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Abstract 
 
In this paper, the modelling, numerical lumping and simulation of the dynamics of one-dimensional, 
isothermal axial dispersion tubular reactors for single, irreversible reactions with Power Law (PL) 
and Langmuir-Hinshelwood-Hougen-Watson (LHHW)-type kinetics are presented. For the PL-type 
kinetics, first-order and second-order reactions are considered, while Michaelis-Menten and ethylene 
hydrogenation or enzyme substrate-inhibited reactions are considered for the LHHW-type kinetics. 
The partial differential equations (PDEs) developed for the one-dimensional, isothermal axial 
dispersion tubular reactors with both the PL and LHHW-type kinetics are lumped to ordinary 
differential equations (ODEs) using the global orthogonal collocation technique. For the nominal 
design/operating parameters considered, using only 3 or 4 collocation points, are found to adequately 
simulate the dynamic response of the systems. On the other hand, simulations over a range of the 
design/operating parameters require between 5 to 7 collocations points for better results, especially as 
the Peclet number for mass transfer is increased from the nominal value to 100. The orthogonal 
collocation models are used to carry out parametric studies of the dynamic response behaviours of the 
one-dimensional, isothermal axial dispersion tubular reactors for the four reaction kinetics. For each 
of the four types of reaction kinetics considered, graphical plots are presented to show the effects of 
the inlet feed concentration, Peclet number for mass transfer and the Damköhler number on the 
reactor exit concentration dynamics to step-change in the inlet feed concentration. The internal 
dynamics of the linear (or linearized) systems are examined by computing the eigenvalues of the linear 
(or linearized) lumped orthogonal collocation models. The relatively small order of the lumped 
orthogonal collocation dynamic models make them attractive and useful for dynamic resilience 
analysis and control system analysis/design studies. 

 
Keywords: Isothermal tubular reactors, power-law kinetics, Langmuir-Hinshelwood-Hougen-Watson 
kinetics, orthogonal collocation, dynamic simulation      
 
 
1. Introduction 

 
Reactors are at the heart of the chemical, oil and gas, fertilizer, petrochemical, biochemical and 

pharmaceutical industries. Various types are found depending on the application, mode of operation, 
number of phases involved and whether it is catalytic or non-catalytic [1]. Reactors can be classified 
into three types based on operational mode: batch reactors, semi-batch reactors and continuous 
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reactors. The continuous reactors can be further sub-divided into continuously stirred tank reactors 
(CSTR), tubular reactors, fixed-bed reactors and fluidized-bed reactors, to mention a few [2–4]. 

Tubular reactors may be operated isothermally or non-isothermally. Isothermal reactor 
operations occur for negligible heat of reaction cases. For non-negligible heat of reaction, an 
isothermal operation may be achieved by placing the reactor tube in a bath or it could be a tube in a 
jacket configuration, or it could involve several tubes immersed in a heat transfer medium [5]. 
 
1.1. Ideal and non-ideal tubular reactors 

 
The tubular plug flow reactor (TPFR) model is the ideal tubular reactor that is widely employed 

in many design and analysis tasks. In this reactor, the assumption is usually made that there is neither 
axial mixing nor radial gradients. However, in real industrial reactors, there is usually some deviation 
from this assumption as the flow may show some axial mixing and possibly radial gradients that will 
result in different system properties and hence lower the performance from what is obtainable with the 
ideal reactor. Factoring the variation of the system properties in the axial and radial directions into the 
model leads to a two-dimensional model which is more complicated to handle for both steady-state 
and dynamic or control studies especially during the early engineering design phase. Fortunately, it is 
generally the practice that when the length or diameter ratio of the tubular reactor is large, then one 
can neglect any system variation in the radial direction without any significant loss inaccuracy. In this 
case, the system effectively becomes one-dimensional with system variation considered only in the 
axial direction with the resulting simplicity in the subsequent simulation, analysis and control design. 
To account for the non-ideal behaviour of industrial tubular reactors, a single parameter known as the 
axial dispersion coefficient is introduced into the reactor model to characterize the collective action of 
all phenomena such as molecular diffusion, turbulent mixing, and non-uniform velocities, which leads 
to a distribution of residence times in the reactor [5]. The resulting model is then known as the one-
dimensional axial dispersion tubular reactor model [2, 6]. As a result of its simplicity, this model is 
widely used in the literature describing the nonideal flow pattern in tubular reactors [4, 5]. 

The dynamics (or transient response behaviour) of the one-dimensional axial dispersion tubular 
reactors are modelled by partial differential equations (PDEs) of the parabolic-type, based on first 
principles or mechanistic modelling approach, and therefore belong to the class of systems known as 
distributed parameter systems (DPS). In these systems, the state/output and/or the input may vary both 
spatially and temporarily [7]. Knowledge of the system dynamics is important as it provides the basis 
for the analysis and design of control systems for the reactors during normal operation as well as 
during start-up and shut-down. It is of interest to be able to analyse such situations since operations 
during start-up and shut-down usually lead to the manufacture of products that do not meet the desired 
specifications [8]. 

Obtaining the system dynamics requires the solution of the PDEs modelling the system. Except 
for the simplest of cases where the PDE is linear or linearized around some steady-state profile in 
which an analytical solution is possible, the solution of the PDE must be solved numerically to 
determine the system dynamics. In doing this, an additional consideration is the desire to obtain 
suitable control-oriented models (i.e. low-order, accurate enough) which can be used for control 
system analysis and design. This approach is based on the early lumping method [7]. The attraction of 
this approach is the use of a simpler model that closely approximates the original DPS and 
consequently leads to a smaller number of equations to be solved. Additionally, one can then employ 
any of the large body of analysis or controller design methods for lumped parameter (LP) systems 
with much ease. The other approach, known as late lumping, involves the application of distributed 
parameter systems theory and the mathematical rigour required by this approach [7, 9] is not attractive 
for industrial deployment for many practical processes. 
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1.2. Numerical methods for lumping of PDE models 
 
Many numerical methods based on lumping or model order reduction are available for obtaining 

the solution of PDEs which apply to linear and nonlinear models. Li and Qi [10] present a review of 
some of the key modelling and lumping techniques for distributed parameter systems, and cited 
several reported applications in the literature. For systems with known PDEs, the lumping/model 
reduction methods are categorized into the method of weighted residuals (MWR) such as the Galerkin 
method and the collocation method, and the approximate inertial manifold (AIM) technique. By 
combining these with the choice of the basis functions (e.g. finite difference methods, finite element 
methods, spectral methods and the Karhunen-Loeve method - also known as the proper orthogonal 
decomposition, POD method) different techniques arise. These techniques have different strengths 
and weaknesses depending on the problem at hand. For example, one of the popular methods that find 
wide application (because it generally works) is the classical finite difference technique in which both 
the time and spatial variables are discretized resulting in a system of algebraic equations that are then 
solved. In a variant of this technique known as the method of lines, only the spatial variables are 
discretized leading to a system of ordinary differential equations which can be integrated using a 
numerical integration routine to determine the system dynamic response. While these two techniques 
are known to be easy and general to apply, they are well known to be generally computationally 
inefficient, and often require high order system for accurate solution compared with other techniques 
such as the method of weighted residuals [10–13] of which the orthogonal collocation method is a 
popular one. 

