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Abstract 
 

Vibration signature-based analysis to detect and diagnose is the commonly used technique in the 

monitoring of rotating machinery. Reliable features will determine the efficacy of diagnosis and 

prognosis results in the field of machine condition monitoring. This study intends to produce a reliable 

set of signal features through an alternative statistical characteristic before available relevant 

prediction methods. Given the above advantage of Kurtosis, a newly formed feature extraction 

analysis is adapted to extract a single coefficient out of EMD-based pre-processing vibration signal 

data for bearing fault detection monitoring. Each set of IMFs data is analyzed using the Z-rotation 

method to extract the data coefficient. Afterwards, the Z-rot coefficients, RZ are presented on the base 

of the specification of the defect vibratory signal to observe which IMF data set has the highest 

correlation over the specification given. Throughout the analysis studies, the RZ shows some 

significant non-linearity in the measured impact. For that reason, the Z-rotation method has 

effectively determined the strong correlation that existed in some of the IMFs components of the 

bearing fault. It corresponds to the first IMF for the inner race and the rolling ball specified a strong 
RZ coefficient with the highest correlation coefficient of R2 = 0.9653 (1750 rpm) and R2 = 0.9518 

(1772 rpm), respectively. Whereas, the 4th IMF decomposition for the outer race bearing fault scored 

is R2 = 0.8865 (1772 rpm). Meanwhile, the average R-squared score in the correlation between RZ 

coefficient and bearing fault throughout the study is R2 = 0.8915. Thus, it can be utilized to be the 

alternative feature extraction findings for monitoring bearing conditions.  
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1. Introduction 

 

Rolling element bearings are a crucial component in the rotating machinery assembly. The 

relative motion of the rolling elements becomes the primary sources for the elements to roll with 

sparse rolling friction. The dragging effect makes the rolling elements very fragile to develop fault and 

defects [1]. These defects create an undesirable vibration in the bearing, thus shortening the bearing 

life span and stabilizing equipment effectiveness. Therefore, it draws attention to researchers, 

engineers and manufacturers in machine condition monitoring. The rolling elements transmit forces 

for shaft revolution, it requires continuous monitoring, and any defect detection is compulsory to 



Journal of Applied Science & Process Engineering 

Vol. 9, No. 1, 2022 

 

 

 
e-ISSN: 2289-7771 

 

 

 1140  

avoid costly production downtime. Early fault diagnosis is necessary for safety and reliability 

improvement in the rotating machinery. 

Bearing condition monitoring becomes an approach to studying the response of localized 

defects that may contain dents, pits, cracks, etc., through several deeds. Among the practice are 

monitoring the real-time changes until the running bearing becomes a failure, intentionally 

introducing defects in the bearing, shock wave examination, and applying statistical analysis to a time 

signal [2]. Vibration signature-based analysis for detection and diagnosis is the commonly used 

technique in the monitoring of rotating machinery. It offers an irregular revelation that formed on 

machinery components. A signal with crucial information can benefit a healthy or defective state for 

future planning action and preventive maintenance [3]. The signal acquisition from the rolling contact 

element generally examines the vibration level based (amplitude) on time and frequency domain 

transformation. While time-frequency domain analysis is preferably for a non-stationary vibration 

signal, outer race bearing fault is known to achieve a low correlation value. This is because the 

bearing elements vibrate more randomly as the defect becomes widespread and will develop higher 

clearance. Localized defects may yield the smoothness phenomena in the vibration kinematics, which 

reduces the signs of the periodic vibration [4]. The distinctive amplitude in bearing defect diminishes 

in exchange for the noise floor, or 'haystack' rises in the higher amplitude ranges. 

Time-domain refers to a time function of the vibration data that often have comprehensive data 

regarding the inspection. The advantage of this domain is that it is never likely to result in erroneous 

analyses that include visual inspections, time wave formula, probability density function, and 

probability density moments. However, the downside is that there are sometimes excessive data for 

precise and straightforward faults diagnosis [2]. A time-domain form index is a solitary representative 

number calculated directly on the raw vibration signal, usually for trend lining and comparisons. The 

single-time formula comprises RMS, mean, peak value and peak to peak value has been applied with a 

low rate of defects detection rate [5]. A specific vibration signal amplitude range is possible to be 

presented using the probability density function. The function resembles a healthy bearing with a 

smooth bell shape curve of Gaussian (normal probability distribution). Some studies found it 

challenging to notice a fault in the displacement of time waveform. Therefore, they opted for other 

statistical analysis methods for failure analysis covering shape, impulse, a crest, and clearance factors. 

