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Abstract 
 
The aim of this article was to compare the predictive abilities of the optimization techniques of response 
surface methodology (RSM), the hybrid of RSM–genetic algorithm (RSM–GA) and adaptive neuro-fuzzy 
interference logic system (ANFILS) for design responses of % removal of naphthalene and adsorption 
capacity of the synthesized composite nanoparticles of chitosan–cetyltrimethylammonium bromide 
(CTAB)–sodium bentonite clay.  The process variables considered were surfactant concentration, 1X , 
activation time, 2X ,  activation temperature, 3X , and chitosan dosage, 4X .  The ANFILS models 
showed better modeling abilities of the adsorption data on the synthesized composite adsorbent for 
reason of lower % mean absolute deviation, lower % error value, higher coefficient of determination, 2R
, amongst others and lower error functions’ values than those obtained using RSM and RSM-GA for both 
responses.  When applied RSM, the hybrid of RSM–genetic algorithm (RSM–GA) and ANFILS 3–D 
surface plot optimization technique to determine the optimal conditions for both responses, ANFILS was 
adjudged the best.  The ANFILS predicted optimal conditions were 1X = 116.00 mg/L, 2X = 2.06 h, 3X
= 81.2oC and 4X = 5.20 g.  Excellent agreements were achieved between the predicted responses of 
99.055% removal of naphthalene and 248.6375 mg/g adsorption capacity and their corresponding 
experimental values of 99.020% and 248.86 mg/g with % errors of -0.0353 and 0.0894 respectively.  
Hence, in this study, ANFILS has been successfully used to model and optimize the conditions for the 
treatment of industrial wastewater containing polycyclic aromatic compounds, especially naphthalene 
and is hereby recommended for such and similar studies. 
 
Keywords: Chitosan, Cetyltrimethylammonium bromide, Bentonite clay, RSM, ANFILS. 
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The pollution of the environment and the required timely intervention in bringing desirable panacea 
for its treatment is still a challenge of great interest globally [1].  One of the dreaded pollutants in water 
bodies and soil linked to anthropogenic activities is the polycyclic aromatic hydrocarbons (PAHs) 
because of their prevalence in various segments of the environment as a result of various activities of 
everyday life typically the incomplete combustion of organic matter of different kinds [2].  PAHs are 
structurally composed of fused two or more benzene rings and they are generally hydrophobic, non-
biodegradable and persistent organic compounds. Their entrance in the body system predisposes humans 
to cancer and life-threatening health issues because of their carcinogenic, mutagenic, teratogenic and 
immunotoxicogenic nature.  Hence, PAHs have been listed amongst 16 ranked dangerous pollutants by 
the US Environment Pollution Agency ( USEPA) and corroborated by the European Union (EU) [2].  The 
removal of PAHs from contaminated aqueous solution is quite tasking because they are known to be 
hydrophobic, thermostable and non-biodegradable [3–4). Thus, the removal of PAHs from industrial 
wastewaters is an area of key interest to the world at large.  There are options employed previously in a 
bid to treat contaminated aqueous solution containing PAHs, which are sonication, adsorption and 
biodegradation [5].  For reasons of operational simplicity, cost and ease of obtaining myriads of low-cost 
adsorbents, the use of adsorption has been widely accepted and it has proved to be efficacious for the 
removal of PAHs from aqueous solution [6–7].  Cabal et al. [8] investigated naphthalene adsorption onto 
activated carbons derived from bean pod.  Yuan et al. [9] investigated the adsorption of PAHs using serial 
porous carbons.  Iovino et al. [10] fitted the Freundlich isotherm to the single and competitive adsorption 
of toluene and naphthalene onto activated carbon. Liu et al. [11] investigated the adsorption of 
naphthalene on coal-based activated carbons.  However, recently one of the reputable low-cost adsorbents 
found in the literature for the effective adsorption of PAHs from aqueous solution are the chitosan and 
clay minerals [12–13]. 

Chitosan, as a natural polymer, is currently in the topmost list of the affectionate adsorbents among 
researchers on account of ease of biodegradation, free corrosion effect, high level of safety handling 
property, ease of modification for better performance, high adsorption capacity, selectivity and fix for 
pollutants [14–17].  The use of modified chitosan is on the increase with time.  It is necessary to make for 
the few challenges associated with its performance in carrying out separation process via adsorption, 
especially with pH factor under consideration. One of the modification processes widely reported in the 
literature is the gratification method with clay minerals to possess some desirable chemical and 
mechanical properties. The choice of clay minerals like bentonite clay is linked to its environmental 
friendliness owing to its non-toxicity, swelling capacity, high adsorption capacity, which is credited to the 
large presence of amino and hydroxyl groups, high coagulating ability and less cost and extensive 
availability in certain parts of the world typically in the USA [13, 17–20].  Bentonite clay  is formed from 
the product of devitrification and chemical alteration material of igneous origin [21].  It contains 
primarily montmorillonite [22–23], secondary of kaolinite and Illite and relatively small proportion of 
carbonates, tridymite, halloysite, zeolites,  iron oxides, quartz, feldspar among few others constituents as 
it varies from locations of different geographic settings.  Bentonite clay is  classified among the smectite 
group attributed with di-octahedral alumina-silicate in its structural frame work due to the much presence 
of montmorillonite and it is represented with the expression (Na, Ca)0.33(Al, Mg)2Si4O10(OH2).nH2O, as 
its general formula.   

Chitosan and bentonite mineral clay can be used to form a hybrid matrix of desirable qualities and 
high performance in terms of physical, chemical and mechanical properties [24].  The use of chitosan-
bentonite matrix has been reported as a viable adsorbent for the separation of pollutants like heavy 
metals, dyes compounds, organic compounds, to mention but a few, from aqueous solutions especially 
those modified with surfactants (such as cetyltrimethylammonium bromide, CTAB, with molecular 
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formula [(C16H33)N(CH3)3]Br) to enhance interlayer spacing of the bentonite structural frame work and 
introduce NH4

+ as functional group in the composite or hybrid adsorbent [25]. In addition, CTAB 
facilitates adequate interlayer opening for chitosan intercalation [26–27] coupled with the electrostatic 
attraction of NH3

+ and the available negative sites bentonite structure [28].  This is important because 
adsorption of organic molecules onto clay minerals is influenced by the chemical properties of the 
molecules and its surface properties [29]. 

In the literature, similar composite materials or organo-modified bentonite clay-chitosan adsorbents 
have been employed for the treatment of contaminated water in batch and continuous modes.  Detailed 
review of the use of chitosan-bentonite clay for the treatment of contaminated wastewater and its reuse 
are reported elsewhere [30]. However, adsorption processes in batch mode are presented in Table 1. 

 
Table 1. Chitosan-bentonite clay and organo-modified bentonite clay adsorbent previously used for 

wastewater treatment 
 

S/N Adsorbents matrix Method of preparation Pollutant 
% removal/maximum 
adsorption capacity,

xmaq  
 

Reference 

1 Chitosan/bentonite Ionic exchange by 
intercalation Azo dye xmaq =323.6 mg/g at 7293 

K 
[31] 

2 Chitosan/bentonite Ionic exchange by 
intercalation Lead ions xmaq =0.425 mol/kg at 

pH=5.95 
[32] 

3 Chitosan/bentonite Cross-linked 
with glutaraldehyde Methyl orange 

 

xmaq =224.8 mg/g at 

pH=7 
[33] 

4 Chitosan/bentonite Ionic exchange by 
intercalation 

Deteriorating 
transformer oil Not reported [34] 

5 Chitosan/bentonite Ionic exchange by 
intercalation  Cr(VI) 

% removal=87.6; 

xmaq =133.85 mg/g at 

pH=3 and 298K 
[35] 

6 Chitosan/bentonite Cross-linked  Congo red xmaq = 500 mg/g at pH=7 

and 298K 
[36] 

7 Chitosan/bentonite Cross linking with 
epichlorohydrin Amino black 10B xmaq =990.1 mg/g at 

pH=7 
[37] 

 8 Chitosan/bentonite 
 

Ionic exchange by 
intercalation 

Amaranth red xmaq =362 mg/g at pH=2 

[38] 
Methylene blue xmaq =496.5 mg/g at 

pH=10 

9 Chitosan/bentonite 
Cross linked with 

intercalationpichloro-
hydrin (ECH 

Tartrazine dye xmaq =294.1 mg/g at 320K [39] 

Malachite green 
dye xmaq =435.0 mg/g at320K [40] 

