the distribution parameters and 
the L-moments and explained the theoretical features of the various distributions widely utilized in hydrology. 

At lower skewness, conventional moments are favoured, especially for smaller samples. [6], while L-moments are 
preferred at higher skewness, regardless of sample size. The best-fitted probability distributions were determined 
by [7] for at-site flood frequency analysis of the Ume River in Sweden. Their finding was that the generalized 
extreme value distribution with the L-moments estimation provided the most appropriate to the yearly maximum 
streamflow at two gauging sites. For the Prediction of Kanji Reservoir Inflows, Niger State, Nigeria, the Best-Fit 
Probability Distribution Models were examined by [8]. They selected the Gumbel (EVI) model as the best most 
appropriate distribution Model.  EV1 method was used for flood frequency analysis of the Burhi Gandak river by 
[31]. A regional precipitation-frequency analysis was conducted by [9] using L-moment methods to estimate three 
characteristics (size, shape, and position) during the period 1965–2013.  The GEV distribution was found to best 
suit the precipitation data in the R1 and R2 regions. GPD was also chosen for the R3 region. 

For flood study and selection of parent distributions, [10] used L-moment-based regional frequency analysis. to fit 
extreme monthly precipitation data from 18 locations in Iran's Zayandehrood basin. As a result, the generalized 
extreme-value and Pearson type-III tests’ distributions were selected and model parameters were estimated. [11], 
determined the most appropriate Probability Distribution for Monthly Rainfall Data from 1979 to 2013. They 
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discovered that the monthly rainfall data for the three Bangladeshi sites were best distributed using a generalized 
extreme value distribution.  

[12] studied annual rainfall data from fourteen Sudanese rainfall locations from 1971 to 2010. For the yearly rainfall 
over the period, the normal and gamma distributions were chosen as the best-fit probability distributions. [13] 
determined the best-fit probability distributions for maximum monthly rainfall Statistical analysis and distribution 
types were used to analyze 30 years of data from 35 locations in Bangladesh.  Generalized Extreme Value, Pearson 
type 3, and Log-Pearson type 3 were selected as the best-fitted probability distributions Also, the 10-year, 25-year, 
50-year, and 100-year return periods of maximum monthly rainfall were calculated for all locations studied. For 
yearly maximum daily rainfall in India, the Lognormal type 2 distribution was the best-fitting probability 
distribution according to [14, 6]. 

[15] revealed that the log-Pearson type 3 distribution was the best-fit distribution by utilizing yearly maximum 
rainfall based on daily rainfall in the northern areas of Pakistan. The best-fitted probability distributions for at-site 
flood frequency analyses of the Ume River in Sweden were obtained by [7]. At the gauging sites Solberg and 
Stornorrfors Krv, the generalized extreme value distribution with L-moments estimation provided the greatest 
match to maximum annual streamflow. They also predicted the maximum flow of water for return times of five, 
ten, twenty-five, fifty, one hundred, two hundred, five hundred, and one thousand years using the best-fitted 
distribution for each measuring site.  

[16] identified Log Pearson 3, Generalised Logistic, and Extreme Generalised Value Distribution Model as the 
most appropriate probability distribution models of extreme mean annual rainfall events in South Africa. [17] 
identified the most suitable probability distribution models for maximum, minimum, and mean streamflow for Tana 
River in Kenya. The lognormal and GEV distribution functions were the best-fit functions for the annual mean 
flows of the Tana River. 

[18] conducted a flood frequency study on maximum monthly rainfall data for Patani, Niger Delta region of 
Nigeria. Rainfall data from 1981 to 2013 were obtained from NIMET and CBN to estimate the possibility of 
flooding and take required actions to mitigate it. They used five probability distributions: Normal, Lognormal, Log 
Pearson, Gumbel, and Foster's Type -1 with return periods of two, five, ten, twenty-five, fifty, one hundred, and 
two hundred years. Their result showed that the Gumbel Distribution best described the region's precipitation data 
and, as a result, can be used to forecast flooding in the area. [19] fitted three probability distribution models to 
yearly maximum series of discharge or flow data at three flow gauging stations in Nigeria during 32 years (1955–
1986): Serav is on the Katsina-Ala River, Gasol is on the Taraba River, and Mayokam is on the Mayokam River.  
The most appropriate probability distribution models obtained for the different stations were, Log-Normal, and 
Log Pearson Type III for the stations at River Katsina-Ala at Serav, River Taraba at Garsol, and River Mayokam 
at Mayokam respectively. The most appropriate distribution model at each site was used to estimate return period 
floods for return periods of two, five, ten, twenty-five, fifty, one hundred, and two hundred years:  

