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Abstract 
 

This paper presents current injection resemble single event upset (SEU) current at the vulnerable 

nodes on different configurations of C-elements under two different scenarios: process corner and 

temperature. The objectives are to identify the vulnerable nodes due to SEU and to find the critical 

charges needed to flip the output from low to high (0-1) and high to low (1-0) on different 

configurations of C-elements. The comparisons of C-elements in term of the resistivity toward soft 

error  are presented. 

Keywords: Soft Error,Process Variation, Temperature. 

 

 

1. Introduction 

 Advancement in silicon technology has resulted in transistors becoming smaller which has in turn 

lowered operating voltage and capacitance [1]. Therefore, these transistors are more sensitive toward 

radiation-induced errors. As the demand for low power applications for digital electronics devices with 

high density continues to increase, the radiation effect on such electronic devices is becoming 

significant. Even though soft error due to radiation is not a permanent error, this type of error can 

cause data to be corrupted. 

        In this paper, the current pulse causing SEU is injected into different nodes of different C-

elements. The amplitude of the current is increased until the output of the C-element is changed. 

Different configurations of C-elements are compared in terms of the charges needed to flip the output 

from 0-1 change or 1-0 change. The minimum charge needed to cause state change is known as the 

critical charge. 

 

2. Single Event Upset 
 

       The drain of an off PMOS and drain of an off NMOS transistor are more vulnerable toward soft 

error due to SEU. Figure 1 shows the single SEU produced [2]. A neutron from the atmosphere strikes 

the silicon causing a collision between the nucleus and the neutron within the substrate. The density of 

electron-hole pairs is produced by particles, as shown in Figure 1(a). The carriers are swept to 

diffusion junction by an electric field and cause the charge collection to expand due to drift current 

(Figure 1(b)), resulting in the sudden current pulse. Then, the diffusion current dominates until all the 

excess carriers have been collected, recombined or diffused away from the junction area (Figure 1(c)). 

The size of the funnel, as shown in Figure 1(b), and collecting time are very much inversely 

proportional to the substrate doping. The collection time is usually completed within picoseconds and 

the diffusion current begins to dominate until all the excess carriers have been collected [3]. 
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(a) (b) (c) 

Figure 1 : SEU produced  

 

The responses of the state holders can be categorized into three states: 

a) No change to the state holder – There is insignificant output pulse that has been generated and 

does not cause any state change. It is assumed that if the generated pulse is less than 20% [4] 

of the input pulse such pulse can be further attenuated in the following gates and caused no 

further damage. This is shown in Figure 2(a) and Figure 3(a). 

b) Pulse output is generated- Over a small range of input pulse amplitude, the pulse output is 

generated. It is assumed that if the generated pulse is 20% [4] or more of the input pulse, such 

pulse can be very likely to cause the problem. This is shown in Figure 2(b) and Figure 3(b)  

c) State change – At certain amplitude of current pulse, the state holder can change its state. This 

is shown in Figure 2(c) and Figure 3(c) 

 

  
Figure 2: State holder change from low to high 

(0-1) 

Figure 3: State holder change from high to low 

(1-0) 

 

3. Methodology 
 

The workflow of the analysis is summarized below. 

Step 1: Modelling the current pulse causing single event upset. A current pulse can be represented as 

having fast rising time and slow falling time. The amplitude, rising time and falling time of the current 

pulse depend on factors such as the type of particle, the energy of the particle and the angle of the 

strike. These factors can add complexities in modelling current pulse. The model shown in Figure 4 is 

used as a current injection to compare the critical charges between the nodes and C-elements. The 

model is based on [5] with the rising and falling times of current pulse to be 50 ps and 164 ps 

respectively [6,7].  
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Step 2: Modelling the circuit. In order to compare different configuration of C-elements against SEU, 

the circuits are modelled to have the same width of the main transistors and the feedback transistors. 

For this purpose, CADENCE UMC90nm technology is used in the simulation.  

