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Abstract 
 
Unconstrained exposure of humans and their immediate environments to electrostatic fields generated 
by high-voltage transmission lines has raised a lot of concerns regarding public health safety. These 
transmission lines, often sited near human residential and urban areas, may pose long-term health 
risks depending on the strength and duration of exposure. Various studies have linked prolonged 
exposure to electromagnetic fields to various health conditions, including neuropsychological 
disorders, cardiovascular diseases, and central nervous system complications. While high-voltage 
transmission lines are essential for efficient power distribution, their proximity to populated areas 
necessitates regulatory policies to mitigate potential risks. This study aims to analyse the spatial 
variation and intensity of the electrostatic field distribution around high-voltage power transmission 
lines in Malaysia, using two numerical methods, considering the country’s infrastructure features and 
regulatory emphasis on public exposure limits. The Finite Difference Method (FDM) and the Crank-
Nicolson Method (CNM) are applied to solve Laplace’s Equation, which governs electrostatic 
potential, field intensity and distribution. Factors such as voltage levels, tower configurations, and 
conductor height are considered in the analysis. The study compares the accuracy, convergence rate, 
computational efficiency, and execution time of both numerical techniques to determine which of the 
methods is more suitable to solve such a problem. Our result demonstrates that FDM is fundamentally 
more suited for solving the Laplace equation governing electrostatic potential, field intensity, and 
spatial distribution due to its direct discretisation of spatial derivatives while using CNM in this 
context only introduces unnecessary complexity and computational overhead without providing any 
benefits in returns. The study provides insights into safe management practices by identifying critical 
zones of elevated electrostatic field intensity, indicating minimum safe distances for human exposure, 
and supporting infrastructure planning in accordance with Malaysian regulatory standards. 
 
Keywords: Electrostatic field, High-voltage transmission lines, Electromagnetic exposure, Numerical 
       analysis, Health risks 
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1. Introduction 
 

Continuous exposure of humans and their immediate physical environment to both 
electromagnetic fields and electrostatic fields generated by high-voltage transmission lines has raised 
significant concerns regarding human well-being, as these high-voltage transmission lines are often 
situated close to residential and urban areas, a decision that might pose a long-term effect on residents 
of such areas [1]. The impact of this exposure on human health may vary depending on the strength of 
the electromagnetic fields these systems produce, the length of exposure to the radiation, and the 
distance from these electrical systems [2],[3]. Conceptually, it is known that stronger electric fields 
produced by a higher voltage transmission line can pose a danger to people’s health, animals’ health, 
and the environment. Even though it is asserted that it decreases as one moves away from the source 
of radiation, this can be linked to the consequence of Coulomb’s law [4],[5]. The sensitivity of the 
issue regarding human lives has made governments of many nations formulate necessary programs 
and policies aimed at controlling the damaging effects of such exposure and investigating the extent of 
the detrimental effects in residential areas where exposure to electromagnetic fields is more 
pronounced [6],[7]. Under such guidelines, every nation is free to propose its own electromagnetic 
exposure rules and laws, guided by standards established by groups like the International Commission 
on Non-Ionizing Radiation Protection (ICNIRP). According to ICNIRP, people should not be 
subjected to electric fields that are stronger than 5 kV/m at a frequency of 50 Hz [8]. 

Electric fields are majorly generated by the electric currents flowing through cables, conductors 
and equipment. Employees in most power plants believe that the regulations are vague, organisational 
rules are not explicitly stated, there is a lack of clarity on the properties of the electromagnetic field 
(EMF), and there is a need for potential health effects and mitigation methods of EMFs [9], [10].  
Various studies have investigated the impact of induced currents in the human body caused by 50 Hz 
electric fields from high-voltage transmission lines [11], [12]. Most research highlighted a concern 
about the risk to human health and the biological effects that such electric fields of 50 Hz can induce 
in humans. [2] reported that stronger electromagnetic fields produced by higher-voltage carry 
conductors can undoubtedly harm people, animals, and the physical environment. [13] asserted that 
exposure to electromagnetic fields from high voltage lines has been linked to various health issues 
ranging from neuropsychological disorders, anaemia, hoarseness, blood fat increment, fatigue, and 
depression, to anxiety, potentially leading to more severe long-term health problems like 
cardiovascular and central nervous systems, with risks increasing depending on the strength and 
duration of exposure [14]. 