Since rainfall frequency analysis data must be independent and evenly distributed, possible distributions and 
parameter estimators must be chosen for the most appropriate to the data available at a specific place [20]. As a 
result, this research is required to screen and choose the most appropriate probability distribution models with 
parameter estimators for rainfall prediction in southern Nigeria. 

2.0 MATERIALS AND METHODS  

2.1 The Study Area 

The purpose of this research is to look at the frequency of the yearly extreme series of diurnal rainfall totals in a 
few cities in Southern Nigeria.  The cities that have been chosen are Ikeja, Akure, Ibadan, Benin City, Port Harcourt, 
Uyo, Calabar, Onitsha, Enugu, Owerri. Figure 1 is a map of Nigeria showing 10 selected cities and the ten (10) 
station coordinates are presented in Table 1. 
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Figure 1 Nigerian Map with selected cities  

Source: Adapted from Office of the Surveyor-General of the Federal Republic of Nigeria. 

Table 1 Station coordination of selected cities in Nigeria 

S/N Station name 
Geopolitical zone in 

Nigeria 

State in 

Nigeria 
Longitude Latitude Years of available data 

1 Ikeja South – West Lagos 3.45oE 6.2oN 50 

2 Akure South – West Ondo 5.5oE 7.15oN 33 

3 Ibadan South – West Oyo 3.58oE 7.22oN 50 

4 Benin City South-South Edo 5.31oE 6.20oN 48 

5 Port Harcourt South-South Rivers 7.10oE 4.40oN 40 

6 Uyo South-South Akwa Ibom 7.53oE 5.10oN 32 

7 Calabar South-South Cross River 8.20oE 4.57oN 49 

8 Onitsha South – East Anambra 6.42oE 6.60oN 32 

9 Enugu South – East Enugu 7.30oE 6.30oN 49 

10 Owerri South – East Imo 7.0oE 5.29oN 32 

2.2 Data Used and Analysis method 

The diurnal rainfall data for the chosen cities were acquired from the Nigerian Meteorological Agency (NIMET) 
in Oshodi, Lagos provided diurnal rainfall data for the chosen cities from 1965 to 2014 (50 years). In general, 
continuous data of 30 years is required to make a time series for the rainfall frequency analysis. For each of the 
stations, the yearly maximum series was generated by picking the wettest year for each of the years in question. As 
a result, the number of extreme value data was equal to the number of years of record. Rainbow Software was used 
to verify for homogeneity in the annual series data for each station, and HEC-SSP Software was used to look for 
outliers. Descriptive statistics (mean, standard deviation and skewness, and kurtosis) were computed using the 
Annual Maximum Rainfall (AMR) series data. Weibull’s plotting position (WPP) formula was used to estimate 
observed rainfall magnitudes at different durations of T [35]. 
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The flowchart for the adopted methodology in comparing different probability distribution models is presented in 
Figure 2. 
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Figure 2 Flowchart for the adopted methodology in comparing different probability distributions 

Estimated rainfall were 
compared with the observed 
data for each of the selected 

cities 

Statistics AMR (mean, Standard 
Deviation skewness & kurtosis) 

were obtained 

 

The selected best PDM were used to 
estimate the rainfall for various 
return periods for each location 

 

Daily rainfall data for 50years for 
the selected cities were obtained 

Maximum daily rainfall data 
were used to form Annual 

Maximum Rainfall (AMR) Series 

 

Outliers and Homogeneity of 
data were checked 

Data were ranked according to 
Weibull and Gringorthin plotting 
positions and the corresponding 
return periods were estimated. 