 

   
Figure 4: SEU Current Modelling 

 

Step 3: Identifying the vulnerable nodes. The current pulses are injected at the main transistors and the 

output of the circuit is shown by Figure 5. 

Step 4: Identifying the sources of variation. The sources of variations in the analysis are process corner 

and temperature. Five different process corners are TT(typical-typical), SS(slow PMOS and NMOS), 

FF(fast NMOS and PMOS), SNFP(slow NMOS and fast PMOS) and FNSP(fast NMOS and slow 

PMOS). It is assumed these parameters are Gaussian and mutually independent.  

Step 5: Set inputs A=1,B=0. Repeat A=0,B=1. Assuming two inputs are A and B. There are two 

possibilities combination of input: A=1,B=0 and A=0, B=1. For each combination of input, there are 

two possibilities transition of output: High (1) to Low (0) and Low (0) to high (1). 

Inputs Outputs 

A=1,B=0 0-1 

1-0 

A=0,B=1 0-1 

1-0 

 

Step 6: Varying the amplitude of SEU current. As mentioned in step 1, the rising and falling times of 

the current pulse is fixed. However, in order to change the area under the curve, the amplitude is 

varied until the output is flipped. The simulation is done using circuit analyser (spectre).  

Step 7: Identifying the amplitude of SEU Current that causes State Change. The amplitude of the 

current pulse is increased until the output is flipped at different nodes, different C-elements and 

different source of variation.  

Step 8: Calculating critical charge. The critical charge which corresponds to the amplitude of the 

current pulse that causes the state to change is obtained at different nodes, different C-elements and 

different source of variations.  

Step 9: Calculating the standard deviation of critical charges. Standard deviation of critical charges is 

calculated to observe the dispersion value of critical charge when one of the factors mentioned above 

changes. 
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4. C-Element Modelling 
 
Three different implementations of C-elements are used in the analysis: 

(a) Single Rail with Inverter Latch SIL 

(b) Single Rail with Conventional Pull-up Pull-down SC 

(c) Single Rail Symmetric Implementation SS 
 

In order to make a fair comparison between different types of C-elements, the general sizes of the 

transistors are as follows:  

a) The ratio of PMOS and NMOS for the main transistors is 1.125. This is consistent with 

Faraday Library for 90 nm technology. 

b) The ratio between the main transistor and feedback transistor is 4:1 

The analyses are subjected to the following assumptions: 

a) The current pulse is assumed to hit the middle of the drain of the Off PMOS or NMOS 

transistor. The worst-case scenario is compared with different implementation of C-elements 

towards SEU. Thus, the values might be different to the actual experiments 

b) The current pulse is assumed to resemble trapezoidal shapes with fast rising time and slow 

falling time and with maximum amplitude. 

Current pulse is injected at different nodes for different configurations of C-elements. The purpose of 

the experiment is to find the charge needed to flip the output at the sensitive nodes due to the injected 

SEU under two variables 

a) Process corner variation: Five different process corners are varied: TT, SS, FF, SNFP and 

FNSP.  

b) Temperature variation: Temperature is varied from to  taking only 4 distinct 

points ( , ,  and  ). 

   
Figure 5: Current injection for SIL configuration  

 

A single rail with inverter latch (SIL) consists of main pull up transistors (P1, P2), main pull 

down transistors (N1, N2), inverter (P3, N3) and weak inverter (P4, N4) as shown in Figure 5 [8]. The 
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feedback is weaker so that it can be overpowered by the main pull up and pull down transistors. 

Suppose both inputs A and B are low causing the main pull up transistors to change the output Out to 

low. Similarly, if both inputs A and B are high causing the main pull down transistors to change the 

output Out to high. If the inputs are not equal, transistors P1 and P2 are disconnected from the power 

supply and transistors N1 and N2 are disconnected from the ground. The state of output Out is 

maintained by feedback inverters. Current pulse is injected at node (iii) as shown by the dashed box  

and the state change at node Out is observed. The experiments are repeated at nodes (i) and (ii). If 

A=0, B=1, node (ii) is connected to voltage supply, and therefore the charge needed to change the state 

are much higher compared with node (i). Similarly, if A=1,B=0 node (i) is connected to ground, and 

therefore the charge needed to change the state are much higher compared with node (ii). Therefore, 

node (ii) and node (i) are ignored in the analysis for A=0, B=1 and A=1,B=0 respectively. 