 
1.3. Previous studies of dynamics of isothermal tubular reactors 

 
Apart from the related works cited by Li and Qi [10], a number of other studies of the dynamics 

and control of isothermal plug flow reactors and axial dispersion tubular reactors based on the 
application of the various model reduction methods highlighted above, have also appeared in the 
literature. 

Inspired by the earlier work of Dochain et al. [14], Gomez et al. [15] presented the development 
of a finite-dimensional model for a class of nonlinear distributed parameter systems using the 
orthogonal collocation technique. The resulting model was feedback linearized and then used to 
develop an adaptive control algorithm to compensate for model mismatch from parametric and 
dynamic uncertainties of the reduced model. The approach was successfully applied in the simulation 
output tracking control of a fixed bed bioreactor operating isothermally. 

Li [16] studied the dynamics of an isothermal axial dispersion tubular reactor with first-order 
kinetics based on the state-space approach using two methods - analytical and numerical. In the 
analytical approach, the PDE modelling the system is reduced to an approximate lumped parameter 
system using a modal decomposition method based on the system natural eigenfunctions. In the 
numerical approach, the PDE modelling the system is first discretized with respect to time using an 
implicit finite difference technique. The resulting high-order system is then reduced by using the 
proper orthogonal decomposition (POD) to extract the most important characteristic spatial profile. 
The resulting reduced-order models from the two approaches were then used as a basis for the control 
design to achieve an optimal trajectory of the feed concentration (with bounded constraints) in the 
reactor outlet concentration. The control problem was solved using quadratic programming. Alopaeus 
et al. [17] developed the dynamic model of a plug flow reactor (PFR) including multiple fluid and 
solid phases and used a variable-order, piece-wise moment conserving method to lump the PDE 
modelling the system to ODEs. Standard ODE integration routines were then used to obtain the state 
profile solutions. One of the examples considered was an isothermal PFR carrying out a second-order 
dimerization reaction. The method is particularly attractive for systems with sharp concentration 
gradients at the reactor inlet. 
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Petre and Selisteanu [18] carried out the modelling, model reduction, simulation and nonlinear 
control design for a bioprocess (a fixed-bed bioreactor without axial dispersion) modelled by a system 
of PDEs. The model reduction was done using the orthogonal collocation method. They found that by 
appropriately choosing the collocation points along the fixed bed bioreactor, the resulting reduced-
order model closely approximates the behaviour of the original PDE model. The controllers designed 
were based on input-output linearization and nonlinear adaptive control techniques. The performances 
of the controllers were tested via simulation of substrate concentration control for the fixed bed 
bioreactor and they reported excellent results. Rachidi et al. [19] also carried out the modelling and 
development of a reduced order model for a nonlinear fixed-bed bioreactor described by hyperbolic-
type PDEs using the orthogonal collocation method. The simulated dynamics of the system obtained 
by the orthogonal collocation method were compared with those obtained using the classical finite 
difference method. They reported that only four internal collocation points were sufficient to obtain 
acceptable simulation results compared with the finite difference solution that required 500 
discretizations points. 

Giwa and Giwa [20] simulated the dynamic response of an isothermal axial dispersion tubular 
reactor with first-order kinetics using the Crank-Nicholson finite difference method as well as explicit 
and implicit finite difference methods. They found, as expected, that the Crank-Nicholson method 
gave better results. More recently, Williams and Adeniyi [21] carried out the model reduction of a 
one-dimensional, isothermal axial dispersion tubular reactor with first-order kinetics using the modal 
decomposition method. It was found that a 3rd-order system was adequate to approximate the PDE 
system. The reduced-order system was then employed to design PID-type controllers for the system 
using a modified IMC-PID method [22]. The performance of the PID-type controllers was tested 
using closed-loop simulations with excellent results obtained. A shortcoming of the approach is that 
the modal decomposition method employed for the model reduction is only applicable to linear PDEs 
that are self-adjoint and with a wide spectrum of eigenvalues [7]. Conesa [23] presented the 
simulation of the dynamic behaviour of both the ideal plug flow tubular reactor and an axial 
dispersion, a one-dimensional tubular reactor with first-order reaction kinetics using the finite 
difference method with as many as 50 discretizations points for the former (i.e. ideal plug flow 
reactor) and 150 discretization points for the latter (i.e. for the axial dispersion tubular reactor). 

Elhajaji et al. [24] presented a quadratic spline collocation method for the spatial lumping of 
one-dimensional nonlinear PDEs describing the dynamics of an ideal plug flow reactor. This was 
combined with discretization in time using the classical Crank-Nicholson technique. The method was 
applied to two examples, one of which was an ideal isothermal tubular reactor with irreversible 
sequential reaction in which the first reaction has second-order kinetics. In a related study, Barjes et 
al. [25] employed a cubic spline collocation for the same system investigated by Elhajaji et al. [24]. It 
is seen that the cubic spline collocation gave better accuracy than the quadratic spline collocation 
method, requiring from 5 to 10 spatial discretization points and between 10 and 20-time discretization 
points to give acceptable accuracy. A drawback of these two approaches is that they are only suited 
for simulations as they do not lead to models that can be employed for control system analysis and 
design i.e. the model reduction process do not lead to control-oriented models. 