 

Parameters of the distribution 
models (k = shape, α = scale 

and ξ = location) were 
estimated by MOM & L-

moment 

Parameters were fitted into the 
six selected probability 

distribution models (PDM) 

Estimated rainfall for each of 
PDM were computed with 
Quantile formula for each 

location for 5-200 yrs 

A scoring scheme was adopted for the 
different GOF tests for each 

distribution & the PDM with the 
highest score was chosen as the best fit 

model for each location 

Rainfall estimates obtained were used to 
develop Rainfall Frequency Curves 
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Three probability distribution models based on three factors (size, shape, and location) were studied and fitted to 
the yearly extreme series data in every location: Generalized Pareto (GPA), Generalized Extreme Value (GEV), 
and Gumbel Extreme Value type 1 (EVI). 

According to [27], the cumulative distribution function (CDF) of R is represented in Table 2 by F(R) (or F), and P 
represents the chance of surpassing it α, ξ and k are the location scale and shape parameters, respectively. They 
were obtained from the average, standard deviation, and coefficient of skewness of the collected rainfall data. The 
estimated rainfall during a return time is given by the probability distribution; sign (k) is either plus or minus one, 
depending on the sign of k, sign (k) is either plus or negative one. 

PWM theory is summarized in [23], which defines them as:    

rxsFEXr −−=− ...,...       (1) 

Where, F-s., X. denotes x's cumulative distribution function (CDF), and -r. is the r-th. order of PWM.  

The Quantile Function of Probability Distribution for Two Parameter Estimators is presented in Table 2. 

Table 2 Quantile Function of Probability Distribution for Two Parameter Estimators [21, 22,27] 

S/N Dist. Quantile function (RT) Parameter by MOM    Parameters by LMO 

1 EV1 RT = ξ – α ln (-ln F) ξ =  - 0.5772157α   
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For any distribution, unbiased sample estimators of,-i. of the first four PWMs can be constructed as followed [24]:  
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Where ( )jX represents the ordered precipitation values with ( )1X  are largest precipitation value and as the tiniest.  

For any distribution, the first four L-moments ( )4321 ,, λλλλ and  according to [24] gives the following results 
when stated as linear PWM combinations:  

01 βλ =        (3a) 

012 2 ββλ −=        (3b) 

0123 62 βββλ +−=       (3c) 

01234 123020 ββββλ −+−=      (3d) 

The L-moments ratios that were utilized to express estimations of parameters are as followed:  

L- Variation coefficient (L-CV) = 
1

2

λ
λτ =     (4) 

L- Skewness ( )
2

3
3 λ

λτ =       (5) 

L- Kurtosis ( )
2

4
4 λ

λτ =       (6) 

The sample estimates of L-moments ( )4321 ,, landlll  are calculated by replacing ( )3210 ,, ββββ and  Equation 
(3) with 3210 ,, bandbbb  respectively [24]. The most relevant metrics for summarizing probability distribution are 
L-moments and (L-CV), as well as L-moment ratios.  

 For the yearly maximum rainfall data, Equations (2a), (2b), (2c), and (2d) were used to generate the associated 
probability weighted moments, 32,1,0 −−−− bandbbb . for the observed sample data. [24]. The sample 
estimates of L-moments (were computed by replacing the results in (3a), (3b), (3c), and (3d). Equations (4), (5), 
and (6) were used to calculate the L-moment ratios (i.e. (L-CV), L- Skewness, and L- Kurtosis) [28]. 

 For each event, the cumulative probability of non-exceedance, F(P-i. ), was calculated using the Weibull formula 
given by [25,29]:  

( )
1+

=
n
mPF i        (7) 

The i-th element of a sample of yearly maximum rainfall arranged in descending order of magnitude is P-i, where 
m is the rank and n is the number of annual maxima in the record or the sample size. Parameters obtained for both 
estimators were fitted into the three selected probability distribution models (PDM) to estimate rainfall for each 
PDM which were computed with a Quantile formula for each location for 5-200 years. 
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2.3  Goodness-of-fit test criteria 

The goodness of fit indicates a comparison of the observed data with the data generated by a model. 

According to [27] [32], the goodness of fit tests were used to determine how well a collection of rain data for each 
station matches a probability distribution model. The following tests are used: Relative root mean square error 
(RRMSE), Root mean square error (RMSE), Maximum absolute error (MAE), Mean absolute deviation index 
(MADI), Chi-square (X2) test, and probability plot correlation coefficient (PPCC). Table 3 shows the Summary of 
Goodness-of-Fit Statistics. 