However, it should be noted that transmission lines, which are vital components of electrical 
power systems are utilised to transmit electrical power from electrical generation plants to sub-power 
stations or directly to the final consumers, majorly industries and households. High-voltage cable 
systems built to carry bulky quantities of electricity over long distances with negligible loss are not 
positioned within the residential area intentionally to cause harm or threaten human health, but they 
are sited to meet the energy requirements of the people and industries, ultimately to reduce operational 
costs and minimise land and resource usage while maintaining high standard planning constraints 
among other beneficial factors. Urban and industrial areas need large amounts of electricity, making 
closeness to transmission lines, power stations, substations, and distribution networks strategically 
positioned near population centres to minimise power losses during transmission and facilitate 
efficient power delivery services. Inappropriate positioning of electrical stations can be controlled by 
making policies and programs that can reduce the damages and promote proper management of 
health-related issues caused by high-voltage power transmission lines by adhering to the standard 
approaches and procedures, which include policy-making, social capacity building, and technical 
solutions among others [15], [16].  
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This research aims at deploying two prominent numerical methods, namely, the Finite 
Difference Method (FDM) and the Crank-Nicolson Method (CNM), to investigate the electrostatic 
field distribution around high-voltage power transmission lines in Malaysia. Electric fields near 
overhead power lines can be influenced by several factors, including the quantity of the voltage in the 
line, the configuration of the towers, and the height of the conductors above the ground, among others. 
These factors are crucial in determining the intensity and distribution of electric fields, which have 
implications for safety and compliance with regulatory standards, even though it has been reported 
that the influence of electromagnetic fields can be reduced by various objects such as vegetation and 
buildings [17]. Accurately modelling the electrostatic field distribution around high-voltage power 
transmission lines is significant in ensuring the reliability and safety of Malaysia's power grid, 
infrastructure and the populace. The governing equation for electrostatic potential is Laplace’s 
Equation. Laplace’s Equation is the partial differential equation (PDE) that requires numerical 
solutions due to the complexity of real-world geometries and boundary conditions. Several numerical 
methods have been proposed, among which are FDM and CNM. Although CNM is traditionally more 
suited for solving time-dependent PDEs such as the heat and diffusion equations and many more, it is 
an implicit method that is unconditionally stable and has second-order accuracy in both time and 
space. It can advantageously be applied to iteratively solve steady-state problems. In this study, CNM 
is adapted as a pseudo-time stepping method to iteratively converge to the steady-state solution of 
Laplace's Equation, effectively treating the electrostatic field distribution as the asymptotic solution of 
a diffusion-like process.  The solution of these numerical methods will be compared based on the 
accuracy of electric field distribution, convergence rate, and computational efficiency, as well as the 
applicability to realistic conditions in Malaysia's power grid infrastructure, including scenarios with 
and without space charge effects.  
 
2. Laplace’s equation 
 

A broad variety of physical processes involving continuous variables are often described using 
partial differential equations (PDEs), which are basic and common mathematical models [18]. PDEs 
include functions of several variables and their respective partial derivatives, in contrast to ordinary 
differential equations (ODEs), which deal with functions of a single independent variable. PDEs are 
frequently categorised according to their linearity, order, and solution type. The general representation 
of PDEs is shown in equation (1). 
 

                    
2 2

2 2
, , , , , , ,. . .

u u u u
F x y u

x y x y

    
     

                                              (1) 

where ( , )u x y is the unknown function to be computed, and its partial derivative describes how 
the unknown function u  with respect to independent variables x  and y . [19] asserted that PDEs are 
broadly classified into elliptic, parabolic and hyperbolic PDEs, among which Laplace's equation is an 
exemplar elliptic PDE that controls a variety of steady-state physical systems, especially those 
involving heat conduction, fluid flow, and electrostatics, among others. 

 
Laplace’s equation is a popular second-order PDE that is often written as shown in equation (2): 
 

                   
2 2 2

2
2 2 2

0
u u u

x y z
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                                              (2) 

 

where 2 denotes the Laplacian operator and ( , , )x y z is the potential unknown function. This 
equation has been deployed to model the equilibrium state of phenomena characterised by no sinks or 
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sources used in engineering and physics. They are often used together with boundary value problems 
(BVPs), and the solution to such problems is calculated based on conditions provided along the 
domain boundaries. The uniqueness of the solutions to such problems in physical science, physics, and 
engineering is often attributed to the usage of special forms of boundary conditions like Dirichlet’s, 
Neumann's, or mixed boundary conditions [20]. 