10 Chitosan/bentonite Ionic exchange by 
intercalation      Phenol xmaq =12.496 mg/g at 

pH=7  
[41] 

11 Chitosan/bentonite Ionic exchange by Ammonium % removal =65 at pH=4 [42] 
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intercalation nitrogen 

12 Chitosan/CTAB)/ 
bentonite 

Ionic exchange by 
intercalation Weak acid scarlet 

% removal =85; 

xmaq = 102 mg/g [43] 

13 Chitosan/bentonite Cross-linked with 
acrylic acid Methylene blue xmaq = 2000-2500 mg/g at 

298–313K  
[44] 

14 

Bentonite/N-2-
hydroxypropyl 

trimethyl ammonium 
chloride chitosan 
(HACC)/CTAB 

Ionic exchange by 
intercalation Phenol 

 
% removal =82.1; 

xmaq = 7.12 mg/g 

at  pH=12 and 293K 
 

[45] 

15 

Chitosan-g-itaconic 
acid/bentonite  Cross-linked with 

ammonium 
persulfate (APS) 

Methylene blue 

xmaq = 500 mg/g at pH=6 

[46] 
Chitosan/bentonite  xmaq =81.818 mg/g at 

pH=7 

16 Chitosan/bentonite Cross-linked with 
zirconium (IV)  Phosphate ions xmaq = 65.35 mg/g  

at pH=7 and 293K 
[47] 

17 Chitosan/bentonite Cross-linked Copper (II) ions % removal =29 [48] 

18 Chitosan/bentonite Ionic exchange by 
intercalation Cadmium Ions xmaq = 168.7 mg/g 

at 297K 
[49] 

19 Chitosan/lanhanu/ 
bentonite 

Ionic exchange by 
intercalation Phosphorus ions % removal=93.2 [50] 

20 Chitosan/calcium 
alginate/bentonite 

Ionic exchange by 
intercalation 

Lead ions xmaq = 434.89 mg/g 

[51] Copper ions xmaq = 168.7 mg/g 

Cadmium ions xmaq = 168.7 mg/g 

 
The success of any adsorption process largely depends on the nature, adsorption capacity of the 

adsorbent used and the optimum process variables.  Against this backdrop, the appropriate optimization 
and modeling tools must be employed to achieve optimum variables conditions for high efficiency 
removal of the selected PAHs (such as naphthalene used in this study) and the pollutants under 
consideration.  Several modeling tools are in vogue and are widely applied for input-output set of data 
particularly in engineering fields.  Amongst the tools with outstanding performance are response surface 
methodology (RSM) and adaptive neuro–fuzzy inference logic system (ANFILS).  The RSM is 
considered to be a veritable and versatile mathematical tool for modeling and optimizing experimental 
data by way of establishing relationship between the single/multiple responses to the several numbers of 
independent variables [29].  It is a collection of mathematical and statistical techniques for developing 
empirical models within the confine of second order quadratic equation [52–53].  The benefits of using 
RSM for modelling and optimization studies include: (i) it allows for a reduced number of experimental 
trials vis-à-vis the conventional method of one factor at a time; (ii) it integrates mathematical modeling 
and experimental design; (iii) it possesses the ability to analyze the interaction of process variables with 
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visual elucidation in spite of the inherent complexity; (iv) it has the capacity of high reasonable 
optimization degree and  (v) it exists in varieties of classes such as Box-Behnken design (BBD), central 
composite design (CCD), hybrid design, three-level factorial design among others, that suit specific 
demands [54–55].  To improve the performance of RSM in achieving global optimization, the 
evolutionary algorithm such as the genetic algorithm, one of the choicest and most popular algorithms, is 
employed [56].  The adaptive neuro-fuzzy inference logic system or adaptive network-based fuzzy 
inference logic system (ANFILS) is a part of artificial intelligence (AI) algorithms that map input to 
output data with high precision accuracy. ANFILS is a hybrid algorithm that blends the pros of artificial 
neural network (ANN) with the fuzzy logic system [57].  Tanhaei et al. [18] described ANFILS as the 
model best in data prediction with very low error value.  It is commonly used in production and other 
segment of industries [58–62]; agricultural processes [63] and separation processes for water treatment 
and purification [18, 19, 64–67]. The dearth of insightful information on the response surface 
methodology (RSM), RSM–genetic algorithm (GA) and adaptive neuro–fuzzy inference logic system 
(ANFILS) modeling and optimization of the process variables involved in the adsorption of naphthalene 
adsorption on chitosan–CTAB–bentonite matrix necessitated this study, which, to the best of our 
knowledge, has not been reported in the literature.  Hence, the primary design of this study is to carry out 
comparative studies of RSM, RSM–GA and ANFILS for modeling and optimization of naphthalene 
adsorption on chitosan–CTAB–bentonite matrix.  This is with the objectives of obtaining applicable 
models and optimum conditions for the % removal of naphthalene and adsorption capacity of the 
synthesized composite adsorbent: ANFILS was adjudged the best to predict these conditions..  The 
methods of preparation of the adsorbent and its physicochemical properties and characterization were 
succinctly reported in our previous study [68]. 

 
2. Materials and Methods 
 
2.1. Materials  
 

The materials utilized in this study include raw bentonite clay, Archachatina marginata (African 
giant snail) shell wastes, naphthalene in granulated state (C8H10; mol. wt. = 128.1705 g/mol; purity: 
>97%); ammonium ethanoate in aqueous form (CH3CO2NH4; mol. wt. = 77.08 g/mol; purity: 98%), 
sodium carbonate in granulated form (Na2CO3; mol. wt. = 105.99 g/mol; purity: 98%), sodium hydroxide 
in pellet form (NaOH; mol. wt. = 40 g/mol; purity: 98%) and cetyltrimethylammonium bromide in 
granulated form (CTAB) ([(C16H33)N(CH3)3]Br; mol. wt. = 128.1705 g/mol; purity: > 96%) were 
purchased from Merck, India. Ethanol acid (C2H5OH; Absolute 98%) was supplied from BDH 
laboratories, England while methylene blue in granulated form (C16H18CIN3S; mol. wt. = 319.85 g/mol; 
Purity: > 97%) was purchased from Loba Chemie, PVT limited India. 

 
2.2. Preparation of composite nanoparticles 
 

The preparation of composite nanoparticles of chitosan–CTAB–Na bentonite clay was outlined in 
detail in our recent work [68].  The analysis of the raw bentonite clay revealed it to be calcium-bentonite 
clay, which was modified to obtain sodium-bentonite clay. 

 
2.3. Measurement of the Physicochemical Properties  
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The physicochemical properties of the resulting chitosan–CTAB–Na bentonite clay nanoparticles 
determined and reported in our previous study [68] included iodine number, porosity, specific gravity, 
void volume, moisture content, Hausner ratio, particle density, bulk and tapped density, surface zero-
point charge, swelling index, Barrett, Joyner and Halenda (BJH) pore diameter, cation exchange capacity 
(CEC), total pore volume and micropore volume, which were determined using simple basic laboratory 
apparatus such as beakers, conical flasks and whatnot. 

 
2.4. Characterization of Chitosan-CTAB-Na Bentonite Clay Hybrid Matrix 
 

The characterization of the prepared chitosan–CTAB–Na bentonite clay nanoparticles, which was 
reported elsewhere [67], included scanning electron microscopy (SEM), Energy Dispersive X-ray 
Spectroscopy (EDX) analyzed using JOEL-JSM 7600F model equipment mounted with electron 
dispersive spectrometer, Brunauer-Emmet-Teller (BET) surface area facilitated with ASAP 2020 V4.02 
model, micromeritics instrument corp., USA. The Fourier Transform Infrared Spectroscopy (FTIR) was 
carried out with Nicolet IS10 model, Thermo Fisher Scientific, Korea Co., Ltd; X–ray fluorescence 
spectrophotometry analysis was carried out to ascertain the elemental compositions of the constituents 
and hybrid adsorbent aided by a device (TEFA ORTEC automatic X-ray F 1610, Maharashtra, India) and 
X-ray Diffraction (XRD) analyses were performed with Rigaku D/Max-111C X-ray diffractometer. 

 
2.5. Experimental naphthalene adsorption study  
 

The experimental adsorption of naphthalene batchwise was detailed in our recent work [68] where 
the equilibrium amount of naphthalene in the adsorbed phase, eq  mg/g, and the % removal of 
naphthalene, eR , using the synthesized composite adsorbent were calculated using Equations (1) and (2) 
respectively: 

     s
c

e
e V

M
cc

q 






 −
= 0                                                                                                                                    (1) 

     ( ) 1001 0 ×−= ccR ee                                                                                                                            (2) 
where ec  and 0c  are the equilibrium and initial concentrations of naphthalene in the aqueous 

solution (mg/L), cM  the mass of the composite nanoparticles of chitosan–CTAB–sodium bentonite clay 
used as adsorbent (g) and sV  the volume of aqueous solution in contact with the adsorbent (L). 
 