 
1.4. Current study 

 
The foregoing cited works on isothermal tubular/fixed bed reactors show that, except for the 

few cited cases that employed the powerful method of weighted residual methods for dynamics and 
control studies, most of the other studies have generally used the finite difference method which is not 
attractive for simulations and control analysis and design. This is due to the resulting large size of the 
lumped parameter model when the finite difference method is employed to lump the PDE model into 
ODEs. This work can therefore be seen as a contribution to the existing body of knowledge about the 
dynamics of isothermal tubular reactors with the objectives of determining low-order lumped 
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parameter models that can be useful for dynamic simulations, and control system analysis/design. This 
current study is focused on the modelling and dynamic simulation of a class of one-dimensional, 
isothermal axial dispersion tubular reactors carrying out single, irreversible reactions with power-law 
(PL) and Langmuir-Hinshelwood-Hougen-Watson (LHHW)-type kinetics. The PL- and LHHW-type 
kinetics describe many important reactions [4]. Two cases each of the PL-type kinetics (e.g. first- and 
second-order) and LHHW-type kinetics (Michaelis-Menten and Ethylene Hydrogenation or Substrate-
Inhibited kinetics) are considered. Thus, except for the system with first-order reaction kinetics which 
leads to a linear model, all the other three models are nonlinear and so can only be solved numerically. 
One of the objectives of the study is to obtain low order lumped parameter models of the systems 
considered which can be used for dynamic resilience analysis and control system analysis/design. 
Thus for this purpose, the orthogonal collocation method is adopted in lumping the PDE modelling 
the systems. The resulting ordinary differential equations (ODEs) are numerically integrated to 
determine the system dynamics to changes in the feed inlet and pertinent process parameters. Our 
choice of the orthogonal collocation method is motivated by the fact that it is well known to be an 
efficient and powerful reduction method that gives comparable accuracy with the Galerkin method; it 
is simple to implement, and there exist reliable computer routines to aid in its application [13]. 
Additionally, as noted by Dochain et al. [14, 26], Cho and Joseph [27] have shown that orthogonal 
collocation methods preserve mass balances. The second objective of this work is to carry out 
parametric studies of the transient response behaviours for a range of the characteristics parameters of 
the tubular reactor models. This shall be done using the lumped parameter models obtained from the 
application of the orthogonal collocation method. This kind of simulation can provide important 
information and insights about the behaviours of the systems under different design and operating 
conditions which result in better design, operation or control. 

 
2. Materials and methods 
 
2.1. Model of isothermal tubular reactor systems with axial mass dispersion 
 

Consider the homogeneous (or pseudo-homogeneous), one-dimensional tubular reactor system 
is shown in schematically in Figure 1, in which the irreversible chemical reaction A −→ B is taking 
place. 

 

Figure 1: Schematic of a tubular reactor system 
 
By making the following assumptions: (i) isothermal operation, (ii) uniform cross-sectional 

area, (iii) constant fluid properties, (iv) constant dispersion coefficient D, and that (v) radial gradients 
in velocity and concentration are negligible; and writing a microscopic material balance for 
component A, one obtains the mathematical model [4, 5]: 

 

 
2

2=A A A
A

c c cD v r
t z z

∂ ∂ ∂
− −

′ ′ ′∂ ∂ ∂
 (1) 

 

where D is the axial mass dispersion coefficient, an empirical quantity. 
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Butt [8] has discussed and summarized the considerable body of experimental information 
concerning values of D for various types of flow situations, which include: laminar and turbulent flow 
of both gases and liquids in empty tubes, fixed and fluidized beds, and extraction columns. 

Four different types of boundary conditions can be written [8] for use with Eq. (1). However, 
using different mathematical arguments, Butt [8] and Villadsen and Michelsen [13] have shown that 
the only correct boundary conditions are those proposed by Danckwerts [28], given by the following: 

 

 
=0

= 0, ( ) = A
A Ain

z

cAt z v c c D
z ′

∂ ′ −  ′∂ 
   (2) 

 
=0

= , = 0A

z

cAt z L
z ′

∂ ′  ′∂ 
    (3) 

 
The use of these boundary conditions for Eq. (1) yields a solution that reduces to that of the 

tubular plug flow reactor model (TPFRM) in the limit of D → 0, and to that of the continuous stirred 
tank reactor (CSTR) in the limit D → ∞ [8]. 

 
 
An appropriate initial condition for Eq. (1) is: 

 = 0, ( ,0) = ( )A AAt t c z c z′ ′ ′     (4) 
 

Having derived this general mathematical model of the isothermal tubular reactor with axial 
mass dispersion, the applicable models for two classes/types of rate equations (i.e. PL and LHHW 
kinetics) for the irreversible reaction under consideration will now be presented. 

 
Although the foregoing model is for an empty tubular reactor, the pseudo-homogeneous model 

case implies that the same model can be applied to a packed-bed reactor where there are no fluid-to-
catalyst particle mass and/or heat transfer resistances or they are considered small. Pseudo-
homogeneous tubular reactor models are widely employed in the literature to simulate, 
design/optimize and control catalytic fixed bed reactors [29–40]. This is because pseudo-
homogeneous models are much simpler to use for simulation, optimization or control design since the 
inter-and intra-particle resistances are neglected. Such simplifications are known to give comparable 
results with the full heterogeneous models for isothermal operations or when the heat effects for a 
non-isothermal reactor is not severe [32, 33, 35, 41]. This is attractive since we get a much simpler 
model that can be employed for optimization and control analysis/design studies prior to the detailed 
design phase where more accurate models may be utilized. 

 
2.1.1. Irreversible Nth. order reaction i.e. power-law kinetics 

 
Power law kinetics are frequently used to quantify homogeneous reactions [42]. For irreversible 

Nth. order reaction, the rate equation takes the form: 
 

 = N
A Ar kc      (5) 

which when substituted into Eq. (1) gives: 

 
2

2= NA A A
A

c c cD v kc
t z z

∂ ∂ ∂
− −

′ ′ ′∂ ∂ ∂
    (6) 
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If we define the following variables and parameters: 
 

 = / , = , = A

ref

cvz z L t t x
L c

′ ′  

 
1

= =
N
ref

m

Lkc LvDa and Pe
v D

−

 

 
then, Eq. (6) becomes: 
 

 
2

2
1= N

m

x x x Dax
t Pe z z
∂ ∂ ∂

− −
∂ ∂ ∂

 (7) 

 
and the corresponding initial and boundary conditions become  
 
 0= 0, ( ,0) = ( )At t x z x z  (8) 

 1= 0, = ( )in
m

xAt z x x t
Pe z

∂
−

∂
 (9) 

 = 1, = 0xAt z
z
∂
∂

 (10) 

 
The parameter, Da, known as the Damköhler number, is a measure of the rate of reaction at inlet 

conditions; while the parameter, Pem, commonly used to represent the magnitude of the dispersion 
effects, is known as the axial Peclet number for mass transfer. The Peclet number, Pe, is the ratio of 
characteristic constants for convective and dispersive effects. 

 
For the special case of a first-order reaction: 

 = 1 = LkN and Da
v

 

 Then Eq. becomes  

 
2

2
1=

m

x x x Dax
t Pe z z
∂ ∂ ∂

− −
∂ ∂ ∂

 (11) 

 
which is a second-order, linear, parabolic partial differential equation, subject to the same initial and 
boundary conditions given by Eqs. (9) to (10). 