In comparison, a probability density moment may bring the more informative index value such 

as mean, skewness and Kurtosis. Earlier, Kurtosis analysis is used to detect vibration magnitude 

impetuosity for defected bearing [6]. Other researchers have shown the usefulness of Kurtosis in 

bearing defect monitoring. Kurtosis is the most outstanding feature, which is sensitive to the 

impulsiveness in the vibration signal. Consequently, it is susceptible to distinguishing the vibration 

amplitude generated during bearing faults and recognition of defects. Since then, numerous studies 

have proven that Kurtosis is sensitive to signal shape, rotational speed, and signal frequency 

bandwidth [7]. However, those single time wave indices or statistical features may not ensure 

subsequent prediction accuracy [8] because of their miscellaneous pattern response from time to time 

due to the randomness of the vibration signal attribute. 

The frequency domain is another analysis tool in signal processing by displaying the signal's 

energy distributed over the frequency range. While the time domain shows signal changes, the 

frequency domain presents a frequency spectrum as a signal representation. Fast Fourier Transform 

(FFT) is traditionally used as a transition medium to process the time domain into the frequency 

domain. The domain will display the natural frequency peaks of a spectrum of the repetitive vibration 

signal at the frequency where the repetition transpires. The elevation at the natural frequency will 

increase the vibration energy as the bearing produces a short duration pulse when encountering 

defects. Many researchers studied the rotational frequency and reported the success of bearing defect 

findings [2]. 

Further studies revealed prediction peaks in a discrete spectrum for inner race defects and the 

presence of the periodic and transmission path as a side-band around the defected-made peak under 

diverse loading for bearing defects [9]. Fourier-based analysis embodies some drawbacks, such as 
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signal decomposing being made into sinusoidal that may not be suitable for signal representation, 

linearity and stationary hypotheses. The spectral resolution is hardly local enough. For this reason, the 

time-frequency domain of short-time Fourier transform (STFT) is developed [10]. The STFT permits 

to harvest of meaningful time-frequency representations of non-stationary signals, and yet linear. 

In contrast, the Wigner-Ville distribution (WVD) is concerned from time to time to lead the 

appearance of cross-terms. Alternatively, wavelet analysis (WA), discrete wavelet transform (DWT) 

and wavelet packet decomposition (WPA) allowed for expanding more accurate representation of the 

time-frequency in linear characteristics [11]. Rotating machinery monitoring principally deals with the 

non-linear and non-stationary signal where the time-frequency domain method is preferable. 

Empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT) are popular tools for 

bearing fault detection and diagnosis [12]. Both time and frequency domains have been discovered for 

vibration signal presentation of bearing defects, and time-frequency analysis has been adopted to 

improve accuracy, enhance robustness, and reduce signal sensitivity to noise of the ratio [13]. 

Reliable features will determine the efficacy of diagnosis and prognosis results in the field of 

machine condition monitoring. Extracting features deceptively using the model is required rather than 

manually removing and selecting features. This study intends to produce a reliable set of signal 

features through an alternative statistical characteristic before available relevant prediction methods. 

Given the above advantage of Kurtosis, a newly formed feature extraction analysis was developed to 

extract a single coefficient out of EMD-based pre-processing vibration signal data for monitoring and 

detection of bearing faults. 

 

2. Empirical Mode Decomposition (EMD) 
 

Empirical mode decomposition decomposes a waveform into various components called 

intrinsic mode functions (IMF) [14]. Other analytic methods, like the Fourier transform and wavelet 

transform, can be compared to the motivation. It can be very local without assuming linearity, 

stationary, or any prior bases for decomposition. Because the decomposition is dependent on the data's 

local characteristic time scale, EMD is adaptable and efficient. It can be used to model non-stationary 

and non-linear processes. Using the EMD method, any complicated data collection can be broken 

down into a small number of discrete components. For the original signal, these components form a 

full and nearly orthogonal basis, which means that frequency energy is in the original signal. 