3. Optimization studies 
 

Response surface methodology (RSM), hybrid of RSM–genetic algorithm (RSM–GA) and adaptive 
neural fuzzy inference logic system (ANFILS) are used to model and optimize the synthesis process 
variables in this study. 
 
3.1. Response surface methodology (RSM) 
      

The response surface methodology (RSM) is a resourceful technique that involves a collection of 
statistical techniques suitable for analyzing the intricacies of experimental design and model formulation 
with a view to ascertaining optimum conditions thereby predicting the effects of the process variables on 
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the response variable [55, 69].  Hence, the behavior and pattern of the composite nanoparticles of 
chitosan–CTAB–sodium bentonite clay can be modeled by RSM by applying Equation (3) [55]: 
 

     ∑ ∑∑∑
= ===

∈+Φ+Φ+Φ+Φ=
k

i

k

i
iiii

k

j
jiij

k

i
ii XXXXY

1 1

2

11
0                                                                       (3) 

where Y represents the dependent variables, i.e., the responses, 0Φ , iiiji ΦΦΦ ,,  are the 

respective coefficients for constant, linear, interaction and quadratic effects respectively, iX  and jX  are 
the design factors, i.e., the independent variables. 
 
 
3.2. Design of Experiment   
      

The central composite design (CCD) of the RSM was used in this work.  For a thorough CCD, the 
number of runs, N, is calculated using Equation (4) [70, 71]: 
 
     cr

n nnN ++= 22                                                                                                                                   (4) 

where the number of factorial runs ( )n2= , the number of axial runs ( )n2= to enable the 
estimation of experimental error, crn  the number of center runs needed to ensure constant variance in 
model prediction and n the number of the independent variables.  For four design factors investigated in 
this study (i.e., concentration of surfactant, time of activation, temperature of activation and dosage of 
chitosan), the complete experimental design consists of 31 experimental runs with 16, 8 and 7 factorial, 
axial and center points respectively, which was obtained using Equation (4).  Table 2 depicts the values 
of the coded and uncoded independent variables, experimental range and levels. 
 

Table 2. Coded and uncoded factors for the design of experimental range and levels 
 

Control factors ( )2−−α  -1 0 1 ( )2++α  

Surfactant concentration, 1X , (mg/L) 20 40 60 80 100 

Activation time, 2X , (h) 1 1.5 2 2.5 3 

Activation temperature, 3X , (oC) 60 70 80 90 100 

Chitosan dosage, 4X , (g) 2 3 4 5 6 

 
      
The coded values were obtained using Equation (5) [72-73]:  
 

     
( )[ ]

inmaxm

inmaxm
i XX

XXX
X

−

+−
=

22
                                                                                                                 (5) 

 



Journal of Applied Science & Process Engineering 
Vol. 9, No. 2, 2022 

 
 

 
 
e-ISSN: 2289-7771 

 

 
1249 

where iX  is the required coded value of any variable X, whose value ranges from the lower level, 

inmX , of the variable to the upper level, axmX , of the variable. The full experimental design is shown in 
Table 3. 
 

Table 3. Experimental design generated by MINITAB 17 

 
3.3. Adaptive Neuro-Fuzzy Inference Logic System (ANFILS) 
 

Experimental   runs (standard order) 
1X  (mg/L) 2X  (h) 3X  (oC) 4X (g) 

1 40 1.5 70 3 
2 80 1.5 70 3 
3 40 2.5 70 3 
4 80 2.5 70 3 
5 40 1.5 90 3 
6 80 1.5 90 3 
7 40 2.5 90 3 
8 80 2.5 90 3 
9 40 1.5 70 5 
10 80 1.5 70 5 
11 40 2.5 70 5 
12 80 2.5 70 5 
13 40 1.5 90 5 
14 80 1.5 90 5 
15 40 2.5 90 5 
16 80 2.5 90 5 
17 20 2.0 80 4 
18 100 2.0 80 4 
19 60 1.0 80 4 
20 60 3.0 80 4 
21 60 2.0 60 4 
22 60 2.0 100 4 
23 60 2.0 80 2 
24 60 2.0 80 6 
25 60 2.0 80 4 
26 60 2.0 80 4 
27 60 2.0 80 4 
28 60 2.0 80 4 
29 60 2.0 80 4 
30 60 2.0 80 4 
31 60 2.0 80 4 
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The Adaptive Neuro-Fuzzy Inference Logic System (ANFILS) is a blend of artificial neural 
network and Takagi-Sugeno type of inference fuzzy system [74].  It is a unique intelligent technique tool 
for modeling and optimizing simple and complex systems by employing fuzzy rules to describe the 
system.  The literature is replete with facts that the model is fast with accurate learning ability, easy to 
implement and apply, void of much prior human expertise and accommodate the use of linguistic and 
numeric knowledge in proffering reasonable desired modeling results with the use of varieties neurons 
known as membership functions [75, 76].  Detailed information can be obtained in other studies [77–79]. 

A generalized type–1 TSK model can be described by fuzzy IF–THEN rules, which establishes the 
input and output relations of any system.  The kth  rule can be expressed as: 
IF 1x  is kQ1 , 2x  is kQ2  . . . . . nx  is k

nQ   
 
THEN y  is   
 

( ) n
k
n

kkk
n

kk xpxpxppxxxfw ++++== .....,.....,, 2211021                                                         (6) 

where nxxx ,.....,, 21  are input variables, k
n

kk QQQ ,.....,, 21  are type of fuzzy sets on 

nxxx ,.....,, 21  of any membership function such as gaussian curve (gaussmf), gaussian combination 
(gauss2mf), π-shaped (pimf), difference between two sigmoidal (dsigmf), product of two sigmoidal 
(psigmf), triangular shaped (trimf), trapezoidal shaped (trapmf), generalized bell shaped (gbellmf) [80], y 
is either a constant or a linear function of the input variables and k

n
kk ppp ,.....,, 10  are constant 

regression parameters or linear parameters of consequent part of the kth  rule.  ANFILS is described by 5 
layers feed forward neural network as shown in Figure 1 [81]. 
 

 
Figure 1. ANFILS architecture and basic principles of operation [82]. 

 
Layer 1: This layer is called the input layer.  Input variables, nxxx ,.....,, 21 , are passed to the 

number of neurons to the next layer.  
Layer 2: This is called the fuzzification layer.  Fuzzification is the commencement of the Fuzzy 

Inference System (FIS).  It is basically where the system takes a real scalar number (otherwise called 
crisp value) and is converted into a fuzzy linguistic value defined by membership functions [83].  The 
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layer includes the input variables membership functions (MFs) and each node in this layer is an adaptive 
node given as: 

 
     ( )n

k
i xµ=Ο1                                                                                                                                          (7) 

where k
iµ are the many membership functions, i is the membership grade of the fuzzy sets 

( )nn BBBAAA ,.....,,,,.....,, 2121  and 1Ο  is the output of the node i.  In this present work, the 
membership function applied is the bell-shaped type given as: 

 

     ( ) abn
k
i

a
cx

x







 −

+

=

1

1µ                                                                                                                          (8) 

 
This function contains three parameters a, b and c with each having values ranging between the 

lowest and highest amount of 0 and 1 [84]. 
Layer 3:  This is referred as the implication layer where the firing strength of a rule is ascertained 

by product operation (∩ ) such that: 
 

     ( ) ( ) ( )n
k
n

kk
i xxxw µµµ ∩∩∩==Ο .....22112                                                                                   (9) 

 
Layer 4: This layer is called the normalization layer where the normalization firing strength or 

weights of rules are evaluated thus: 

     ni
ww

w
w

ni

i
i ,.....,2,1,

...3 =
++

==Ο                                                                                    (10) 

 
Layer 5: This layer is the defuzzification layer and the nodes are adaptive with node function. This 

layer paves way for the output results from the inference of rules employed. 
     niyw iii ,.....,2,1,4 ==Ο                                                                                                           (11) 
 

This is the output layer with non-adaptive node where all the results from the previous layer all 
summed up as expressed in Equation (12): 

 
     ( ) ( )n

k
n

kkk
in

k
i xpxpxppwxxxfw ++++==Ο .....,.....,, 22110215                                        (12) 

 
It transforms the fuzzy classification results into a crisp or binary number. 
 