Fogler [4] gives an example of an industrially important first-order reaction as the cracking of 
ethane to ethylene in an isothermal tubular reactor at 1100K according to the reaction:  

C2H6 → C2H4 + H2. 
 
 

For the second-order reaction: 

 = 2 = LkN and Da
v
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Then Eq.  becomes  

 
2

2
2

1=
m

x x x Dax
t Pe z z
∂ ∂ ∂

− −
∂ ∂ ∂

    (12) 

 
which is a second-order, nonlinear, parabolic partial differential equation, subject to the same initial 
and boundary conditions given by Eqs. (8) to (10). 

Fogler [4] gives the following examples of second-order reactions: (a) the dimerization reaction 
2A → B, (b) the isomerization reaction A → B and (c) the gas-phase reaction 2CH3OH → C2H4 + 
2H2O over a zeolite catalyst for the production of olefins from methanol. 

 
2.1.2. Reactions with Langmuir-Hinshelwood-Hougen-Watson type kinetics 

 
For irreversible reactions, A −→ B which follow the Langmuir-Hinshelwood-Hougen-Watson 

(LHHW) type kinetics, Carberry [43], gives a general rate expression as: 
 

 
( )

=
1

M
A

A N
A

kcr
Kc+

     (13) 

This type of expression is known to describe the reaction kinetics of many industrially 
important solid-catalysed reactions such as ethylene hydrogenation, and enzyme catalysed reactions 
such as fermentation of sucrose into simple sugars, and substrate-inhibited enzyme reactions. Note 
that the first- and second-order kinetics cases (i.e. power law kinetics type) previously presented can 
be considered as special cases of the LHHW type kinetics in which M = 1, N = 0 and M = 2, N = 0, 
respectively. 

 
Substituting Eq. (13) into Eq. (1) gives: 

 
( )

2

2=
1

M
A A A A

N
A

c c c kcD v
t z z Kc

∂ ∂ ∂
− −

′ ′ ′∂ ∂ ∂ +
   (14) 

subject to the same initial and boundary conditions given by Eqs. (2) and (4). 

If we define similar parameters and variables as follows: 

 = / , = , = A
vz z L t t x Kc
L

′ ′  

 1= ' = =m M M
Lv LkK LkPe and Da
D vK vK −  

 then Eq.  can be transformed into  

 
( )

2

2
1 '=

1

M

N
m

x x x Da x
t Pe z z x
∂ ∂ ∂

− −
∂ ∂ ∂ +

 (15) 

 
Two practical examples of reactions with LHHW type kinetics are now considered; (1) 
reactions with Michaelis-Menten type kinetics and (2) ethylene hydrogenation reaction or 
enzyme-catalysed reaction with substrate-inhibition kinetics. For reactions with Michaelis-
Menten type kinetics, the rate expression for many enzyme-catalysed reactions such as 
fermentation of sucrose into simple sugars [2] or solid-catalysed reactions such as 
decomposition of ammonia on platinum, and of methane on carbon [44] is: 
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 1

2

= A
A

A

k cr
k c+

     (16) 

which is a special case of Eq. (13) with M = 1, N = 1, k = k1/k2 and K = 1/k2. For this case, Eq. 
(15) reduces to 

 
( )

2

2
1 '=

1m

x x x Da x
t Pe z z x
∂ ∂ ∂

− −
∂ ∂ ∂ +

 (17) 

where Da′ = Da = Lk/v. 

For the ethylene hydrogenation reaction or enzyme-catalysed reaction with substrate-inhibition 
kinetics, the kinetic rate equation for ethylene hydrogenation in the presence of excess hydrogen [45], 
carbon monoxide oxidation on a platinum catalyst [12], or enzyme-catalysed reaction with substrate 
inhibition [46], is given by an equation of the form: 
 

 
( )2=
1

A
A

A

kcr
Kc+

     (18) 

which is also a special case of Eq. (13) with M = 1, N = 2. 

For this case, Eq. (15) reduces to: 

 
( )

2

22
1 '=

1m

x x x Da x
t Pe z z x
∂ ∂ ∂

− −
∂ ∂ ∂ +

    (19) 

where Da′ = Da = Lk/v. 
 
Eqs. (17) and (19) are also second-order, nonlinear, parabolic partial differential equations, 

subject to the same initial and boundary conditions given by Eqs. (8) to (10). 
 

2.2. Numerical lumping of the isothermal axial dispersion tubular reactor models using 
orthogonal collocation 

 
In this section, the numerical lumping of the various reactor models presented in Section 2.1 

will be carried out. For the nonlinear models, orthogonal collocation shall be used to lump the 
nonlinear PDE models to ODEs which shall then be used for subsequent analysis and dynamic 
simulations. For the linear problem (i.e. isothermal tubular reactor with first-order reaction kinetics), 
analytical solutions of the steady-state and dynamic models are possible. For the linear dynamic 
model, the transient response solution using the modal decomposition technique is readily obtainable. 
Thus, the accuracy of the results of the orthogonal collocation solution for the linear problem shall be 
assessed using these analytical solutions. 

The orthogonal collocation method is an attractive technique for obtaining an approximate 
solution of differential equations by fitting a trial solution at selected points. It belongs to the method 
of weighted residuals [11–13]. The method attempts to minimize the residuals that result when the 
trial solution is substituted into the differential equations modelling the system, and the residuals are 
set to zero at selected points (known as the collocation points) in the spatial direction of interest. By 
choosing the collocation points to be zeros of some orthogonal polynomials, the accuracy of the 
solution is greatly improved [13]. The details of the orthogonal collocation method can be found in 
Finlayson [11, 12], Villadsen and Michelsen [13]. A recent overview is presented by Young [47]. 
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2.2.1 Reactors with first-order kinetics 
 
To solve Eq. (11) numerically using orthogonal collocation, we assume a trial solution of the 

form 
 

 
1

=0
( , ) = ( ) ( )

n

k k
k

x z t z x t
+

∑  (20) 

in which ℓk(z), k = 0,1,2,...,n + 1 are Lagrange polynomials[13]. 