The proposed signal will go through a sifting process called sifting, where the oscillation of 

riding waves can be abolished with no zero-crossing between extremes. The EMD algorithm will only 

consider very local signal oscillations. It divides the data into non-overlapping time scale components 

that obey two properties locally: 

a.    Between two succeeding zero crossings, IMF has just one extreme, i.e. the differences 

between local minima and maxima are not more than one.  

b. The IMF's mean value is zero. It is worth noting that the second requirement implies that an 

IMF is stationary, making its study easier. An IMF, on the other hand, may contain 

amplitude modulation as well as altering frequency. 

 

The following algorithm summarizes the sifting process. Decompose a data set x(t) into IMFs 

x_n (t) and a residuum r(t) such that the signal can be represented as: 

 

 

 

(21) 

Shifting then means the following steps: 

Step 0: Initialise: n≔1,r_0 (t)=x(t) 

Step 1: Extract the n-th IMF as follow: 
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a.    Affix h_0 (t) ∶= r_(n-1) (t)  and k≔1 

b. Establish extreme of local maxima and minima of h_(k-1) (t) 

c.    Draw interpolation lines using splines, for h_(k-1) (t), the upper (maxima) envelope U_(k-

1(t) ) and lower (minims) envelope  L_(k-1(t) ) 

d. Calculate the mean m_(k-1) (t)=  1/2(U_(k-1) (t)-L_(k-1) (t)) of both envelopes of h_(k-1) 

(t). The low-frequency local trend is the name given to this running mean. A procedure is 

known as the ‘sifting’. It is used to determine the corresponding high-frequency local 

information. 

e.    Start, the k-th component h_k (t) ∶= h_(k-1) (t)- m_(k-1) (t). 

- If h_k (t) has at least two extremes, increase k→k+1 and repeat the sifting process from 

step (b), 

- If h_k (t) satisfies the IMF criteria then set x_n (t) ∶= h_k (t) and r_n (t) ∶= r_(n-1) (t)- x_n 

Step 2: If r_n (t) produces a residuum, stop the sifting process; if not, increase n→n+1 and start 

at step 1 again. 

 
3. Signal analysis using a novel statistical Z-rotation method 
 

In the analysis of wear-signal amplitude correlation, reliable characteristics taken from raw 

signals are critical. [15]. The Z-rotation method was developed [16] based on the variance of a signal 

element dispersion around its mean centroid. The technique exhibits data patterns in defining the 

randomness of non-stationary time series data. It detects inferences and is expected to be more 

sensitive to variations in signal amplitude and anomalies. These interpretations are useful for 

forecasting and making decisions, such as in the machine learning adaption. The method initially 

begins with the gradual accumulation of signal components, but for this study, IMFs become the input 

data thus finding the mean value of each IMFs respectively. The following Eqn. 2 finds the variance 

between each element in the IMFs data by subtracting it from the earlier mean data [16]. 

 

 (2) 

Statistical features of standard deviation, σ_r and Kurtosis, K_r become the key elements 

determining the RZ coefficient, as in Eqn. 2. Z-rot is a study of tracking To track the severity of a 

defect, utilize kurtosis. It is supposed to demonstrate a positive association over the defect 

progression. 

 

 
(3) 

The duo reaction in the Z-rot method between standard deviation (sensitive to anomaly) and 

Kurtosis (sensitive to impulsiveness) is anticipated for the reliable coefficient of feature extraction to 

induce a high association between fault characteristics and signal features [16]. 

 

4. Methodology 
 

After vibratory signals acquisition, the methodology approach consists of a complete empirical 

mode decomposition process directly on a signal without instantaneous frequency prior information. 

Figure 1 is the flow chart for this study to analyze and monitor Z-rot coefficient characteristics on the 

features of fault signals of rolling-element bearing monitoring. Residue from a sufficient number of 

repetitions allows the IMFs generations of the vibratory signal. Each set of IMFs data was analyzed 

using the Z-rot method to extract the data coefficient. Afterwards, the Z-rot coefficients were 
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presented on the base of the specification of the defect vibratory signal to observe which IMF data set 

had the highest correlation over the specification given. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Research methodology 

 
5. Vibration data 
 

Vibratory signatures of rolling-element bearing vibration signals were downloaded from Case 

Western Reserve University Bearing Data Center. Some apparatus in the test stand, as in Figure 2, 

included an accelerometer, a 2 HP motor shaft supported by the test bearings and an electronics 

controller. Single point faults were intentionally introduced to test the Drive end SKF bearings with 

fault diameters of 0.175mm, 0.350mm, and 0.525mm. Magnetic based accelerometer was placed at the 