The data points are segmented into 2 parts, training and testing sets, and normalized using the 

expression [85]: 
 

     
nmixma

nmi
n xx

xx
x

−

−
=                                                                                                                                (13) 
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where x  and nx  are measured and normalized values respectively, xmax and nmix denote the 
maximum and minimum values of x respectively. The training ensures the creation of the ANFILS 
architecture structure while the testing sets validate the prediction accuracy of the model.  80% of the 
data sets were used for training process while 20% were applied for testing.  The learning or training 
process is tailored towards tunning the premise and consequent parameter sets to map the desired output 
using the least square estimation (LES) and gradient descent (GD) method in a forward and backward 
mode.  The former entails keeping the premise parameters fixed while the consequent parameters are 
varied until optimal values.  The latter employs the use of gradient descent (GD) with back propagation 
techniques from the output layer to the input layer [86].  Khoshnevisan et al. [84] listed the following as 
factors for achieving a least error network:  
 
(i) the number of membership function; 
(ii) types of output functions in terms of constant or linear;  
(iii)  optimization method adopted, which could be hybrid or back propagation; and  
(iv)  number of epochs or training carried out.   
 
Figure 2 shows the ANFILS architecture characterized with 4 inputs, 3 membership functions and 81 
fuzzy rules. 

 
Figure 2. ANFILS architecture for input and output data. 

 
3.4. Error functions 
 

The following error functions are used to compare the RSM and ANFILS models’ adequacy in 
predicting the experimental adsorption data of naphthalene on the synthesized chitosan–CTAB–Na 
bentonite clay matrix [87, 88–90]: 
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     RWICI ×=                                                                                                                                      (24) 
  

where  n is the number of experimental runs, ei,ϕ  [= ( ) xpteieR ,  or ( ) xpteieq , ] the measured 

adsorption data for run i, pi ,ϕ  [= ( ) predieR ,  or ( ) predieq , ] the predicted (or calculated) adsorption data for 

run i, eϕ  and pϕ  the mean of the experimental and predicted adsorption data respectively, 2R  is the 
coefficient of determination, RMSE the root mean square, MAE the mean absolute error, MAPE the mean 
absolute percentage error, MPE the mean percentage error, SPE the standard error prediction, TIC the 
Theil Inequality Coefficient, WI the Willmott index and CI the confidence or performance index. 

The fit of the predicted % removal of naphthalene and adsorption capacity of the chitosan–CTAB–
Na bentonite matrix as adsorbent with the experimental data can equally be developed based on the 
statistical function such as the Durbin-Watson Test (DWT).  The DWT is an autocorrelation test in the 
differences between the experimental and predicted data (i.e., the residuals) from the analysis of 
statistical regression, such that 40 ≤≤ DWT . For positive and negative autocorrelations, 

https://www.investopedia.com/terms/a/autocorrelation.asp
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20 <≤ DWT  and 42 ≤< DWT respectively.  However, there is no autocorrelation detected in the 
sample if 0.2=DWT .  The value of DWT must be at least 1.0 for a good model [91].  The Durbin-
Watson statistic is given by Olafadehan [88]: 

 
     SESSDSDWT =                                                                                                                             (25) 
     where the sum of errors squared, SES, is given by: 

     ( )∑
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and the sum of differences squared (SDS) is given by: 

     ( ) ( ) ( ) ( )2
1

2
34

2
23

2
12 .... −−++−+−+−= nnSDS εεεεεεεε                                                    (27) 

and ( )nii ,....,2,1=ε  is the difference between the experimental adsorption data, ei,ϕ  and the 
predicted value, pi,ϕ . 
 
4. Results and Discussion 
 
4.1. Characterization of the chitosan-CTAB-Na bentonite clay nanoparticles 
 

The physicochemical characteristics of the composite nanoparticles of chitosan–CTAB–sodium 
bentonite clay used as adsorbent in this study was reported elsewhere [68].   
 
4.2.  RSM analysis 
 

With the application of multiple regression analysis and stepwise optimization option via 
MINITAB 17 software, while maintaining the hierarchical structure, the resulting second-order quadratic 
equation of the operating variables on the response variables is given in uncoded unit as: 

 
     2

3
2
2

2
14321 00728.037.1300301.046.11279.14.41930.07.38 XXXXXXXY

eR −−−++++−=  

              4121
2
4 0468.0217.0915.0 XXXXX −−−                                                                                 (28) 

     2
3

2
2

2
14321 0182.04.3300754.07.2820.35.103324.29.96 XXXXXXXY

eq −−−++++−=  

              4121
2
4 1170.0542.029.2 XXXXX −−−                                                                                  (29) 

 
where 

eRY is the percentage removal of naphthalene and 
eqY the adsorption capacity of the 

composite adsorbent. The process variables, 1X , 2X , 3X  and 4X are the concentration of surfactant, 
time of activation, temperature of activation and dosage of chitosan respectively.   

The fitness of the model equation was evaluated using the coefficient of determination, 2R .  Tables 
4 and 5 show the results of the ANOVA response surface quadratic models for percentage removal of 
naphthalene and the adsorption capacity of the synthesized composite nanoparticles of chitosan–CTAB–
sodium bentonite clay.  In these tables, there is need to emphasize that when RSM technique is employed 
with the use of MINITAB before the generation of model equation and ANOVA analysis by the software, 
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options such as, “stepwise”, “forward” and “backward” are provided to eliminate some of the non-
significant terms and while others are retained to maintain hierarchical model equation.  31 XX , 41 XX  

and 32 XX  were part of the non-significant terms that were eliminated while 21 XX  and 41 XX  were the 
only two terms retained when the stepwise option was chosen, as revealed in Equations (28) and (29). 
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Table 4. ANOVA response surface quadratic model summary for percentage removal of naphthalene on 
chitosan–CTAB–sodium bentonite clay matrix 

Standard  

deviation 

 
2R  

 

adj. 2R  

 

pred. 2R  

2.4247        86.39%              79.59%       54.24% 

Term 
Constant 

 Effect Coded coefficient  SE coefficient t-value p-value VIF 

95.663 0.916 104.39 0.000  

1X  8.736 4.368 0.495 8.83 0.000 1.00 

2X  4.168 2.084 0.495 4.21 0.000 1.00 

3X  2.278 1.139 0.495 2.30 0.032 1.00 

4X  2.676 1.338 0.495 2.70 0.014 1.00 

2
1X  -2.412 -1.206 0.453 -2.66 0.015 1.03 

2
2X  -1.672 -0.836 0.453 -1.84 0.080 1.03 

2
3X  -1.457 -0.728 0.453 -1.61 0.124 1.03 

2
4X  -1.829 -0.915 0.453 -2.02 0.057 1.03 

21 XX  -2.166 -1.083 0.606 -1.79 0.089 1.00 

41 XX  -1.871 -0.936 0.606 -1.54 0.138 1.00 

 
Table 5. ANOVA response surface quadratic model summary for adsorption capacity of chitosan–CTAB–

sodium bentonite clay matrix 
Standard  
deviation 

 
2R  

 
adj. 2R  

 
pred. 2R  

6.06167        86.39%              79.59%       54.24% 

Term 
Constant 

 Effect Coded coefficient  SE coefficient t-value p-value VIF 
239.16 2.29 104.39 0.000  

1X  21.84 10.92 1.24 8.83 0.000 1.00 

2X  10.42 5.21 1.24 4.21 0.000 1.00 

3X  5.69 2.85 1.24 2.30 0.032 1.00 

4X  6.69 3.34 1.24 2.70 0.014 1.00 

2
1X  -6.03 -3.01 1.13 -2.66 0.015 1.03 

2
2X  -4.18 -2.09 1.13 -1.84 0.080 1.03 

2
3X  -3.64 -1.82 1.13 -1.61 0.124 1.03 
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2
4X  -4.57 -2.29 1.13 -2.02 0.057 1.03 

21 XX  -5.42 -2.71 1.52 -1.79 0.089 1.00 

41 XX  -4.68 -2.34 1.52 -1.54 0.138 1.00 

      
From Tables 4 and 5, the regression coefficient of the developed models, Equations (28) and (29), 

and the adjusted regression coefficient, adj. 2R , are the same as 86.39% and 79.59% respectively. This 
implies that 13.61% of the total variations were not adequately explained by the model equations.   