Substituting this into Eq. (11) and setting the residuals to zero at the collocation points leads to 

 
1 1

=0 =0

1= , = 1,2, ,
n n

j
jk k jk k j

k km

dx
B x A x Dax j n

dt Pe

+ +

− −∑ ∑   (21) 

 
in which Ajk and Bjk are the first and second collocation matrices [13], defined as: 

 
=

( )= k
jk

z z j

d zA
dz
  (22) 

 

 
2

2
=

( )= k
jk

z z j

d zB
dz
  (23) 

 
and the collocation points zj, j = 0, 1,...,n−1 are the roots of the orthogonal Jacobi Polynomial [13]: 
 

 
1 ( , )

0
(1 ) ( ) = 0, , > 1, = 0,1, , 1j

nz z z P z dz j nβ α α β α β− − −∫   (24) 

 
Applying the trial solution to the boundary equations, Eqs. (9) and (10) become: 

 
1

0, 0
=0

= ( )
n

k k m
k

A x Pe x u
+

−∑  (25) 

 
1

1,
=0

= 0
n

n k k
k

A x
+

+∑  (26) 

 
Solving for x0 and xn+1 from Eqs. (25) and (26), and using them to eliminate x0 and xn+1 from Eq. (21), 
we have the following: 

 0 11 11 0, 12 1,
=1 =1

=
n n

m k k n k k
k k

x L Pe u L A x L A x+

  
− + +  

  
∑ ∑  (27) 

 1 21 21 0, 22 1,
=1 =1

=
n n

n m k k n k k
k k

x L Pe u L A x L A x+ +

  
− + +  

  
∑ ∑  (28) 

,0 , 1
,0 11 , 1 21 0,

=1

1=
n

j j j n
jk jk jk j j n k

k m m m

dx B B
B A Da A L A L A

dt Pe Pe Pe
δ +

+

     
 − − + − + −             

∑  
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 ,0 , 1
,0 12 , 1 22 1,

j j n
j j n n k k

m m

B B
A L A L A x

Pe Pe
+

+ +

    
+ − + −              

 

 ( ) ( ),0 ,0 11 , 1 , 1 21m j j m j n j nPe A B L Pe A B L u+ +
 + − + −   (29) 

 
in which: 
 

 
0

=
1 =jk

j k
j k

δ
≠




 

 
1

0,0 0, 111 12

1,0 1, 121 22

= = m n

n n n

A Pe AL L
L

A AL L

−
+

+ + +

−  
  

   
 (30) 

 
 
Putting Eq. (29) in the standard state-space form, we have  

 

 1 1=d u
dt

+
x A x b  (31) 

 1 1= =ny x E u+ +Cx  (32) 
 
for measurement at the reactor exit, and in which [ ]1 2= T

nx x x x  are concentrations at the 
collocation points,  

 1 1= , , = 1,2, ,
jk

a j k n 
  

A   

 ,0 , 1
1 ,0 11 , 1 21 0,

1= j j n
jk jk jk j j n kjk

m m m

B B
a B A Da A L A L A

Pe Pe Pe
δ +

+

     
 − − + − + −             

 

 ,0 , 1
,0 12 , 1 22 1,

j j n
j j n n k

m m

B B
A L A L A

Pe Pe
+

+ +

    
+ − + −              

 (33) 

 1 1 1 11 2
=

T

n
b b b 
 b   

 ( )1 ,0 ,0 11 , 1 , 1 21= ) ( , = 1,2, ,m j j m j n j nj
b Pe A B L Pe A B L j n+ +

 − + −    (34) 

 
 
The steady-state solution can be obtained by setting the left-hand side of Eq. (31) to zero and 

solving for x  which results in  
 

 1
1 1= u−−x A b  (35) 

 
Since this system is linear, it is possible to derive an analytical solution for the steady-state and 

dynamic response behaviours of the system which can be used to make comparisons with the 
orthogonal collocation-based numerical solution. The steady-state and unsteady-state analytical 
solutions presented in Williams and Adeniyi [21] are used for this purpose. 
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2.3. Reactors with nonlinear reaction kinetics 

 
Unless the reactor model is linearized about a steady-state profile, x¯, in each of these cases (i.e. 

second-order, Michaelis-Menten and Ethylene-hydrogenation or substrate-inhibited kinetics), it is not 
possible to obtain an analytical solution to the corresponding reactor models. However, our objective 
is to solve the nonlinear problem rather than a linearized problem and it is only possible to do this 
numerically. The orthogonal collocation technique is applied to do this as follows. 

For brevity, we shall consider an application to the axial dispersion reactor with the LHHW 
kinetics and derive the requisite equations for the second-order and Michaelis-Menten kinetics as 
special cases of this. 

To solve this system using the orthogonal collocation technique, we assume a trial solution of 
the form of Eq. (20) and following the same procedure as for the first-order kinetics, the nonlinear 
PDE model, Eq. (15) is lumped to the nonlinear set of ODEs: 

 
 

 ,0 , 1
,0 11 , 1 21 0,

=1

1= =
n

j j j n
j jk jk j j n k

k m m m

dx B B
F B A A L A L A

dt Pe Pe Pe
+

+

     
 − + − + −             

∑  

 
( )

,0 , 1
,0 12 , 1 22 1, '

1

M
j j n j

j j n n k k N
m m j

B B x
A L A L A x Da

Pe Pe x
+

+ +

    
+ − + − −          +     

 

 ( ) ( ),0 ,0 11 , 1 , 1 21m j j m j n j nPe A B L Pe A B L u+ +
 + − + −   

 = 1,2, ,j n  (36) 
 
At steady-state, the following nonlinear algebraic equations have to be solved for jx :  
 

 ,0 , 1
,0 11 , 1 21 0,

=1

1n
j j n

jk jk j j n k
k m m m

B B
B A A L A L A

Pe Pe Pe
+

+

     
 − + − + −             

∑  

 
( )

,0 , 1
,0 12 , 1 22 1,

'

1

M
j j n j

j j n n k k N
m m j

B B Da x
A L A L A x

Pe Pe x
+

+ +

    
+ − + − −          +     

 

 ( ) ( ),0 ,0 11 , 1 , 1 21 = 0,m j j m j n j nPe A B L Pe A B L u+ +
 + − + −   

 = 1,2, ,j n          (37) 
 

 
The applicable equations for the three axial dispersion tubular reactors with nonlinear kinetics 

can be obtained from the foregoing equations by setting and substituting for the values of M and N as 
follows: 

 
• Second-order kinetics: M = 2, N = 0 
• Michaelis-Menten kinetics: M = 1, N = 1 
• Ethylene Hydrogenation or Substrate-inhibited kinetics, M = 1, N = 2 
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2.4. Method of solution for the linear and nonlinear orthogonal collocation models 
 
2.4.1. Linear system 

 
The steady-state solution of the linear system given by Eq. (35) is solved using the Gaussian 

elimination routine of Villadsen and Michelsen [13]. If the problem has been properly formulated, 
1

1
−A  exists and the Gaussian elimination algorithm determines the steady-state solution xs at the 

collocation points. This is known to be computationally more efficient than using the matrix inverse 
approach. The steady-state solutions at the collocation points serve as the initial conditions for the 
dynamic response simulations. 