 

      

Figure 6: SC configuration Figure 7: SS configuration 

 
A single rail with conventional pull-up pull-down configuration (SC) circuit consists of main 

pull up transistors (P1,P2), pull down transistors (N1,N2), inverter (P3,N3) and feedback transistors 

(P4,P5,N4,N5) as shown in Figure 6 [9]. Suppose both inputs A and B are low causing the pull up 

transistors to change the output Out to low. Similarly, if both inputs A and B are high cause the pull 

down transistors to change the output Out to high. If the inputs are not equal, transistors P1 and P2 are 

disconnected from the power supply and transistors N1 and N2 are disconnected from the ground. The 

weak feedback transistors (P6, N6) are activated via transistors (P4, N4) or (P5, N5) to maintain the 

output value. Current are injected at nodes (i), (ii) and (iii) and the state change at node Out is 

observed. Node (iv) and node (v) are not injected with current as these nodes connected to voltage 

supply and ground respectively when . Therefore bigger charges are needed to change the 

output from low to high and high to low. For the purpose of charge analysis, node (iv) and node (v) are 

excluded as the charge needed to change the state are much higher compared with node (i),(ii) and 

(iii). If A=0, B=1, node (ii) is connected to voltage supply, and therefore the charge needed to change 

the state are much higher compared with node (i). Similarly, if A=1,B=0 node (i) is connected to 

ground, and therefore the charge needed to change the state are much higher compared with node (ii). 

Therefore, node (ii) and node (i) are ignored in the analysis for A=0, B=1 and A=1,B=0 respectively. 

A single rail symmetric configuration (SS) is similar to SC implementation. It consists of 

main pull up transistors (P1,P2,P3,P4), pull down transistors (N1,N2,N3,N4), inverter (P5,N5) and 

feedback transistors (P6,N6) as shown in Figure 7 [10]. The symmetrical structure gives an advantage 

with respect to the speed that due to the symmetrical design. Suppose both inputs A and B are low 

cause the pull up transistors to change the output Out to low. Similarly, if both inputs A and B are both 

high causing the pull down transistors change the output Out to high. If the inputs are not equal, and 

Out =0, the output is retained by a conducting paths either transistors P1, P6, P4 or transistors P2, P6, 

P3. Symmetrically, if the inputs are not equal, and Out =1, the output is retained by a conducting path 
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either transistors N1, N6, N4 or transistors N2, N6, N3. Current is injected at nodes (i), (ii), (iii), (iv) 

and (v) and the state change at node Out is observed. If A=0, B=1, node (iii) is connected to voltage 

supply and node (ii) is connected to ground, and therefore the charge needed to change the state are 

much higher compared with node (i) and (iv). Similarly, if A=1,B=0 node (i) is connected to ground 

and node (iv) is connected to voltage supply, and therefore the charge needed to change the state are 

much higher compared with node (ii) and (iii). Therefore, node (ii) and node (iii) are ignored in the 

analysis for A=0, B=1 and node (i) and (iv) are ignored for  A=1,B=0 respectively. 