Each of these goodness of fit tests has its limitations, especially with the sample size requirement. Some do a better 
job at fitting the tails of the distribution while others are only good at fitting the mid-range of the distribution. 
Consequently, accurate measures necessitated the use of many goodness of fit tests in this study. The major benefits 
are group comparison of the distribution models and the selection of the best fit models for each location by 
scoring/ranking.    

Table 3 Summary of Goodness-of-Fit Statistics [27] 

0             Test Abbreviation Mathematical Equations 
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Except for the PPCC criterion, where the closer the numerical value is to 1, the better the distribution when 
examining the efficacy of a probability distribution model at a certain place, the lower the value of the Goodness-
of-fit test scores, the better the distribution. The mean values of the observed and predicted values are represented 
by Rm and Rmf, respectively. 

2.4  Scoring and ranking scheme          

Based on the results of the goodness of fit tests, the best performing distribution in terms of the test criterion 
obtained a score of six (6), the next best test received a score of five, and the worst test received a score of one. The 
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best distribution model for the station was found through a ranking mechanism that used the Goodness of Fit metric 
to choose the best distribution.  

2.5 Model validation 

The best-fit probability models were validated using Probability Plot Correlation Coefficient (PPCC) Goodness of 
fit Statistic. If the PPCC score is close to 1, it indicates that prediction with the model is an exact match with the 
observed rainfall.  

The plotting position correlation coefficient (PPCC) is a metric for the relationship between ordered data and fitted 
values as determined by a plotting position equation. PPCC was calculated using the relationship [26].  

In Table 3, the mean values of the observed and predicted values are represented by Rm and Rmf, respectively.  

The observed data may have come from the fitted distribution at a specific location if the PPCC score is close to 1.  

The hypothesis is as stated: 

Null Hypotheses (H0)   Probability Distribution Model fits the data   

Alternative Hypotheses (Ha): The probability Distribution Model does not fit the data    

Accept H0:  if PPCC   test statistics r is greater than PPCC Critical values r* at 5% significance level  

Or reject H0):  if PPCC test statistics r is less than PPCC Critical values r* at 5% significance level 

E. Forecasting rainfall return levels at the station  

The rainfall return levels at a station were estimated by using the applicable best distribution's Quantile function in 
Table 2 and plugging in the relevant return period.  

3.0 RESULTS AND DISCUSSION 

The summary of descriptive statistics which describe characteristics of a data set of extreme yearly rainfall series 
are presented in Table 4. These were used to compute the parameters of location (α), scale (ε ), and shape (k) of 
the selected probability distribution for the method of moment estimation of quantile values 

Table 4 Summary of descriptive statistics of extreme yearly rainfall. 

S/N Station Location Mean Standard Deviation Skewness Kurtosis 

1 Ikeja 107.67 44.56 1.26 1.38 

2 Akure 86.03 24.40 1.35 1.36 

3 Ibadan 69.71 27.35 -1.16 1.72 

4 Benin city 103.53 48.79 -0.25 0.78 

5 Port Harcourt 99.14 42.87 -0.64 0.82 

6 Uyo 98.54 25.66 0.64 0.03 

7 Calabar 111.73 49.47 -0.58 0.72 

8 Onitsha 97.77 38.28 -0.70 1.21 

9 Enugu 85.35 39.02 -0.33 0.70 

10 Owerri 111.02 36.48 0.16 0.18 

The values of the computed sample probability-weighted moments (PMWs) were obtained by applying Equation 
(2a) – (2d) to the observed data at the different stations are given in Table 5.  
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Table 5 Computed sample Probability weighted moments (PWMs) at stations 

Sample PWMs 

Station     
Ibadan 71.19 48.53 37.17 30.57 

Port Harcourt 99.33 56.81 40.72 32.04 

Enugu 92.80 53.92 39.07 31.02 

According to [29], the values of sample L- Moments values and L-Moment ratios for the observed data are obtained 
by applying Equations (3a) – (3c), (4), (5), and (6). The Computed sample L-moments and L-moment ratios at 
stations for the observed data are presented in Table (6). 