12 o'clock position to the drive end housing and was collected at 48,000 samples per second. The 

transducer collected speed and horsepower data and was a handwritten record. The load directly 

affected the vibration response of the motor/bearing system. Therefore, static data for the outer 

raceway fault was placed at 6 o'clock for drive end bearing. 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 2. Schematic of bearing test apparatus 

 

 

6. Results and discussion 
 

The purpose of developing the Z-rotation method with a combination of different statistical 

moment levels was to have an alternative analytical method that could measure the actual risk in 

machining signals. As a result, there was a significant relationship with the development of nearing 

fault. This new method was expected to function stably under normal operation, especially after 

cutting passes the initial wear phase. 
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Figure 3. IMFs decomposition plot for sig_x109_DE_1797_0175_0_innerrace. 

 

Under the previously described bearing fault condition, this study concentrated only on drive 

end accelerometer data with a sampling rate of 48000 Hz. They had a record total of 243938 data for 

48K drive end bearing on the fault baseline without load, whereas data with the load was 486224 

number. The data length was scaled down to smaller parts and had the equivalent statistical 

characterization with 132001:180000 and 240001:288000 segmented for no load and with load data, 

respectively. Subsequently, the interested number of data for each set was 48,000 and lengths to one 

second. The application of EDM took place on the segmented data and averagely generated 10 sets of 

IMF. MATLAB software was the platform to extract the IMFs data. Fig. 3 shows all IMFs 

compositions with the original vibratory signal and the residual. Overall, they were 397 observations 

to be analyzed using the Z-rot method. Table 1 shows the result of IMFs extracted from EMD for 

drive end accelerometer data. 
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Table 1. Number of decomposition 
Speed  1797 1772 1750 1730 

Load (hp)  0 1 2 3 

 Default (mm) Number of IMF decomposition 

Baseline  10 10 10 10 

Inner race 0.175 10 10 10 10 

0.350 10 10 10 10 

0.525 10 9 10 10 

Ball 0.175 10 10 10 10 

0.350 10 10 10 10 

0.525 10 10 10 10 

 

Statistical and spectral analysis are more presentable for successful diagnostic enhancement by 

reducing unwanted noise existing in the monitoring signal. Nevertheless, EMD is effectively a dyadic 

filter. Alternatively, it is possible to figure out which IMFs in a noisy collection carry information and 

which IMFs are pure noise. The first IMF usually carries the most oscillating high-frequency 

components. As for this study, consideration was made for all IMFs generated. Each IMF was 

analyzed using the Z-rot method. Table 2 shows the IMFs with the highest correlation according to 

fault progression, load and speed additions. 

 

Table 2. Number of decomposition 
Speed  1797 1772 1750 1730 

Load (hp)  0 1 2 3 

 Default (mm) RZ coefficient 

Baseline (1st  

IMF) 

 1.32E-07 1.32E-07 5.82E-07 5.82E-07 

Inner race 

(1st  IMF) 

0.175 1.40E-05 3.52E-06 3.51E-06 3.03E-06 

0.350 5.63E-05 5.84E-06 5.84E-06 5.26E-06 

0.525 1.45E-05 1.56E-05 2.33E-05 6.30E-06 

 R2 0.7537 0.9539 0.9653 0.9551 

Baseline (1st  

IMF) 

 1.32E-07 1.32E-07 5.82E-07 5.82E-07 

Ball 

(1st  IMF) 

0.175 7.08E-07 6.66E-07 6.85E-07 6.85E-07 

0.350 9.84E-07 2.52E-06 3.00E-06 3.18E-06 

0.525 4.07E-06 2.32E-06 9.82E-06 9.82E-06 

 R2 0.9456 0.9518 0.8012 0.8055 

 

Table 2 show RZ coefficients for all relevant IMF suggest that the defect progression gave rise to 

the coefficient. As the fault became larger, an early bearing defect amplitude in time development was 

observed from the coefficient. Most of the coefficient and fault associations had a sturdy and robust 

correlation, with the average R squared scored 0.8915. For example, the inner race fault of the first 

IMF exhibited a strong correlation outcome of R2 = 0.9653 (1750 rpm), where the higher the fault size, 

the RZ values became progressive. The rolling ball in the bearing fault similarly corresponded to the 

first IMF, specifying a strong correlation between the RZ coefficient to score R2 = 0.9518 (1772 rpm). 