Laplace’s equation can be used to describe the electric potential ( , , )V x y z  in the region where 
there are no free charges, while is related to the Gauss law. The connection between charge density 
(  ) and electrical potential is presented in the Poisson equation shown in equation (3): 
 

        2

0




                                                                (3) 

Setting 0   reduces the equation to Laplace equation (4): 

       2 0                                                               (4) 

Equation (4) is often deployed in designing capacitor plates, calculating electric field 
distributions, and solving problems related to electrostatic shielding. The electrical field distribution 
using Laplace equations is explored in this research since high-voltage transmission lines are critical 
components of Malaysia's power infrastructure. Ensuring the accurate computation of electric field 
distribution around these lines is essential for improving insulation design, minimising corona 
discharge losses, and maintaining system reliability. With the increasing demand for electricity and the 
expansion of the grid, this problem is particularly relevant for ensuring the sustainability and 
efficiency of power transmission in Malaysia. 

The Laplace equation in two dimensions (2D) is a fundamental partial differential equation 
(PDE) that is considered in the study. It takes the form:  
 

                  
2 2

2 2
0

u u

x y

 
 

 
                    (5) 

With the boundary’s conditions: 

 Transmission line conductors are modelled as fixed-potential regions (e.g., ϕ=+137.5 kV, 

−137.5 kV). 

 The ground is modelled as ϕ=0. 

 Far-field boundaries are assumed to be ϕ=0 to approximate infinity. 

 

3. Electric field distribution analysis using numerical method  

Determining the electric field distribution involves solving Laplace’s equation with unique 
boundary conditions that describe the boundary [21]. Solving simple geometric structures such as 
spheres, cylinders, or parallel plates is straightforward due to the easy derivation of their mathematical 
formulas. In the real world, high-voltage applications revolve around complex structures, that have 
irregular shapes, multiple conductors, sharp edges, and varying material properties, making the 
mathematical equations extremely difficult or impossible to solve directly. Numerical techniques offer 
an efficient method of analysing and computing the electric field distribution, voltage distribution, and 
charge accumulation for these intricate geometries. The presence of multiple independent variables 
and their partial derivatives in PDEs makes them significantly more complex when compared to 
ODEs. Usually, complex geometries and boundary conditions make solving PDEs analytically 
impractical or impossible. 
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Numerical methods are often seen as a stronghold alternative for approximating solutions to 
PDEs [22]. Methods such as the Finite Element Method (FEM), Finite Difference Method (FDM), 
Method of Moments (MoM), and many more fall into this category. Most people use these methods to 
solve complex problems where analytical solutions are unattainable. Most of these methods 
commence by discretising the problem domain into manageable rudiments that can be deployed to 
provide an approximation suitable as the solution to electric field distribution in regions with complex 
geometries. One of the most popular and widely used numerical techniques is the FDM, which is 
particularly simple and good for problems with heterogeneous features, materials, or irregular 
boundaries. FDM divides the core area into a mesh of finite regions. Equipped with 
straightforwardness and adaptability, this method can be used to analyse electric fields in multi-scale 
systems, like microelectromechanical systems (MEMS) and high-voltage equipment. It is a flexible 
method for static electric field analysis and can also handle nonlinear materials. However, the 
computational cost might be substantial, particularly for large-scale problems that need high-
performance computer resources and effective methods. CNM is another important numerical method 
that is especially suitable for the time-domain characterisation of electromagnetic fields. CNM can be 
used to simulate the propagation of electric fields over time by discretizing space and time and 
iteratively solving Laplace equations. When examining fleeting events, like electromagnetic pulses or 
wave propagation in complicated mediums, this approach works incredibly well since problems are 
broken down into smaller, more manageable components, and one can utilise computer programs to 
solve them iteratively, using any iterative technique of solving a system of linear equations. Despite 
being computationally demanding, CNM offers important insights into the dynamic behaviour of 
electric fields, which is crucial for applications such as wireless communication, optical devices, and 
radar systems. In this study, we deployed both the FDM and the CNM to solve the Laplace equation 
and compare their simplicity, accuracy, and computational efficiency. 