The Fischer’s “F–statistical” (or F–test)  was employed to determine the statistical significance of 
the model.  It facilitates the evaluation of the quality of prediction by the model when all design factors 
are considered at a time [92].  The comments on the ANOVA for response surface quadratic models for 
percentage removal of naphthalene and adsorption capacity of the composite nanoparticles of chitosan–
CTAB–sodium bentonite clay are provided in Tables 6 and 7. 

 
Table 6. Comment on the ANOVA for response surface quadratic model for percentage removal of 

naphthalene on chitosan–CTAB–sodium bentonite clay matrix 
 

Source 
 

DF 
   

Adj. SS 
 

Adj. MS 
 

F-value 
  
  p-value 
 

 
Comment 

Model 10 746.55 74.655 12.70 0.000 Significant 
Linear 4 636.18 159.045 27.05 0.000 Significant 

1X  1 457.89 457.889 77.89 0.000 Significant 

2X  1 104.21 104.208 17.73 0.000 Significant 

3X  1 31.12 31.122 5.29 0.032 Significant 

4X  1 42.96 42.961 7.31 0.014 Significant 

Square 4 77.59 19.397 3.30 0.031 Significant 
2

1X  1 41.58 41.578 7.07 0.015 Significant 

2
2X  1 19.98 19.977 3.40 0.080 Not Significant 

2
3X  1 15.17 15.169 2.58 0.124 Not Significant 

2
4X  1 23.92 23.918 4.07 0.057 Not Significant 

2-way 
interaction 

2 32.78 16.388 2.79 0.086 Not Significant 

21 XX  1 18.77 18.771 3.19 0.089 Not Significant 

41 XX  1 14.01 14.006 2.38 0.138 Not Significant 

Error 20 117.58 5.879    
Lack-of-Fit 14 105.44 7.532 3.72 0.057 Significant 
Pure Error 6 12.14 2.023    
Total 30 864.13     
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Table 7. Comment on the ANOVA for response surface quadratic model of the adsorption capacity of 
chitosan–CTAB–Na bentonite clay matrix 

Source DF Adj. SS Adj. MS F-value p- value Comment 

Model 10 4665.91 466.59 12.70 0.000 Significant 
Linear 4 3976.12 994.03 27.05 0.000 Significant 

1X  1 2861.80 2861.80 77.89 0.000 Significant 

2X  1 651.30 651.30 17.73 0.000 Significant 

3X  1 194.51 194.51 5.29 0.032 Significant 

4X  1 268.50 268.50 7.31 0.014 Significant 

Square 4 484.93 121.23 3.30 0.031 Significant 
2

1X  1 259.86 259.86 7.07 0.015 Significant 

2
2X  1 124.85 124.85 3.40 0.080 Not Significant 

2
3X  1 94.80 94.80 2.58 0.124 Not Significant 

2
4X  1 149.49 149.49 4.07 0.057 Not Significant 

2-way 
Interaction 

2 204.86 102. 43 2.79 0.086 Not Significant 

21 XX  1 117.32 117.32 3.19 0.089 Not Significant 

41 XX  1 87.54 87.54 2.38 0.138 Not Significant 

Error 20 734.88 36.74    
Lack-of-Fit 14 659.03 47.07 3.72 0.057 Significant 
Pure Error 6 75.85 12.64    
   Total 30 5400.79     
 

From Tables 6 and 7, a high value of the Fischer’s “F–statistical” value of 12.70 (the ratio of the 
mean square due to regression to the mean square due to residual error) with low probability, p, of 0.000 
indicates high reliability and significance of the model equations.  The response variables p-value of 
0.057 for the lack of fit implies that it is not significant and any presumed negative influence on the 
accuracy of the model should be jettisoned [93].  The significance of the models’ terms was verified 
based on individual p values.  The results in Tables 4–7 show similar results where the single terms, 1X , 

2X , 3X  and 4X are statistically significant since 05.0<p  at 95% confidence level interval.  For the 

square terms, only the surfactant concentration, 2
1X , is the statistically significant term while others were 

statistically insignificant.  The interactive terms, 21 XX  and 41 XX , were statistically insignificant by 
virtue of their corresponding p values being greater than 0.05.  The significance of the regression 
coefficient was examined by the student’s t–test.  The coefficient with larger t value and corresponding 
low value of p indicates high significance.  Also, the negative and positive signs depict the effect of 
antagonism and synergism respectively on the response variables [55, 94].  All the single terms have 
synergistic effect on the response variables while the square terms and interactive terms have antagonistic 
effect on the response variables.  To ascertain the effect in terms of percentage, the Pareto analysis was 
employed, based on Equation (30) [85, 95]: 

 
     ( ) ( )010022 =×= ∑ iBBP iii                                                                                                          (30)  
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where iP  is the Pareto percentage importance of variables and 2

iB  the regression coefficient of 
each process variables. 

The surfactant concentration, 1X , time of activation, 2X , chitosan dosage, 4X , surfactant 
concentration square term, 2

1X , temperature of activation, 3X , interactive term of surfactant 

concentration and time of activation, 21 XX , square term of chitosan dosage, 2
4X , interactive term of 

surfactant concentration and chitosan dosage, 41 XX , square term of time of activation, 2
2X  and square 

term of temperature of activation, 2
3X , followed accordingly in line of their degrees of effect on the 

response variables, as shown in Table 8. 
 

Table 8. Pareto analysis of percentage effect of regression coefficients on the model equation 
Variable Percentage importance of regression 

coefficient for  
% removal 

Percentage importance of regression 
coefficient for adsorption capacity 

Ranking 

1X  59.4774 59.4789 1 

2X  13.5389 13.5392 2 

3X  4.0442 4.0372 5 

4X  5.5808 5.5810 3 

2
1X  4.5340 4.5341 4 

2
2X  2.1787 2.1788 9 

2
3X  1.6544 1.6522 10 

2
4X  2.6071 2.6043 7 

21 XX  3.6563 3.6632 6 

41 XX  2.7282 2.7312 8 

 
The two-dimensional (2–D) contour plot and the three-dimensional response (3–D) plot, shown in 

Figures 3–6, give an insight of the interactive effect of the process variables on the response variables by 
aiding to achieve the largest percentage removal of naphthalene and adsorption capacity of the adsorbent 
at the estimated optimum conditions of the process variables for the production of adsorbent.  
Specifically for the contour plot, a saddle or an elliptical shape gives an impression of the significance of 
the interactions that exists between the independent (process) variables [93], especially when the model 
contains a quadratic statistically significant term or it depicts a good correlation between any two 
independent variables under consideration [86] while others are kept at fixed value usually at the center 
level.  The contour plot in circular form or shape describes negligible interaction [92].  A close 
observation of the contour plot shows a rising ridge pattern whose response variables increase 
tremendously as one moves along both axes with darkest and lightest color region located respectively at 
the upper right and lower left corner of the plot reflecting higher and lower values respectively of the 
responses variables as the process variables interact. 
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Figure 3. Two-dimensional (contour) plot of percentage removal of naphthalene, (a) interaction of 
surfactant concentration, 1X , and activation time, 2X , (b) interaction of surfactant concentration, 1X , 
and activation temperature, 3X , (c) interaction of surfactant concentration, 1X , and chitosan dosage, 4X , 

(d) interaction of activation time, 2X , and activation temperature, 3X , (e) interaction of activation time, 

2X , and chitosan dosage, 4X , and (f) interaction of activation temperature 3X , and chitosan dosage, 

4X . 

 
 
Figure 4.  Two-dimensional (contour) plot of  adsorption capacity of chitosan–CTAB–Na bentonite clay 
matrix, (a) interaction of surfactant concentration, 1X , and activation time, 2X , (b) interaction of 
surfactant concentration, 1X , and activation temperature, 3X , (c) interaction of surfactant concentration, 

1X , and chitosan dosage, 4X , (d) interaction of activation time, 2X , and activation temperature, 3X , 

(e) interaction of activation time, 2X , and chitosan dosage, 4X , and (f) interaction of activation 
temperature 3X , and chitosan dosage, 4X . 
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For the 3-D plot, Figures 5 and 6 illustrate a similar trend for all the interactive variables for both 
response variables.  Figures 5(a) and 6(a) show that the percentage of naphthalene removal and 
adsorption capacity of chitosan–CTAB–Na bentonite clay matrix increase as the interaction of surfactant 
concentration, 1X , and activation time, 2X , increases.  However, both responses increase up to the 
activation time of 2.5 h before experiencing briefly a plateau and thereafter a slight decrease in the 
response variables was observed.  Figures 5(b) and 6(b) show that the response variables increase as the 
surfactant concentration, 1X , increases steadily with a corresponding moderate increment in activation 
temperature, 3X , up to 90oC before recording a slight decrement in the response variables.  Figures 5(c) 

and 6(c) illustrate the combined effects of chitosan dosage, 4X , and surfactant concentration, 1X , on the 
percentage removal of naphthalene and adsorption capacity of chitosan–CTAB–Na bentonite clay matrix.   
 