The dynamic response behaviour of the linear system is given by Eqs. (31 and 32) is obtained 
by carrying out discrete-time simulation using the state-transition method. This is also known to be 
computationally more efficient than carrying out numerical integration [48, 49]. The process is 
summarized as follows: 

The continuous-time system given by Eq. (31) is converted to the discrete-time equivalent given 
by: 

 
 ( 1) = ( ) ( )k x k u k+ +x F G     (38) 
 ( 1) = ( 1)y k k+ +Cx  (39) 
 
 where F  and G  are computed using the basic Taylor series expansion method [50]: 
 

 1
1

=0

1= = ( )
!

k

k
e

k
τ τ

∞

∑AF A  (40) 

 1
1 1 10

=0

1= = ( )
( 1)!

t k

k
e dt

k
τ

τ τ
∞ 

 + 
∑∫

AG b A b  (41) 

 
Williams and Adeniyi [51] describe FORTRAN 77 routines developed to carry out the 

computation of the exponential matrix and its integral reliably and accurately. 
 
2.4.2. Nonlinear systems 

 
The set of nonlinear algebraic equations (Eq. 37) for the steady-state solutions (i.e. 

, = 1,2, ,jx j n )  at the collocation points are solved by using the standard multivariable Newton-
Raphson algorithm [52] for each of the cases: second-order, Michael-Menten and Ethylene or 
Substrate-inhibited kinetics. The steady-state analytical solution of the linear system model [21] 
evaluated at the collocation points, or the steady-state collocation (numerical) solution of the linear 
problem may be used as initial guess values for the Newton-Raphson algorithm. Both methods give 
equivalent results. However, using the steady-state analytical solution (at the collocation points) as the 
initial guess values for the Newton-Raphson algorithm, especially for simulation for a range of system 
design and operating parameters (i.e. parametric studies as presented later under the Results and 
Discussion section of this paper) cuts down on the overall computing time, then when the steady-state 
collocation (numerical) solution of the linear problem is used. This is expected because using the latter 
method requires the solution of a set of linear algebraic equations, while the former method involves 
only simple function evaluations. 
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Using the initial steady-state solution, , = 1,2, ,jx j n ; the set of nonlinear ODEs given by 
Eq. (36) are integrated numerically using the 3rd-order semi-implicit Runge-Kutta method routines 
[13] to determine the transient response of xj(t) to the input, u(t). When required, the eigenvalues of 
the linear (or linearized) lumped orthogonal models are computed using the QR routine [13]. 

 
3. Results and discussions 
 
3.1. Dynamic Response Simulation of Nominal Systems 

 
The dynamic response simulations of the isothermal axial dispersion tubular reactors with the 

various kinetics (i.e. first-order, second-order and LHHW-type kinetics) are presented in this section 
for the nominal system parameters of an isothermal tubular reactor system studied by [53]: Pem = 1.0 
and Da = 2.0. 

Based on the recommendations of Georgakis et al. [54] and Villadsen and Michelsen [13] for 
parabolic partial differential equations, we chose α = 0, β = 0 in all the orthogonal collocation 
solutions. Where necessary, computation of the system steady-state and dynamic response behaviour 
at fixed grid points other than the collocation points were obtained by Lagrangian interpolation. 

For a step-change in the inlet reactor concentration from = 1.0u  to 3.0 , Figures 2A-D show 
the simulated results of the dynamic response of the reactor exit concentration for first-order, second-
order, Michaelis-Menten and ethylene hydrogenation kinetics, respectively. In the case of Figure 2A, 
a comparison of the exact response obtained by modal decomposition [21] is made against the 4-point 
collocation solution, while in Figures 2B-D, comparisons of the 4-point and 8-point collocation 
solutions are shown. We can observe that these responses are smooth and do not display any unusual 
behaviour. Although not shown, the comparison plots of the 3-point collocation solutions also show a 
good approximation to the higher-order solutions. 
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Figure 2: Response of exit reactor concentration to a step change of inlet concentration from u  = 1.0 
to 3.0 using orthogonal collocation. A: First-order; B: Second-order; C: Michaelis-Menten and D: 

Ethylene hydrogenation kinetics. Pem = 1.0, Da = 2.0 

 
3.2. Parametric studies 
 

The nominal parameter values for the calculations whose results are presented below were as 
follows: u = 1.0, Pem = 1.0 and Da = 2. For each investigation, two of these parameters are kept at 
their nominal values and the third is varied over the desired range. 

The parametric studies is carried out to determine the dynamic response behaviours of the 
reactors (with different kinetics) to variation of the steady-state inlet concentration 
( = 0.5,1.0,5.0,10.0u ), Peclet number for mass transfer (Pem = 0.5, 1.0, 10.0, 100.00), and 
Damköhler number (Da = 0.5,1.0,5.0,10). For all these simulations, 7 internal collocation points were 
used because preliminary simulations indicated that the numerical dynamic solutions were better for 
increasing values of Pem. For each of these cases, the eigenvalues of the linear (or linearized) lumped 
orthogonal collocation models are computed to gain some insights into the internal dynamics of the 
systems for the four types of kinetics under consideration. 
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3.2.1. Effect of steady-state control input, u  
 
An examination of the set of eigenvalues (of the linear or linearized models) given in Table 1 

shows that they are all negative, implying the reactor is open-loop stable for all the four types of 

reaction kinetics operating at the steady-states defined by u  and the nominal Pem  and Da . It can 
also be observed that at the nominal and other values of Pem and Da, all the computed eigenvalues are 
real. This implies a diffusion- or dispersive controlled process. 

As expected, the eigenvalues are independent of the steady-state input (u ) for the reaction with 
first-order kinetics, but these vary for the other three cases of nonlinear reaction kinetics. In all cases, 
it is clear that the system transient response will be dominated by the last three or four eigenvalues 
with the largest magnitudes. This is because the contribution of the other relatively large but negative 
eigenvalues to the system transient response will quickly die out. Thus, it is sufficient to look at the 
effect of u¯ on only the dominant eigenvalues. 

For the reaction with second-order reaction kinetics, the effect of increasing u  appears to 
significantly make the dominant eigenvalues more negative, implying a faster transient response. 
However, the reverse is the case for the reactor with Michaelis-Menten and ethylene hydrogenation 
reaction kinetics. For these, it can be seen that increasing u  makes the dominant eigenvalues more 
positive, implying a slower transient response. It is observed that in these two cases, the changes in 
the dominant eigenvalues are not as pronounced as in the case of the first- and second-order reaction 
kinetics. Hence, one may not obtain any significant changes in the system transient response for these 
systems as u  is varied. 