 
4. Finite difference method (FDM) for Solving Laplace’s equation 

 
FDM is one of the prominent and popular numerical techniques used to find the solutions to 

partial differential equations (PDEs); this technique systematically replaces derivatives with equivalent 
finite difference approximations. It is generally used in HV engineering for analysing electric field 
distribution, potential distribution, and insulation design in complex geometries where analytical 
solutions are impractical. In the case of electric field distribution. Laplace’s equation in electrostatics 
(for a charge-free region), from equation (4); we have the representation in cartesian Coordinates as 
shown in equation (5) through deploying central difference approximations and replacing the second-
order derivatives with discrete differences such that 
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x h
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                                (6) 
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
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The assumption of a uniform grid across the region validates y x h    , the governing 

equation can be substituted into equation (5) and simplified.  
 

     
1, 1, , 1 , 1

,

,

4
i j i j i j i j

i j

u u u j u
u      

                (8) 

where ,i ju  denotes the function value at the grid point, provided that boundary conditions are 
known. The boundary conditions, which are normally deployed at the grid points as well as the interior 
points, are essential for obtaining a useful and physically meaningful solution. The discretisation of 
equation (8) produces a tridiagonal matrix, where the solutions correspond to the interior grid points. 
This transformation produces a system of linear equations defined by the grid points within the spatial 
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domain. These equations can be solved using various iterative numerical methods, such as the Jacobi 
method, Gauss-Seidel method, or Successive Over-Relaxation (SOR), among others.  

Equation (8), which is often regarded as the finite difference scheme, is solved iteratively using 
any of the iterative methods: Jacobi method, Gauss-Seidel method, or SOR, each having its own 
strength, weakness, and convergence properties. The iterative method begins with an initial guess 
value for each of the variables for the potential values at the grid points; equation (8) is applied at each 
interior point to update the potential values. This process is repeated until the potential values 
converge to a stable solution, meaning the change in potential values between iterations is below a 
specified tolerance. For the Jacobi method, the new value at each iteration is calculated using the 
previous iteration and it is said to converge if there is the least difference in the solution of the 
subsequent values or when the stopping criteria have been met.  
 

     , 1, 1, , 1 , 1

1

4
new old old old old
i j i j i j i j i ju u u u u                                                                                       (9) 

 

Whereas, in the case of the Gauss-Seidel technique, the value of the variable is used 
immediately it is computed or obtained.   
 

       , 1, 1, , 1 , 1

1

4
new new new new new
i j i j i j i j i ju u u u u                              (10) 

 

The scheme using equation (10) converges faster; we utilise the Gauss-Seidel method in this 
research, even though the choice of iterative solver depends on the specific problem and desired 
convergence properties. 
 
5. Crank-Nicolson method for solving Laplace’s equation 

 
The Crank-Nicolson method belongs to a class of implicit finite difference methods applicable 

for time-dependent PDEs, such as the heat equation. However, Laplace’s equation is a steady-state 
(time-independent) equation, meaning the Crank-Nicolson method does not directly apply to solving 
Laplace's equation. Instead, it is useful for solving related parabolic equations, like the diffusion 
equation, which converges with Laplace’s equation over a period of time. It is known that the Crank-
Nicolson method is a time-centred implicit scheme; it averages forward and backward Euler methods 
for time-stepping, such that: 
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Rearranging the terms, we have: 
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 is a constant numerical value, it can be written such that 2
1

t

h
    

 
 

     1 1 1 1 1
, , 1, 1, , 1 , 1 1, 1, i, 1 , 12 22 2
n n n n n n n n n n
i j i j i j i j i j i j i j i j j i j

t t
u u u u u u u u u u

h h
     

       
 

          

   1 1 1 1 1
, , 1, 1, , 1 , 1 1, 1, i, 1 , 12 2

1

2 2
n n n n n n n n n n
i j i j i j i j i j i j i j i j j i j

t t
u u u u u u u u u u

h h
    

       

            
            (11) 

 

Equation (11) represents the recessive scheme for the Crank-Nicolson technique, and it is the 
required equation to be solved in order to obtain the value of the grids within the area of consideration, 
using the boundary conditions in equation (12). 

 

( 100)

( 100)

( 0)

left boundary

Right boundary

Top and bottom boundaries







  
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                   (12) 

We deployed the same iterative technique (Gauss-Seidel) to solve the system of the linear equation 
from the scheme in order to obtain the value at each grid. 

6. Procedures for the two numerical methods  

Step-by-step procedures for solving the Laplace equation using FDM and CNM are as 
follows: 

Step 1:  Initialization of the computational domain into a grid of points (spacing) x  and y , for 
both techniques and boundary conditions. 
 