The newly developed Z-rot statistical signal feature in this experiment was analyzed alongside 

other global statistic features for efficiency verification and effectiveness. RMS, in general, has also 

been widely used in instrument condition monitoring because it can be an indication of the signal 

amplitude being in a constant or continuous state [17]. Researchers strongly favour Kurtosis analysis 

for monitoring and detecting failures on machine components [18]. As shown in Table 3, the Z-rot 

against RMS and Kurtosis achieved the highest correlation with an average R2 of 0.8915 on three sets 

of experiments out of four sets of inner race fault. Meanwhile, RMS performed better results than Z-
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rot and Kurtosis with an average R2 of 0.8938, especially for ball fault detection, where Z-rot still 

offered an excellent correlation. RMS got an additional score from all sets of experiments because the 

amplitude of the observed experimental test was changed more stably with the expansion of the fault 

[19]. 

 

Table 3. The comparison between Z-rot and other global statistics 
 Load, HP Z-rot, R2 RMS, R2 Kurtosis, R2 

Inner race 

0 0.7537 0.7786 0.4343 

1 0.9539 0.9232 0.9671 

2 0.9653 0.8898 0.0584 

3 0.9551 0.9098 0.059 

Ball 

0 0.9456 0.7643 0.145 

1 0.9518 0.9713 0.4655 

2 0.8012 0.9483 0.5606 

3 0.8055 0.9654 0.5947 

Average, R2 0.8915 0.8938 0.4106 

 

Meanwhile, the values of Kurtosis were not able to detect the amplitude of the increased 

vibration signal. This is because the amplitude increased at a uniform rate and had a comparative 

similarity to the average [20]. Therefore, the fourth-level statistical moment of individual kurtosis 

signal characteristics was less convenient because it was susceptible to impulsive signals. 

Nevertheless, the kurtosis feature in Z-rot allowed the coefficient to interact more effectively in signal 

amplitude changes that were unstable against the development of the bearing fault. Moreover, the 

standard deviation signal feature responded well to impulsive signals but not to RMS. Manipulating 

the best properties in standard deviation and kurtosis signal features helped the Z-rot extract signal 

features more effectively for gradual and unstable signals.  

 

Figure 3. 3D graphic representation for the inner race fault spread from 0.175mm, 0.350mm and 

0.525mm. 

 

The method provided a three-dimensional graphic representation and the Z-rot coefficient, RZ, 

which described the spread of data distribution. Figure 4 represents the scatter-degree of data 

distribution in the 3D dimension display. The 3D representation exhibited RZ for the bearing fault 

(0.175 mm) with a coefficient value of 3.5146e-06. The addition of sphere size as the coefficient value 

increased to 5.844e-06. As the fault size became more expansive, the analyzed coefficient value 

reached 1.5546e-05 for the inner race bearing fault.   

3D graphics displayed a spread transformation from minor to more significant sphere 
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distribution. The spherical like distribution indicated the revolution of the RZ coefficient regress with 

the more substantial bearing fault. All IMF sets demonstrated the same occurrence pattern distribution 

during research. Displays verified the helpfulness of the Z-rotation method as an alternative signal 

feature for the tracking procedure. 

 

 

7. Conclusions 
 

The goal of the Z-rotation method is to regress a relevant relationship between IMFs points with 

the element bearing fault. The technique through the coefficient has successfully detected the changes 

of bearing fault conditions over the increment of fault sizes. The analysis was done on the bearing 

fault vibration signal out of empirical mode decomposition. Throughout the analysis studies, the Z-rot 

coefficients showed some significant degree of non-linearity that appeared in the measured impact. 

For that reason, the Z-rotation method has effectively determined the strong correlation that existed in 

some of the IMFs components with the bearing fault. It corresponds to the first IMF for the inner race, 

and the rolling ball in the bearing fault specifies a strong RZ, coefficient with the highest correlation 

coefficient of R2 = 0.9653 (1750 rpm) and R2 = 0.9518 (1772 rpm), respectively. Meanwhile, the 

average R-squared in the correlation between RZ coefficient and bearing fault throughout the study is 

R2 = 0.8915. Thus, it can be utilized to be the alternative feature extraction findings for monitoring 

bearing conditions. 

 

8. Research Highlights 
 

 The bearing fault vibration signals are analyzed using an alternative statistical coefficient, 
RZ. 

 First IMF specifies a strong correlation between the RZ coefficients. 

 RZ coefficient shows a strong correlation with the bearing fault progression. 
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