Figure 3 shows the simulated transient response of the reactant exit concentration, x(1,t) to a 
step change of +2 units in the inlet control input (u) when the reactor is operating at different initial 
steady states defined by u  and the nominal Pem and Da values. As expected, we can immediately see 
that the system transient step response for the case of first-order reaction kinetics is independent of u  
as shown in Figure 3A. Although settling at different steady-states defined by u , the transient 
response shapes are all similar. 

As u  is increased for the second-order reaction kinetics, the system transient response becomes 
faster, while for the Michaelis-Menten and ethylene hydrogenation kinetics, the effect of increasing 
u  though not appreciable, appears to be to slow the system dynamic response as depicted by the slow 
rise of the transient response to the final steady-states. 

 
3.2.2. Effect of Peclet number for mass transfer, Pem 

 
An examination of the set of eigenvalues (of the linear or linearized models) given in Table 2 

shows they are all negative. This implies that the reactor is open-loop stable for the four types of 
reaction kinetics operating at the steady-states defined by the nominal u , Da and range of Pem 
considered. It can be observed that the eigenvalues for the four types of reaction kinetics are of 
comparable values. This is expected because, at the low steady-state inlet concentration defined by u  
= 1.0, all the four types of reaction kinetics can effectively be approximated as first-order reaction 
kinetics.  
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Figure 3: Dynamic response of reactor exit concentration to a step change of +2 units in control input 
(u) starting from the steady-state given by u , for the four types of reaction kinetics. A: First-order; B: 
Second-order; C: Michaelis-Menten and D: Ethylene hydrogenation kinetics. (Pem = 1.0, Da = 2.0), 

u  = us 

 
 

The main significant observation of the effect of Pem on the system eigenvalues is that as Pem 
is increased, the eigenvalues which are all real at low Pem values become a mixture of real and 
complex conjugate pair eigenvalues at high Pem values. This is expected since, at low Pem values, the 
reactor mathematical model tends towards a parabolic partial differential equation which can only 
have real eigenvalues. On the other hand, at high Pem values, the reactor model tends towards a 
hyperbolic partial differential equation which will have complex eigenvalues due to the characteristic 
wave nature. 
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Table 1: Effect of steady-state control input, u  on the eigenvalues of the linear or linearized models 
for the four types of reaction kinetics. Output at z = 1.0, (Da = 2.0, Pem = 1.0) λi = ith. eigenvalue of 

system matrix. 
u  0.50 1.0 5.0 10.0 u  0.50 1.0 5.0 10.0 

Serial No. 
iλ  iλ  iλ  iλ  Serial No. 

iλ  iλ  iλ  iλ  

(a) 
1 -407.82 -407.82 -407.82 -407.82 

(c) 
1 -407.17 -406.73 -405.91 -405.84 

2 -357.79 -357.79 -357.79 -357.79 2 -357.18 -356.75 -355.89 -355.82 

3 -154.46 -154.46 -154.46 -154.46 3 -153.84 -153.41 -152.55 -152.48 

4 -93.45 -93.45 -93.452 -93.45 4 -92.83 -92.40 -91.54 -91.47 

5 -43.70 -4370 -43.70 -43.70 5 -43.08 -42.65 -41.79 -41.72 

6 -14.02 -14.02 -14.02 -14.02 6 -13.40 -12.96 -12.11 -12.04 

7 -3.17 -3.17 -3.17 -3.17 7 -2.562 -2.12 -1.265 -1.19 

(b)     (d)     

1 -407.14 -408.01 -412.11 -415.49 1 -406.60 -406.00 -405.78 -405.81 

2 -357.07 -357.87 -361.34 -363.84 2 -356.62 -356.00 -355.79 -355.78 

3 -153.73 -154.52 -157.89 -160.30 3 -153.28 -152.66 -152.42 -152.44 

4 -92.73 -93.53 -98.00 -99.53 4 -92.27 -91.654 -91.41 -91.43 

5 -42.983 -43.78 -47.29 -49.89 5 -42.52 -41.90 -41.66 -41.68 

6 -13.313 -14.13 -17.83 -20.73 6 -12.84 -12.22 -11.98 -12.01 

7 -2.45 -3.24 -6.51 -8.63 7 -3.00 -1.376 -1.133 -1.16 

Note: (a), (b), (c) and (d): first-order, second-order, Michaelis-Menten and ethylene hydrogenation kinetics, 
respectively 

 
The effect of Pem on the simulated transient response of the exit reactor concentration to a step 

change of +2 units in the inlet control input (u) are shown in Figure 4 for all the four types of reaction 
kinetics investigated. It can be observed from these plots that the effect of increasing Pem appears to 
be to slow the response of the exit concentration as it then takes longer to reach and settle at the final 
steady-states. It can also be observed that for Pem = 100, the reactor exit concentration dynamic 
response to the specified step change in the inlet feed concentration displayed some small oscillations 
during the initial response phase, which then disappeared. This occurred for all the four reaction 
kinetics under consideration and is the result of the global orthogonal collocation polynomial attempt 
to approximate the inherent time delay in the PDE reactor models. This kind of oscillation in system 
dynamic response of global orthogonal collocation lumped model of distributed parameter systems 
have been reported in a number of previous studies in the literature e.g. [14, 18, 27], the case being 
that for relatively high values of Pem, the global orthogonal collocation polynomials are not able to 
provide good approximations of the inherent time delay, and other methods such as orthogonal 
collocation on finite elements[12] may be considered as the numerical lumping method. For other 
lower values of Pem shown, no such oscillation exists in the reactor exit concentration dynamic 
response, implying that the applicable inherent time delays are small, and the global orthogonal 
collocation polynomials can adequately approximate these. 
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Table 2: Effect of Pem on the eigenvalues of the linear or linearized models for the four types of 
reaction kinetics. Output at z = 1.0, (Da = 2.0, u  = 1.0) 

Pem  0.50 1.0 10.0 100.0 Pem 0.50 1.0 10.0 100.0 

Serial 
No. λi λi λi λi 

Serial 
No. λi λi λi λi 

(a)     (c)     

 
1 -808.30 -407.82 -48.33 -5.03 + 

11.29j 
 

1 
-807.25 -406.73 -46.91 2003.7 

2 -709.05 -357.79 -36.19 -5.03 - 
11.29j 2 -708.02 -

356.755 -35.39 16.63 + 
19.22j 

3 -305.40 -154.46 -16.24 + 
2.26j 

-6.62 + 6.23 
j 3 -304.37 -153.41 -15.09 + 

2.29 j 
16.63 - 
19.22 j 

4 -182.51 -93.45 -16.24 - 
2.26j -6.62 - 6.23j 4 -181.48 -92.400 -15.09- 

2.29 j 
3.77 + 9.99 

j 

5 -83.07 -43.70 -10.02 -11.07 5 -82.048 -42.655 -8.89 3.77 - 9.99 j 

6 -23.81 -14.02 -6.77 -7.61+ 2.15 j 6 -22.782 -12.96 -5.649 5.78 + 3.29 j 

7 -3.089 -3.17 -5.02 -7.61 - 2.15 
j 7 -2.06 -2.12 -3.879 5.78 - 3.29 j 

(b)     (d)     