 

5. Result and Discussion 
 
5.1. Critical charge at different vulnerable nodes 

 

Five different process corner variations are performed and the charges needed to change the 

state of each process are compared. To observe the change in critical charge with respect to the 

process variations, the temperature is set at  and the voltage supply is set at 1 V. As expected, the 

SS corner yields the smallest critical charge and the FF corner yields the highest critical charge. The 

highest critical charges of the FF process are due to the larger pull up and pull down strength of 

transistors. As a result, the strength of transistors give better stabilization in the voltage level of the 

storage node and hence higher critical charge is needed to flip the output [11].  Figure 8(a) shows the 

critical charge when inputs A=1, B=0 and Figure 8(b) shows the critical charge when inputs A=0, 

B=1. The critical charge at nodes (ii), (iii) of 0-1 is lower than node (ii) and (iii) of 1-0 change when 

A=1, B=0. Similarly, the critical charge at nodes (i), (iii) of 0-1 is lower than node (i) and (iii) of 1-0 

change when A=0, B=1. The factor variations of critical charges between the extreme process corner 

variations are between 1.26X to 1.39X  when inputs A=1, B=0 and 1.28X to 1.47X when inputs A=0, 

B=1, depending on the location of the SEU. The critical charges for TT, SNFP and FNSP are 

statistically equal since the standard deviation are 0.42f and 0.33f compared with the standard 

deviation of SS and FF which are 4f and 2.89f when inputs A=1, B=0 and inputs A=0, B=1 

respectively. Thus, the critical charges for TT, SNFP and FNSP do not differ much  
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Figure 8(a): Process Corner Variation for SIL configuration (A=1, B=0) 
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Figure 8(b): Process Corner Variation for SIL configuration (A=0, B=1) 

 

In the SNFP corner, PMOS transistors have relatively stronger current compared with NMOS 

transistors and in the FNSP corner, NMOS transistors have relatively stronger current compared with 

PMOS transistors. However, the stronger PMOS or NMOS transistors counter balances the weaker 

NMOS or PMOS transistors and hence produce a comparable critical charge compared with the TT 

corner.  These findings suggested that, in general, for the SIL configuration, critical charges are 

sensitive to process corner variations in particular the process corners SS and FF. Generally, as 

temperature increases, it degrades the threshold voltage, carrier mobility and saturation velocity [12]. 

As a result of degrading carrier mobility, the drain current becomes lower and the sensitivity of the 

node towards SEU is increased. Hence, the critical charge needed to flip the output is decreased. To 

observe the change in temperature variations, the process corner is set to TT and the voltage supply is 

set to 1 V. The result is shown in Figure 9(a) and 9 (b). The critical charges decrease by 11.3% for 0-1 

change and 19.1% for 1-0 change when inputs A=1, B=0 as the temperature increases from 

to . Similarly when inputs A=0, B=1 the critical charges decrease by 9% for 0-1 

change and 17.6% for 1-0 change on the same temperature increment. From the percentage change of 

the critical charge as above for 0-1 change and 1-0 change, it is concluded that PMOS transistors have 

a greater effect on temperature variation than NMOS. By increasing temperature, the mobility of holes 

is decreased more than the electron due to the critical electric field for holes decreasing more than the 

critical electric field for the electron. This is proven by the author in [12] that suggested the mobility 

of PMOS is reduced more than the mobility of NMOS at a temperature of  for 65nm 

technology.  
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Figure 9(a): Temperature Variation for SIL configuration (A=1, B=0) 
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Figure 9(b): Temperature Variation for SIL configuration (A=0, B=1) 

 

The critical charge when inputs A=1, B=0 and when inputs A=0, B=1 are shown in Figure 

10(a) and 10(b) respectively. The critical charge 0-1 is lower than critical charge of 1-0 change for 

both combinations of inputs. The factor variations of critical charges between the extreme process 

corner variations are between 1.27X to 1.38X when inputs A=1, B=0 and 1.30X to 1.41X when inputs 

A=0, B=1, depending on the location of the SEU. The critical charges for TT, SNFP and FNSP are 

statistically equal since the standard deviation are 0.05f and 0.1f compared with the standard deviation 

of SS and FF which are 1.85f and 1.97f when inputs A=1, B=0 and inputs A=0, B=1 respectively. 