   

   
 
Figure 5. Three-dimensional plot of percentage removal of naphthalene, (a) interaction of surfactant 
concentration, 1X , and activation time, 2X , (b) interaction of surfactant concentration, 1X , and 
activation temperature, 3X , (c) interaction of surfactant concentration, 1X , and chitosan dosage, 4X , (d) 

interaction of activation time, 2X , and activation temperature, 3X , (e) interaction of activation time, 

2X , and chitosan dosage, 4X , and (f) interaction of activation temperature 3X , and chitosan dosage, 

4X . 
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(a)                                                           (b) 

 
(c)                                                          (d) 

 
Figure 6. Three-dimensional plot of the adsorption capacity of chitosan–CTAB–Na bentonite clay matrix 

(a) interaction of surfactant concentration, 1X , and activation time, 2X , (b) interaction of surfactant 
concentration, 1X , and activation temperature, 3X , (c) interaction of surfactant concentration, 1X , and 

chitosan dosage, 4X , and (d) interaction of activation temperature, 3X , and chitosan dosage, 4X .  
 

 
Hence, respective increases in the response variables were observed as surfactant concentration, 

1X , increases alongside with chitosan dosage, 4X , up to 80 mg/L and 4 g respectively after which a 
slight downward progression in the amount of naphthalene removed and the adsorption capacity was 
observed.  Equally, the interaction of activation time, 2X , and activation temperature, 3X , portends 
increase in the amount of naphthalene removed as the activation temperature increases up to 90oC and 
activation time of 2.5 h before exhibiting a constant value or non-significant change as illustrated in 
Figure 5(d).  The same trend was observed for the adsorption capacity (though the figure was not 
presented).  In the same vein, the interaction of activation time, 2X , and chitosan dosage, 4X , gives rise 
to an increase in the percentage amount removed as the values of the process variables increase up to 2.5 
h and 5 g respectively before recording slight decrement as depicted in Figure 5(e).  The same trend was 
observed for the adsorption capacity (though the figure was not presented). In a similar development, the 
collaborative effect of activation temperature, 3X , and chitosan dosage, 4X , shown in Figures 5(f) and 
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6(d) for the percentage removal of naphthalene and adsorption capacity respectively, signified increase in 
the response variables as the values of the interacting variables reached  90oC and 5 g respectively before 
observing slight downtrends in the % removal of naphthalene and adsorption capacity of chitosan–
CTAB–Na bentonite clay matrix. 
 

 
(a) 

 

 
(b) 

Figure 7. Residual plots of (a) percentage removal of naphthalene, (b) adsorption capacity of chitosan–
CTAB–sodium bentonite matrix clay. 

 
Figures 7(a) and (b) project the residual plots for percentage removal of naphthalene and the 

adsorption capacity of chitosan–CTAB–sodium bentonite clay matrix respectively. The plots entail the 
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normal probability plot, standardized residual versus fitted value plot, histogram of standardized residual 
plot and standardized residual versus observation order plot.   

The normal probability plot is used to check for normality of the process variables as it affects the 
response variables [96].  The distribution proximity of the points around the mean or zero line depicts 
that the residuals are normally distributed [73, 97–99].  The plots of residuals versus the fitted values for 
both responses assist to ascertain the sufficiency of the functional part of models while the plots of 
residual versus order for both responses seek to check for the possible drift or outliers in the process.  The 
distribution proximity of the points around the mean or zero line depicts that the residuals are normally 
distributed.  However, for both responses, minimal divergence of the standardized residuals expectedly 
was observed, which are projected in the form of “S” shape [97].  The good distributions of residuals in 
the residuals versus fitted value plots and histogram plots for both responses, and the lack of a specific 
pattern in the residual versus observation order plots for both responses is a reflection and attestation of 
the adequacy of the model equation [99–101].  
 

 
 

Figure 8. Response optimizer at the optimum condition for the maximum response variables 
 

 
 

Figure 9. Response optimizer at the optimum condition for the minimum response variables. 
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The response optimizer was utilized to estimate the best optimum conditions of the process 
variables. The overall result suggested by MINITAB presumed to be the best, given in red coloration, are 
shown in Figures 8 and 9 for maximum and minimum response variables (i.e., the percentage removal of 
naphthalene and adsorption capacity of the chitosan–CTAB–sodium bentonite clay) respectively.  The 
optimum conditions  for the maximum response variables were obtained as: surfactant concentration, 1X  
= 97.5758 mg/L, activation time, 2X = 2.03 h, activation temperature, 3X = 87.88oC and chitosan 

dosage, 4X = 3.78 g for maximum response variables while for minimum response variables, the 
optimum conditions were obtained as: 1X  = 20 mg/L, 2X = 1 h, 3X = 60oC and 4X = 2.0 g. 

 
4.3. Relative importance of process variables 
 

The response model sensitive analysis was used to ascertain the relative importance of the process 
variables with the aid of nntool in MATLAB 2018 software.  Table 9 shows the sensitivity analysis of the 
process values.   
 

Table 9. Sensitivity analysis of process variables 
 

S/No. Parameters RMSE 2R  Best linear equation Ranking 

1 
1X  3.3982 0.5885 Y=0.9465X + 4.8217 1 

2 
2X  4.9719 0.1327 Y=0.8963X +8.9953 2 

3 
3X  5.1923 0.0451 Y=0.8085X +17.351 4 

4 
4X  5.1235 0.0603 Y=1.0583X - 5.164 3 

 Double-factor effect  

5 
21 XX  2.9669 0.6998 Y=0.7869X +19.822 1 

6 
31 XX  3.3777 0.6004 Y=0.8929X +9.7844 3 

7 
41 XX  3.0947 0.6565 Y=1.0069X – 0.5995 2 

8 
32 XX  4.9509 0.1460 Y=0.7062X + 27.296 4 

9 
42 XX  5.6640 0.0875 Y=0.4005X +56.079 5 

10 
43XX  5.4667 0.0599 Y=0.41X +54.561 6 

 Three-factor effect  

11 
321 XXX  2.3473 0.8038 Y=0.9979X + 0.398 2 

12 
421 XXX  2.2922 0.8143 Y=0.8366X +15.555 1 

13 
432 XXX  5.3133 0.1570 Y=0.4903X + 47.273 3 
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 Four-factor effect  

14 
4321 XXXX  1.0935 0.9745 Y=0.9628X +3.4044  

 
The results in Table 9 show that surfactant concentration, 1X , exhibits the highest regression value 

of 0.5885 and RSME minimum error of 3.398, amongst the single factors considered, followed by 2X , 

3X  and 4X  sequentially.  For the double interactive effect, the interaction of surfactant concentration, 

1X , and activation time, 2X , has the highest effect with highest regression value ( 2R = 0.6998, RSME = 
2.967) while the interaction of surfactant concentration, 1X , and chitosan dosage, 4X , 1X  and 3X , 2X  
and 3X , 2X  and 4X , and 3X  and 4X  ranked second, third, fourth, fifth and sixth respectively. 

Similarly, the surfactant concentration, 1X , activation time, 2X , and chitosan dosage, 4X , gave the 
highest effect amongst the three factors ( 2R = 0.8143, RSME = 2.2922).  Finally, the four factors 
interaction gave a high regression coefficient ( 2R = 0.9745) in predicting the response variables where 
the value of RSME decreased from 2.2922 to 1.0935 with the inclusion of 3X .  
 
4.4.  Results using adaptive neuro-fuzzy inference logic system (ANFILS)  
 

The Fuzzy inference system (FIS), membership function and ruler view for input-output 
relationship and the 1-81 rules of the ANFIS model were then generated while the ANFILS loading 
training data, loading testing data, training and testing loaded data base on error estimation were 
considered.  

Table 10 shows evidently the effect of the number of membership function, function type, output 
function and fuzzy inference system optimization method on the error obtained on the training sets and 
testing sets to achieve the optimal architecture.  