1 -808.39 -408.01 -49.57 -4.71 + 
11.20j 1 -806.51 -406.00 -46.35 -3.19 + 

11.28 j 

2 -709.12 -357.87 -35.59 -4.71 - 
11.20 j 2 -707.27 -356.00 -34.48 -3.19 - 

11.28 j 

3 -305.44 -
154.520 

-16.46+ 
2.13j -13.91 3 -303.62 -152.66 -14.36+ 

2.28 j 
-4.74 + 6.26 

j 

4 -182.56 -93.534 -16.46 - 
2.13j 

-6.50 + 5.82 
j 4 -180.73 -91.65 -14.36- 

2.28 j 
-4.744 - 

6.26j 

5 -83.12 -43.78 -10.27 -6.50 - 
5.823 j 5 -81.29 -41.90 -8.16 -9.058 

6 -23.88 -14.13 -7.01 -7.59 + 1.83 
j 6 -22.03 -12.22 -4.90 -5.755 + 

2.17 j 

7 -3.133 -3.24 -5.041 -7.59 - 1.83 
j 7 -1.31 -1.38 -3.15 -5.75- 2.17 j 

Note: (a), (b), (c) and (d): first-order, second-order, Michaelis-Menten and ethylene hydrogenation kinetics, 
respectively 

 



Journal of Applied Science & Process Engineering 
Vol. 8, No. 2, 2021 

 

 
 
e-ISSN: 2289-7771 

 

 
 853  

 

Figure 4: Effect of Pem on the dynamic response of reactor exit concentration to a step change of +2 
units in the control input(u). A: First-order; B: Second-order; C: Michaelis-Menten and D: Ethylene 

hydrogenation kinetics. (u  = 1.0, Da = 2.0) 

 
3.2.3. Effect of Damköhler number, Da 

 
An examination of the set of eigenvalues (of the linear or linearized models) given in Table 3 

shows they are all negative and real. As with the other two cases, this also implies that the reactor is 
open-loop stable for the four types of reaction kinetics operating at the steady-states defined by the 
nominal u , Pem and range of Da considered. Similar to the effect u , we also observe that the system 
dynamic response will be dominated by the last three or four eigenvalues with the largest magnitudes. 
This trend is maintained as Da is increased from the low to the high value investigated. It can be 
observed that increasing the value of Da appears to decrease the dominant time constant of the 
systems. This trend is exhibited by the transient response simulation of the reactor exit concentration 
to a step change of +2 units in the reactor inlet concentration shown in Figure 5. It can be observed 
from these plots that the effect of increasing Da appears to be to increase the response of the exit 
concentration as it takes a shorter period to reach and settle at the final steady-states. 
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Table 3: Effect of Da on the eigenvalues of the linear or linearized models for the four types of 
reaction kinetics. Output at z = 1.0, (Pem = 1.0, u  = 1.0) 

Da 0.50 1.0 5.0 10.0 Da 0.50 1.0 5.0 10.0 

Serial 
No. λi λi λi λi 

Serial 
No. λi λi λi λi 

(a) 
1 -406.32 -406.82 -410.82 -415.82 

(c) 
1 -405.97 -406.18 -409.04 -413.51 

2 -356.29 -356.79 -360.79 -365.79 2 -355.95 -356.16 -359.22 -363.91 

3 -152.96 -153.46 -157.46 -162.46 3 -152.61 -152.82 -155.90 -160.72 

4 -91.95 -92.46 -96.45 -101.45 4 -91.60 -91.81 -94.86 -99.61 

5 -42.20 -42.70 -46.70 -51.70 5 -41.85 -42.06 -45.110 -49.86 

6 -12.52 -13.02 -17.02 -22.02 6 -12.17 -12.39 -15.40 -20.12 

7 -1.67 -2.17 -6.17 -11.17 7 -1.33 -1.54 -4.58 -9.31 

(b) 
1 -406.57 -407.14 -409.87 -412.11 

(d) 
1 -405.83 -405.85 -407.46 -411.43 

2 -356.55 -357.07 -359.51 -361.34 2 -355.80 -355.83 -357.69 -362.050 

3 -153.21 -153.73 -156.12 -157.89 3 -152.46 -152.49 -154.31 -158.85 

4 -92.20 -92.73 -95.16 -97.00 4 -91.45 -91.48 -93.28 -97.70 

5 -42.45 -42.98 -45.43 -47.29 5 -41.71 -41.74 -43.53 -47.96 

6 -12.78 -13.31 -15.84 -17.83 6 -12.03 -12.06 -13.84 -18.29 

7 -1.92 -2.45 -4.82 -6.51 7 -1.18 -1.21 -2.99 -7.26 

Note: (a), (b), (c) and (d): first-order, second-order, Michaelis-Menten and ethylene hydrogenation kinetics, 
respectively 

 
4. Conclusion 
 

The modelling and dynamic simulation of a class of one dimensional, axial dispersion 
isothermal tubular reactors with PL and LHHW-type kinetics were carried out. Global orthogonal 
collocation was employed to lump the partial differential equations (PDEs) modelling the reactors 
with both the PL and LHHW-type kinetics. The resulting lumped parameter models were then used 
for the dynamic simulations. The results showed that for the nominal design/operating parameters 
considered, using only 3 or 4 collocation points adequately simulated the dynamic response of the 
systems. However, simulations over a range of the design/operating parameters required between 5 
and 7 collocations points for better results, especially as the Peclet number for mass transfer (Pem) is 
increased from the nominal value to 100. Examination of the internal dynamics of the system showed 
that the Peclet number for mass transfer (Pem) has a significant effect on this as exhibited by the types 
of eigenvalues (real or complex) and the nature of the exit concentration dynamic response. This was 
not observed to be the case for variations of the inlet feed concentration and the Damkholer number. 
In comparison with the large order lumped models that result using the finite difference method 
reported in the literature, the relatively small order of the lumped orthogonal collocation dynamic 
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models obtained in this work are useful for dynamic resilience analysis studies and control system 
analysis/design. 
 

 

Figure 5: Effect of Da on the dynamic response of reactor exit concentration to a step change of +2 
units in the control input(u). A: First-order; B: Second-order; C: Michaelis-Menten and D: Ethylene 
hydrogenation kinetics. ( u  = 1.0, Pem = 1.0) 
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