Step 2:  
 
(a) Discretization, for the Finite Difference method approximates the Laplace equation (5) using the 
central difference formula,  
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(b) Discretization, for the Crank-Nicholson scheme we use the central difference for the spatial 

derivative  
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, we then use a forward 



Journal of Applied Science & Process Engineering 
Vol. 12, No. 1, 2025 

 

 

 
e-ISSN: 2289-7771 

 

 
 58  

difference for the time derivative  
1

, ,
n n
i j i ju uu

t t

 


 
 on substituting and simplifying we have 
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Step 3:  
(a) For FDM, formulation of a system of equations and expression of the discretized equations in 
matrix form for numerical computation of each grid value 
(b) For CNM, step (2b) the system of linear equations can be expressed in the form 1n nAu Bu    
where  A  is a matrix containing coefficient for unknowns at a time step 1n , B  is a matrix 
containing coefficient for known values (based on boundary condition at a time step n ,  while 1nu   
and nu  are vectors of unknown and known values respectively. 
 
Step 4: Deployment of boundary conditions, in our case, we apply the Dirichlet boundary condition, 
and simplify the expressions using a uniform grid ( x y   ). This forms a system of linear equations.     
 
Step 5: Solve the system of linear equations using Gauss-Seidel iterative method  
 
Step 6: Set initial guess for the grid points and iterate for convergence, perform the convergence test, 
and continue iterations until the tolerance value is attained and convergence is achieved 
 
Step 7: Output the result, visualize, table and analyze the results using contour plots and 3D surface 
plots.  
 
 
7. Flowchart  
 
  Figure 1 and Figure 2 show the flowcharts illustrating the procedures of solving the Laplace 
equations using the finite difference method and the Crank-Nicolson method. 
 
 
8. Results and discussion 
 
  This study investigates the electrostatic potential distribution around high-voltage power 
transmission lines in Malaysia using two numerical methods for partial differential equations (PDE), 
which are the finite difference method (FDM) and the Crank-Nicolson method. This analysis provides 
insights into the behaviour of electric fields under realistic conditions, considering the influence of 
high-voltage transmission line conductors. By implementing these numerical techniques in MATLAB, 
the study aims to assess their accuracy, efficiency, and stability, offering practical solutions for 
modelling and analysing high-voltage systems. From a numerical solution perspective, the 
convergence behaviour of the two numerical methods highlights their applicability to different 
scenarios. As shown in Figure 3, FDM achieves convergence by iteratively updating the grid points 
based on neighbouring values, with the process terminating when the maximum change in potential 
falls below a predefined threshold. The FDM plot exhibits a smooth gradient from high potential to 
low potential. This shows that FDM is efficient in solving steady-state problems. Colour distribution 
demonstrates a gradient where the highest values (red/yellow) are near the boundaries, indicating a 
higher electric field near the boundary, and the lowest values (blue) have a low electrical field at the 
centre. A clear indication of a smooth gradient governed by the elliptic structure of the governing PDE 
makes the potential function naturally smooth. This smoothness is inherited by the electric field, which 
is the spatial derivative of the potential. This promises constant, non-abrupt changes in the field 
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intensity throughout space, which is in accordance with the mathematical features of the solution and 
physical laws. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Flowchart of implementation of Laplace equation using Finite Difference Method 
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Figure 2. Flowchart of implementation of Laplace equation using Crank-Nicolson Method 
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On the other hand, the Crank-Nicolson method shown in Figure 4 shows a different potential 
distribution compared to the FDM; instead of high values on the boundary, the highest values appear 
at two concentrated regions in the centre while the boundaries remain low. This shows numerical 
instability, an improper time-step selection, or an issue with boundary conditions. It appears mostly 
flat and requires solving a linear system at each iteration, which is computationally intensive as it 
involves solving the tridiagonal matrix; however, the presence of very high values (10¹⁴⁹) in the colour 
bar suggests a divergence issue and computational overflow in the Crank-Nicolson implementation. 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 

 
Figure 3. The heatmap shows the solution in        Figure 4. The heatmap shows the solution of  
Laplace equation using the finite difference          Laplace equation using the Crank-Nicolson   
method                                                                    method 

 
Furthermore, an analysis of the 3D perspective of the same solutions, which makes it easier to 

visualise the distribution of values, is shown in Figure 5 and Figure 6. 
 