Table 6 Computed sample L-moments and L-moment ratios at stations 

Station        
Ibadan 71.19 25.85 3.06 7.48 0.36 0.12 0.29 

Port Harcourt 99.33 14.29 2.78 1.75 0.14 0.19 0.12 

Enugu 92.80 15.04 3.72 2.50 0.16 0.25 0.17 

These were used to compute the parameters of location (α), scale (ε ), and shape (k) of the selected probability 
distribution for the L-moment approach of estimation of quantile values. 

The parameters of location (α), scale (ε ), and shape (k) of the selected probability distribution estimated by the 
relevant equation in Table 2 using the method of moments are presented in Table 7A.  

Also, the parameters of location (α), scale (ε ), and shape (k) of the selected probability distribution were estimated 
by the relevant equation in Table 2. Table7B displays the results of applying the L-moment approach.  

Table 7A Estimated parameters using Method of Moments 

Location EVI               GEV GPA 

α ε  K α ε  k α ε  

Benin 38.06 81.55 -0.36 50.8 88.06 0.74 9.14 92.53 

Port Harcourt 33.40 79.85 -0.51  52.80 82.22 0.46 10.39 92.00 

Uyo 20.00 89.99 -0.09  22.07 87.55 0.45 10.10 91.56 

Calabar 38.57 89.82 -0.48  52.74 98.64 0.49 14.47 101.80 

Ikeja 34.50 88.82 0.23 22.00 93.51 0.17 9.80 99.94 

Ibadan 20.09 59.5 -0.72  42.26 66.56 0.02 5.23 65.95 

Akure 19.02 75.05 0.04 10.95 79.95 0.15 6.39 80.44 

Enugu 30.42 67.79 -0.39 41.13 73.46 0.68 16.05 75.77 

Onitsha 29.84 80.54 -0.53 41.49 88.97 0.42 11.92 89.38 

Owerri 28.44 96.68 -0.22 35.18 99.20 0.82 17.88 103.28 
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Table 7B Estimated parameters using L- Moments 

Location EVI               GEV GPA 

α ε  K α ε  k α ε  

Benin 162.84 -6.56 0.3174 0.09 87.28 0.60 204.07 -40.06 

Port Harcourt 47.47 74.93 0.0094 -0.03 99.32 0.44 45 .59 65.5 

Uyo 60.23 66.28 0.444 -0.21 100.67 0.05 39.22 63.81 

Calabar 61.72 71.93 0.0021 0.01 124.34 0.44 65.5 79.45 

Ikeja 77.97 64.44 0.445 -0.18 109.09 0.10 54.27 60.13 

Ibadan 85.88 21.62 0.178 0.08 71.13 0.58 105.87 4.58 

Akure 46.28 52.45 0.178 -0.14 79.03 0.16 34.93 49.07 

Enugu 45.96 62.96 0.13 -0.12 92.71 0.21 40.08 59.6 

Onitsha 53.21 67.56 -0.09 -0.08 98.33 0.28  46.68 61.77 

Owerri 66.7 75.27 0.241 0.13 113,65 0.67 89.29 60.21 
(k = shape, α = scale, ε  = location) 

3.1. Selection of the most appropriate Probability Distribution with Goodness of Fit Test Results 

Six goodness of fit tests and diagnostic tests. D – Index, were used to determine the most appropriate probability 
distribution of each location. Table 8 gives the values obtained for these tests by applying the equation in Table 3. 

Table 8 The distributions' Goodness-of-Fit test results at Ikeja 

 

 

 

 

 

3.2. The Goodness of Fit Test Values are used to evaluate probability distribution models 

The total score acquired from all of the tests were used to evaluate the probability distribution models. Each 
distribution model was given a score from one to six (1-6) based on the criteria that the distribution model with the 
highest score was chosen as the optimal distribution model for the data of a specific city. The best-supported 
distribution receives a score of six (6), the second-best receives a score of five (5), and so on in descending order. 
Table 9 was constructed utilizing the above-mentioned grading scheme. The results of the overall ranking are 
shown in Table 9.  