 
Table 10. Effect of the number of membership function; function type, output function and fuzzy 
inference system optimization method on the error obtained on the training sets and testing sets 

S/No. No. of 
membership 
function 

Function 
type 

      Output function Training FIS 
Optimization 

Method 

Error (RMSE) after 
100 epochs 

Training 
error 

Testing 
error 

1 3    3   3     3 Trimf Linear Grid portioning Hybrid 0.0287 0.2488 
15  15  15 15  Cluster 

categorization 
Hybrid 0.0287 0.2177 

3    3   3     3 Constant Grid portioning Hybrid 0.0287 0.2875 
15  15  15 15  Cluster 

categorization 
Hybrid 0.0287 0.2177 

2 3    3   3     3 Trapmf Linear Grid portioning Hybrid 0.0287 0.2661 
15  15  15 15  Cluster 

categorization 
Hybrid 0.0287 0.2177 

3    3   3     3 Constant Grid portioning Hybrid 0.0287 0.2957 
15  15  15 15  Cluster Hybrid 0.0287 0.2177 
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categorization 
3 3    3   3     3 Gbellmf Linear Grid portioning Hybrid 0.0287 0.0287 

15  15  15 15  Cluster 
categorization 

Hybrid 0.0287 0.2177 

3    3   3     3 Constant Grid portioning Hybrid 0.0287 0.2834 
15  15  15 15  Cluster 

categorization 
Hybrid 0.0287 0.2177 

4 3    3   3     3 gaussmf Linear Grid portioning Hybrid 0.0287 0.2361 
   Cluster 

categorization 
Hybrid 0.0287 0.2177 

3    3   3     3  Constant Grid portioning Hybrid 0.0287 0.2671 
15  15  15 15  Cluster 

categorization 
Hybrid 0.0287 0.2177 

5 3    3   3     3 gauss2mf Linear Grid portioning Hybrid 0.0287 0.2465 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

 3    3   3     3  
Constant 

Grid portioning Hybrid 0.0287 0.3017 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

6 3    3   3     3  
 

pimf 

 
 

Linear 

Grid portioning Hybrid 0.0287 0.2409 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

 3    3   3     3  
 

Constant 

Grid portioning Hybrid 0.0287 0.3028 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

7 3    3   3     3 Dsigmf  
Linear 

Grid portioning Hybrid 0.0287 0.2428 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

 3    3   3     3  
Constant 

Grid portioning Hybrid 0.0287 0.3800 
 15  15  15 15 Cluster 

categorization 
Hybrid 0.0287 0.2177 

8 3    3   3     3 Psigmf  
Linear 

Grid portioning Hybrid 0.0287 0.3029 

 15  15  15 15 Cluster 
categorization 

Hybrid 0.0287 0.2177 

 3    3   3     3 Constant Grid portioning Hybrid 0.0287 0.3801 

   Cluster 
categorization 

Hybrid 0.0287 0.2177 

 
From Table 10, the generalized bell-shaped membership function performs better than the other 

function types owing to the least value of error registered by the training and testing data sets, which lead 
to the estimation of 36 membership function parameters, 405 consequent parameters and 441 total 
parameters, which include other settings, as presented in Table 11. 
 

Table 11. ANFILS  parameter settings 
S/No. Parameters Type 

1 FIS type Sugeno 
       2 MF type Generalized bell shaped 

3 Number of inputs 4 
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4 Number of output 1 
5 Number of MFs 3 
6 And method Prod 
7 Or method Probar 
8 Implication Min 
9 Aggregation Max 

10. Defuzzification Wtaver 
11 Total number of fuzzy rule 81 

12 MFs parameters 36 
13 Total consequent parameters 405 

14 Total parameters 441 
 
4.5.  ANFILS three-dimensional surface plot 
 

Figure 10 shows the effect of the interactions of the process variables on percentage removal of 
naphthalene.  Similar trends are observed for adsorption capacity of the composite adsorbent. Figure 10(a) 
shows the interaction of surfactant concentration, X1, and activation time, X2, on the percentage removal 
of naphthalene.  An increase in surfactant concentration shows a corresponding increase in the percentage 
removal of naphthalene up to a peak of normalized value of 1.2 (i.e., 116 mg/L), before experiencing a 
slight decrease in the output value and then end up with a constant trend or a plateau.  The activation time,  
X2, which projected briefly no effect on the percentage removal of naphthalene between 0 and 0.3 min, 
after which it showed a sharp increment up to 0.5 (i.e., 2.06 h) and then displayed steadily a decrease in 
the output value before reaching a plateau.  Figure 10(b) shows the interactive effect of surfactant 
concentration, X1, and activation temperature, X3, on percentage removal of naphthalene, which is a 
similar trend to Figure 10(a).  However, the surfactant concentration, X1, exhibited a sharp decrease after 
the optimum value.   

In a similar development in Figure 10(c), the interaction of chitosan dosage, X4, and surfactant 
concentration, X1, depicts a steady increase in the output value up to a peak normalized value of 0.8 (i.e., 
5.2 g) and 1.2 (i.e., 116 mg/L) for chitosan dosage and surfactant concentration respectively before 
recording a steady decline in the percentage removal of naphthalene and formation of plateau.  The 
interaction effect of chitosan dosage, X4, and activation time, X2, is depicted in Figure 10(d).   It shows 
that maximum percentage removal of naphthalene is obtained when the chitosan dosage and activation 
time are 0.8 (i.e., 5.2 g) and 0.5 (i.e., 2.06 h) respectively before achieving a downtrend while Figure 
10(e) illustrates the negative effect between the normalized values within the range of 0–0.6 and 0–0.5 for 
the interaction of activation time, X2, and activation temperature, X3, respectively and positive effect on 
the response variable(s) above 0.6 and 0.5 respectively.  Hence, virtual observations from the 3-D plot 
using the adaptive neuro-fuzzy inference logic system reveal that the process variables values beyond 68 
mg/L of surfactant concentration, X1, 2 h of activation time, X2, 84oC of activation temperature, X3, and 
4.4 g of chitosan dosage, 4X , are very sensitive in determining  adequately the percentage removal of 
naphthalene from aqueous using the synthesized chitosan–CTAB–Na bentonite clay matrix. 
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Figure 10. Three-dimensional (a) surfactant concentration, X1, and activation time, X2, (b) surfactant 
concentration, X1, and activation temperature, X3, (c) surfactant concentration, X1, and chitosan dosage, X4, 

(d) activation time, X2, and chitosan dosage, X4,  and (e) activation time, X2, and activation temperature, 
X3, surface plot of the ANFILS model. 

 
4.6. Fitness and comparison of RSM and ANFILS models 
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The bias, Bi , value was estimated for both responses of % removal of naphthalene and 
adsorption capacity of the synthesized chitosan–CTAB–Na bentonite clay matrix using Equation (31) 
[102]: 
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The bias values of 0.999785, 1.000281 and 0.999978321 were estimated for percentage removal of 

naphthalene using RSM, RSM–GA and ANFILS techniques respectively while values of 0.99786, 
1.000127 and 0.999978321 were obtained for adsorption capacity of the composite adsorbent using RSM, 
RSM–GA and ANFILS techniques respectively.  The approximated value of 1 for each response 
translates to the fact that the errors are normally distributed thereby depicting a good model fit [102]. 

The comparison between the experimental and predicted values of the two responses (i.e., % 
removal of naphthalene and adsorption capacity of the composite nanoparticles of chitosan–CTAB–Na 
bentonite clay) using RSM and ANFILS techniques are presented in Table 12 and depicted in Figure 11.  
 

Table 12. Experimental % removal of naphthalene, ( ) xpteeR , and adsorption capacity, ( ) xpteeq , of 
chitosan–CTAB–Na bentonite clay matrix and their RSM and ANFILS predicted values 

 
( ) xpteeR  (%) RSM ANFILS ( ) xpteeq  

(mg/g) 

RSM ANFILS 

( )predeR  (%) ( )predeq  (mg/g) 