 

 
 
 
 
 
 
 
 
 

 

 
Figure 5, which is a surface plot for the FDM, shows a smooth, parabolic-like shape, indicating 

a stable and well-behaved solution. The highest values (red peaks) are along the edges, while the 
lowest values (blue valleys) are at the centre. This feature suggests that FDM has properly handled 
diffusion and converged to a steady-state solution. The Crank-Nicolson plot shown in Figure 6 is 

Figure 5:  Surface plot shows the solution of 
Laplace equation using Finite Difference method 

Figure 6:  Surface plot shows the solution of 
Laplace equation using Crank-Nicolson method 
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considerably different from Figure 5. The presence of high peak values suggests a numerical 
instability problem, as it appears to have exploded to 10143, which is an unphysical and unrealistic 
solution. This could be linked to matrix inversion instability, which requires solving a complex matrix 
system. 

However, the simulated result of the Laplace equation using FDM aligned well with conductors 
reflecting high voltages of transmission lines, while the ground and far-field boundaries ensure a 
realistic simulation of the surrounding environment. The results align well with practical situations, 
showing significant potential gradients near the conductors and diminishing values at the boundaries. 
This accurate representation is crucial in understanding the influence of high-voltage lines on nearby 
structures, ecosystems, and safety guidelines. FDM demonstrates high accuracy in modelling the 
electrostatic potential, with results closely matching theoretical expectations for sample cases. In terms 
of efficiency, FDM outperforms Crank-Nicolson for steady-state problems due to its straightforward 
iterative updates, making it a better choice for modelling steady-state complex problems involving 
large grids or varying conditions. These differences underscore the importance of selecting the method 
that best aligns with the specific requirements of the problem. The findings from this study have 
significant implications for real-world applications. By accurately modelling the electrostatic field 
distribution, engineers can optimise the design and insulation of high-voltage transmission lines to 
minimise potential risks and improve efficiency. Despite its strengths, the study has some limitations. 
The simulations assume idealised boundary conditions and neglect external factors such as weather 
effects, inductive, resistance or capacitive interactions with neighbouring lines, and material properties 
of surrounding structures. Additionally, the computational domain size and grid resolution may 
introduce errors, particularly near the boundaries. Future work could address these limitations by 
incorporating more realistic conditions and extending the model to capture the effect of external 
factors. However, this study demonstrates the effective use of FDM and Crank-Nicolson methods for 
solving and analysing the electromagnetic potential distribution around high-voltage transmission 
lines. While FDM offers simplicity and efficiency for steady-state solutions, Crank-Nicolson’s 
superior stability is not apparent here due to the nature of the problem and its dynamic scenarios. The 
comparison of these methods highlights their respective strengths and weaknesses, offering valuable 
insights for their application in electrical engineering. The results contribute to a better understanding 
of electrostatic fields in practical settings, with potential applications in safety assessments, design 
optimisation strategy, and environmental impact analysis. 
 
9. Conclusion  
 

We have successfully analysed and compared the Finite Difference Method (FDM) and the 
Crank-Nicolson Method for solving the electrostatic potential distribution in the vicinity of high-
voltage transmission lines. We focus mainly on the accuracy, convergence rate, computational 
efficiency, and applicability of these numerical methods to real-world scenarios in Malaysia's power 
grid infrastructure. FDM showed good accuracy for simpler configurations; its explicit nature might 
render it ineffective for cases requiring high stability or precision over extended domains. In terms of 
convergence rate and computational efficiency, the FDM was faster in terms of iterations for 
straightforward cases without space charge effects, making it suitable for smaller and simpler 
problems. The time execution comparison indicated that FDM was quicker for small-scale problems, 
but the superiority of the Crank-Nicolson Method cannot be conclusively established in this context 
due to the steady-state nature and elliptic structure of the governing equation. Consequently, its 
applicability remains limited and cannot be fully validated under realistic conditions representative of 
Malaysia's high-voltage power transmission system. This confirms the applicability of both the Finite 
Difference Method (FDM) and the Crank-Nicolson Method (CNM) to electrostatic field problems. 
However, the Crank-Nicolson method is inherently more suited to time-dependent problems involving 
transient phenomena, where its unconditional stability and second-order accuracy in both time and 
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space offer significant advantages over extended simulations. In contrast, for steady-state electrostatic 
analysis, the additional computational overhead of the Crank-Nicolson method may not provide 
substantial benefits compared to more direct methods like FDM. 
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