Table 9 Scoring and ranking scheme for distribution at Ikeja 

DIST RMSE RRMSE MADI MAE PPCC D - INDEX Total Rank 

EVI/MOM 5 5 6 4 3 5 28 2 

GEV/MOM 3 3 3 3 4 4 20 3 

GPA/MOM 2 1 1 2 1 3 10 5 

EVI/ L- Moment 4 4 4 5 2 1 20 3 

GEV/ L-Moment 1 2 2 1 5 2 13 4 

GPA/ L-Moment 6 6 5 6 6 6 35 1st 

S/N Distribution RMSE RRMSE MADI MAE PPCC D-INDEX 

1 EVI 7.44 0.075 0.0076 25.76 0.9865 0.595 

2 GEV 12.34 0.139 0.0696 35.78 0.9890 0.908 

3 GPA 14.23 0.760 0.540 98.62 0.7100 2.61 

4 EVI/ L- Moment 8.5325 0.0792 0.0663 23.78 0.9835 2.895 

5 GEV/ L-Moment 44.376 0.4088 0.3206 124.8 0.9915 2.835 

6 GPA/ L-Moment 5.4735 0.04725 0.0353 13.43 0.9935 0.267 
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3.3. Summary of the Presentation of The Six Probability Models 

Table 10 displays a summary of the six probability models presentation from their overall scores. Table 10 listed, 
at each site as the most appropriate model and the second most appropriate model as well as their scores. For Ikeja, 
the total score of GPA/ L-Moment for the different Goodness-of-Fit tests was 35 points. This being the highest 
score, was ranked the first GPA estimated by L-Moment was considered the best-fit distribution model. This 
method was adopted for other locations. 

Table 10 The Selected Model for the Peak Rainfall and the Goodness of Fit Test

S/N Location 
Most Appropriate 

Model 
Total Max 

Score 
Second Most Appropriate 

Model Total Max Score 

1 Ikeja GPA/ L- Moment 35 EVI/MOM 28 

2 Akure EVI/MOM 33 EVI/L-M 26 

3 Ibadan GEV/MOM 34 EVI/MOM 26 

4 Benin city GEV/MOM 31 GEV/L-M 28 

5 Port Harcourt GPA/ L- Moment 33 EVI/ L- Moment 30 

6 Uyo EVI/MOM 35 GEV/MOM 31 

7 Calabar EVI/ L- Moment 32 GPA/ L- Moment 31 

8 Onitsha GPA/ L- Moment 32 EVI/ L- Moment 28 

9 Enugu GPA/ L- Moment 32 EVI/ L- Moment 29 

10 Owerri  GPA/ L- Moment 32 GEV/MOM 31 

In summary, the most appropriate estimators were L-Moments in six locations and Methods of Moments in four 
locations.. This indicates that L-Moments are the preferred estimator in six locations over the conventional method 
of moments because L-moments, being linear functions of the data, suffer less from the effects of sampling 
variability [2]. However, according to [6], for lower skewness, and the absence of outliers, the conventional method 
of moments is favored, especially for smaller samples. Hence, Methods of Moments is the preferred estimator in 
four locations. 

Model validation results obtained using PPCC Goodness of fit Statistic is presented in Table 11   

Table 11 Model validation result with PPCC Goodness of Fit Statistic 

Location 

Most 
Appropriate 
Model 

Test 
Performed 

Calculated  
Values 
PPCC test= r 

Numbers of 
Observations 
 

Critical values at  
5% significance  
Level = r* 

Decision: Reject 
Ho : when PPCC 
 r < r* 

Ikeja GPA/L- Moment PPCC 0.9935 50 0.977 Accept HO 

Akure EVI/MOM PPCC 0.974 33 0.967 Accept HO 

Ibadan GEV/MOM PPCC 0.978 50 0.977 Accept HO 

Benin city GEV/MOM PPCC 0.979 48 0.976 Accept HO 

Port Harcourt GPA/L- Moment PPCC 0.973 40 0.972 Accept HO 

Uyo EVI/MOM PPCC 0.9916 32 0.966 Accept HO 

Calabar EVI/ L- Moment PPCC 0.988 49 0.976 Accept HO 

Onitsha GPA/L- Moment PPCC 0.979 32 0.966 Accept HO 

Enugu GPA/L- Moment PPCC 0.9913 49 0.976 Accept HO 

Owerri  GPA/L- Moment PPCC 0.992 32 0.966 Accept HO 
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The PPCC test statistics in Table 11 were calculated using Equation (6) and the Critical values of r* at 5% 
significance level were interpolated in PPCC Table in Standard textbooks. The decision column of the table implies 
that we have to accept the null hypotheses (Ho): that the data is well-fitting with the Probability Distribution Model. 
This has validated our models outlined in Table 5 and therefore it can be reliably used for future rainfall prediction 
as was carried out in Table 7. 