79.10 81.0313 79.1000 197.7500 202.5780 197.7500 
96.43 93.8050 96.4300 241.0750 234.5110 241.0750 
86.67 87.3650 86.6700 216.6750 218.4130 216.6750 
97.96 95.8058 97.9600 244.900 239.5150 244.9000 
87.81 83.3088 87.8100 219.5250 208.2720 219.5250 
95.81 96.0821 95.8100 239.5250 240.2050 239.5250 
88.72 89.6430 88.7200 221.8000 224.1060 221.8000 
99.62 98.0833 99.6200 249.0500 245.2080 249.0500 
84.77 85.5783 84.7700 211.9250 213.9460 211.9250 
95.24 94.6092 95.2400 238.1000 236.5230 238.1000 
92.39 93.0645 92.3900 230.9750 230.980 230.9750 
99.62 96.6104 99.6200 249.0500 241.5260 249.0500 
86.72 87.8558 86.7200 216.8000 219.6400 216.8000 
99.62 96.8867 99.6200 249.0500 242.2170 249.0500 
96.77 94.1896 96.7700 241.9250 235.4740 241.9250 
98.72 98.8879 98.7200 246.8000 247.2200 246.8000 
82.86 82.1038 82.8600 207.1500 205.2590 207.1500 
95.24 99.5754 95.2400 238.1000 248.9390 238.1000 
86.77 88.1521 86.7700 216.9250 220.3800 216.9250 
94.29 96.4871 94.2900 235.7250 241.2180 235.7250 
89.53 90.4721 89.5300 223.8250 226.1800 223.8250 
92.39 95.0271 92.3900 230.9750 237.5680 230.9750 
87.62 89.3288 87.6200 219.0500 223.3220 219.050 
92.81 94.6804 92.8100 232.0250 236.7010 232.0250 
96.43 95.6629 95.6629 241.0750 239.1570 239.1573 
96.00 95.6629 95.6629 240.0000 239.1570 239.1573 
96.43 95.6629 95.6629 241.0750 239.1570 239.1573 
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97.34 95.6629 95.6629 243.3500 239.1570 239.1573 
93.29 95.6629 95.6629 233.225 239.1570 239.1573 
96.00 95.6629 95.6629 240.000 239.1570 239.1573 
94.15 95.6629 95.6629 235.3750 239.1570 239.1573 

 

 
Figure 11. Experimental % removal of naphthalene, ( ) ptexeR , and adsorption capacity, ( ) ptexeq , of 

chitosan–CTAB–sodium bentonite matrix and their RSM and ANFILS predicted values. 
From Table 12, the values of the % mean absolute deviation (MAD) for the % removal of 

naphthalene using RSM and ANFILS models are computed to be ± 3.7222 and ± 0.0012 respectively.  
The % MAD values for adsorption capacity of composite nanoparticles of chitosan–CTAB–Na bentonite 
clay are computed to be ± 3.8716 and ± 0.0042 respectively using RSM and ANFILS models 
respectively.  Moreover, the % errors computed for both responses are less than 5% using RSM and 
ANFILS models  It can thus be deduced that both techniques show good modelling abilities of the 
adsorption data of naphthalene on the prepared composite nanoparticles of chitosan-CTAB-sodium 
bentonite clay as adsorbent.  However, the ANFILS is a better fit model than the RSM for reason of 
having lower % MAD and % error values than those computed for RSM. 

Equally, the error functions, given in Equations (13) to (23), are used to compare the predictive 
abilities of RSM and ANFILS models.  The model with the higher values of R, 2R , 2.Radj , WI, CI and 
DWT and the lower values of all other error functions (RMSE, MAE, MAPE, MPE, SPE, and TIC) depicts 
the better fitted model.  According to Silva et al. [89], confidence (or performance) index, >CI 0.85 
depicts excellent process modeling for both models applied in this study.  From the aforementioned 
statements and values displayed in Table 13, ANFILS is a better fitted model than RSM.  Hence, 
ANFILS model can be applied to the experimental adsorption data of naphthalene on the chitosan–
CTAB–sodium bentonite composite nanoparticles as adsorbent than the RSM technique.  The ANFIL 
technique can be reliably applied to the experimental adsorption data of naphthalene on the chitosan–
CTAB–sodium bentonite composite nanoparticles. Table 13 shows the values of the error functions for 
each model.   
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Table 13. Model error function comparison 
 

Error 
function 

RSM ANFILS RSM ANFILS 
Values of error function in % removal Values of error function in adsorption 

capacity 
2R  0.8640 0.9860 0.864 0.9860 

2.Radj  0.8590 0.9850 0.8590 0.9850 
RMSE 1.9475 0.6257 4.8642 0.6257 
MAE 0.0518 0.0081 0.1283 0.0081 
MAPE 1.7368 0.2634 1.7134 0.2634 
MPE 5.5907 0.8454 5.5369 0.8454 
SPE 2.0984 0.6742 5.2410 0.6742 
TIC 0.0105 0.0034 0.0105 0.0034 
WI 0.9621 0.9965 0.9622 0.9997 
R 0.9319 0.9930 0.9319 0.9930 
CI 0.8963 0.9892 0.8967 0.9926 
DWT 1.9130 2.3860 2.0030 2.3860 

 
4.7. Optimization of the process variables 
 

The optimal process conditions for the % removal of naphthalene and adsorption capacity of the 
synthesized composite nanoparticles of chitosan–CTAB–sodium bentonite were carried out using the 
hybrid of RSM–GA and ANFILS 3–D surface pot optimization techniques in the MATLAB R2018b 
software environment.  

 
Table 14. Optimized condition for various single and hybrid models 

 
Technique Process variables model prediction ( ) xpteeR  

(%) 

( ) predeR  

(%) 

( ) xpteeq  

(mg/g) 

( )predeq  

(mg/g) 1X  

(mg/L) 

2X  

(h) 

3X  

(oC) 

4X  

(g) 

RSM  97.5768 2.0303 87.8788 3.7778 98.970 100.1060 248.39 250.2651 
RSM-GA 79.1444 1.3436 88.7521 3.2416 97.240 96.1602 248.39 265.5082 
ANFILS 116.000 2.0600 81.2000 5.2000 99.020 99.055 248.86 248.6375 
 % error in % removal % error in adsorption capacity 
RSM -1.1478 -0.7549 
RSM-GA 1.1229 0.7492 
ANFILS -0.0353 0.0894 
 
Genetic algorithm is a population based probabilistic iterative, search and optimization techniques, which 
operate on the mechanism and premises of natural genetics and evolution. It is a renowned stochastic 
search technique that improves performance by its unique ability to locate regions within the purview of 
any solution space to arrive at optimal solutions beyond the entrapment of local minima which other 
models use in this article are prone to [88].  The genetic algorithm tool box embedded in MATLAB 
R2018b software was used for the optimization process at the default settings. By default, genetic 
algorithms generate minimum values. However, for maximum values of the process variables, the fitness 
function adopted is usually converted to maximization by inversing or changing the sign [102] and 
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applying the principle of Pareto analysis especially for multiple variable responses [88].  Equations (28) 
and (29) were used as the fitness function for the optimization of RSM–GA using multi response genetic 
algorithm tool box.  The fitness value with the least MSE value of the response variables alongside the 
corresponding process variables were selected as the optimum conditions.  Table 14 shows the predicted 
response variables and their respective experimental process variables values for RSM, RSM–GA and 
ANFILS techniques.  The results show good prediction ability of three models. However, ANFILS again 
portrayed the best having the least percentage errors for both % removal of naphthalene and adsorption 
capacity of the composite nanoparticles of chitosan–CTAB–sodium bentonite clay. 
 
5. Conclusions 
 

In this study, RSM, RSM–GA and ANFILS 3–D pot optimization techniques were used to model 
and optimize the conditions for % removal of naphthalene and adsorption capacity of the synthesized 
chitosan–CTAB–sodium bentonite clay matrix.  Although both techniques of RSM and ANFILS showed 
good modeling abilities of the adsorption data of naphthalene, ANFILS models are better fitted models to 
both responses investigated than the RSM models for reasons of having lower % MAD of ± 0.0012 and 
± 0.0042 for the % removal of naphthalene and adsorption capacity respectively in comparison with the 
respective values of ± 3.7222 and ± 3.8716 obtained using RSM model.  Moreover, higher values of R, 

2R , 2.Radj , WI, CI and DWT and the lower values of all other error functions (RMSE, MAE, MAPE, 
MPE, SPE, and TIC) were obtained when ANFILS models were applied to the experimental data of 
naphthalene than when applied to RSM models.  The optimal conditions of the design variables and 
responses were obtained using RSM, RSM–GA and ANFILS 3–D surface pot optimization techniques 
wherein ANFILS was adjudged the best to predict these conditions.  The ANFILS predicted optimal 
conditions were 1X = 116.00 mg/L, 2X = 2.06 h, 3X = 81.2oC and 4X = 5.20 g and predicted responses 
were 99.055% removal of naphthalene and 248.6375 mg/g adsorption capacity, which were in excellent 
agreement with the corresponding experimental values of 99.020% and 248.86 mg/g with % errors of -
0.0353 and 0.0894 respectively.  Hence, in this study, ANFILS has been successfully used to model and 
optimize the conditions for the treatment of industrial wastewater containing polycyclic aromatic 
compounds, especially naphthalene and is hereby recommended for such and similar studies. 
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