3.4      Forecasted Rainfall (mm) for Varying Return Periods at Each Location 

The Quantile values in Table 12 were calculated using the best-fit probability distribution provided in Table 10. 
The results of several analyses led to Table 12 which shows the rainfall return levels (mm) for given return times 
ranging from five to two hundred years, as well as the most appropriate probability distribution model for each 
station.  

Table 12 Model validation result with PPCC Goodness of Fit Statistic 

S/N Location  
Most Appropriate 

Distribution 

Return Period (Years) 

5 10 25 50 100 200 

1 Ikeja GPA/ L-Moment 140.77 171.67 209.33 236.63 231.76 256.90 

 2 Akure EVI/MOM 103.58 117.85 134.39 149.27 162.54 175.78 

3 Ibadan GEV/MOM 105.7 112.5 119.65 121.96 123.32 124.18 

4 Benin city GEV/MOM 146.9 166.34 184.45 194.39 202.07 208.006 

5 Port Harcourt     GPA/ L- Moment 121.65 137.39 152.99 161.79 168.64 173.97 

6 Uyo EVI/MOM 116.99 131.98 149.39 165.03 179.99 192.92 

7 Onitsha GPA/ L- Moment 122.30 141.09 160.94 172.93 182.81 190.96 

8 Enugu GPA/ L- Moment 114.45 132.98 153.74 167.01 178.51 188.47 

9 Owerri GPA/ L- Moment 148.30 165.24 178.41 184.19 187.83 190.96 

10 Calabar EVI/ L- Moment 151.78  171.89 197.31  216.16  234.88  253.53  

3.5    Rainfall Frequency Curves (RFCs) 

The Rainfall Frequency Curves was developed using the yearly extreme rainfall. Table 7 shows the estimates for 
the probability distribution models depicted in Figure 3,4, and 5.  

 

Figure 3 Rainfall frequency curve (RFC) for Ikeja 
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Figure 4 Ibadan's rainfall frequency curve (RFC) 

 

 

Figure 5 Rainfall frequency curve (RFC) for Benin City 

These Rainfall Frequency Curves (RFC), which represent ten curves in the study area are useful and effective tools 
for forecasting rainfall frequency distributions and determining T-year rainfall. They can also be used to plan, build, 
and at a variety of sites, manage hydraulic systems for flood reduction and flood damage avoidance.  
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4.0 CONCLUSION 

The most appropriate probability distribution model for each city was found by applying two-parameter estimators 
to three probability distributions for the selected cities in Southern Nigeria. Each site's rainfall return levels of 
engineering importance were forecasted using the most appropriate probability distribution models. The findings 
lead to the following conclusions:   

1. At five sites, the GPA probability distribution model with the L-Moment parameter estimator was the best-
fit probability model. At two sites, the GEV and EVI probability distribution models with the Method of 
Moments parameter estimator were the best-fit probability models. At one site, the EVI probability 
distribution model with L-Moment parameter estimator was the best-fit probability model.  

2. The best-fit probability model with parameter estimator is site-specific at any location. particular as a result, 
no single model is thought to be preferable for all practical purposes; instead, models are chosen based on 
the circumstances at hand and the nature of the data presented.  

3. Quantile estimations or expected rainfall levels for various return durations for appropriate design criteria 
needed for the preparation and the construction of flood-relieving hydraulic infrastructure and flood 
prevention in diverse areas have been provided.  

4. Curves of rainfall frequency for Ikeja, Ibadan, and Benin City have been supplied. They were created using 
predicted rainfall values generated with the most appropriate distribution model. These are useful for water 
resources design guidelines.  

5. In this period of frequent bridge, home, dam, and drainage collapse as a result of improper design, engineers 
must incorporate all relevant criteria. For effective works, statistical inputs during the design process are 
required. This research has supplied useful engineering design parameters for improved hydrological 
design and planning which are required for effective Hydraulic Structure Design for Flood Control and 
Mitigation, and Prevention in a range of settings. Engineers that apply these features will see a significant 
reduction in or complete elimination of design failures.    
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