Thus, the critical charges for TT, SNFP and FNSP do not differ much.  
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Figure 10(a): Process Corner Variation for SC configuration (A=1, B=0) 
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Figure 10(b): Process Corner Variation for SC configuration (A=0, B=1) 
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Figure 11(a): Temperature Variation for SC configuration (A=1, B=0) 

 

For the temperature change as shown by Figure 11(a) and 11(b), the critical charges decrease 

by 7.4% for 0-1 change and 18.6% for 1-0 change when inputs A=1, B=0 as the temperature increases 

from to . Similarly when inputs  A=0, B=1 the critical charges decrease by 5.2% for 

0-1 change and 14.6% for 1-0 change on the same temperature increment. 
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Figure 11(b): Temperature Variation for SC configuration (A=0, B=1) 
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The critical charge when inputs A=1, B=0 and when inputs A=0, B=1 are shown in Figure 

12(a) and 12(b) respectively. The critical charge 0-1 is lower than critical charge of 1-0 change for 

both combinations of inputs. The factor variations of critical charges between the extreme process 

corner variations are between 1.31X to 1.38X when inputs A=1, B=0 and 1.31X to 1.37X when inputs 

A=0, B=1, depending on the location of the SEU. The critical charges for TT, SNFP and FNSP are 

statistically equal since the standard deviation are 0.21f and 0.2f compared with the standard deviation 

of SS and FF which are 2.55f and 2.51f when inputs A=1, B=0 and inputs A=0, B=1 respectively. 

Thus, the critical charges for TT, SNFP and FNSP do not differ much.  For the temperature change as 

shown by Figure 13(a) and 13(b), the critical charges decrease by 4.29% for 0-1 change and 17.5% for 

1-0 change when inputs A=1, B=0 as the temperature increases from to . Similarly 

when inputs  A=0, B=1 the critical charges decrease by 5.9% for 0-1 change and 15.65% for 1-0 

change on the same temperature increment. 
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Figure 12(a): Process Corner Variation for SS configuration (A=1, B=0) 

0

10

20

30

40

TT SS FF SNFP FNSP

Critical Charge (fC)

node (i) 0-1

node (iv) 0-1

node (v) 0-1

node (i) 1-0

node (iv) 1-0

node (v) 1-0

 
Figure 12(b): Process Corner Variation for SS configuration (A=0, B=1) 
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Figure 13(a): Temperature Variation for SS configuration (A=1, B=0) 

 

15

20

25

30

-40 10 60

C
ri

ti
ca

l 
C

h
a

rg
e 

(f
C

)

Temperature (C)

node (i) 0-1

node (iv) 0-1

node (v) 0-1

node (i) 1-0

node (iv) 1-0

node (v) 1-0

 
Figure 13(b): Temperature Variation for SS configuration (A=0, B=1) 

 

 

5.2. Comparison of standard deviation of critical charges 

 
In this section, the values of standard deviation are used in order to compare the vulnerability 

of C-elements with respect of SEU. These values are used to investigate the node sensitivity towards 

SEU as different factors changes and to show how the critical charges change with respect to the 

parameter changes. The nodes sensitivity of different configurations of C-elements with respect to the 

process variation and temperature are presented as shown in Figure 14(a),14(b)-15(a),15(b). The nodes 

sensitivity are obtained by calculating the standard deviation of the critical charge on every nodes in 

C-elements.  The purpose is to observe the dispersion value of critical change when one of the factors 

as mention above is changing. It is observed that process variation have higher standard deviation 

compared with the standard deviation of temperature. This observation shows that the most effective 

ways to protect C-elements against SEU is by changing the process rather than changing the 

temperature. It is also observed that the standard deviations for SIL are the highest compared with 

other single rail configurations (SS and SC) since it has the least number of transistors. Therefore any 

variation of process and temperature affects more on SIL compared with SS and SC. Another 

observation is that the standard deviations of 1-0 change are generally higher compared with 0-1 

change. It is concluded that PMOS transistors are more sensitive to any variations compared with 

NMOS transistors. Figure 15(a) and 15(b) shows that the standard deviations difference between 

PMOS and NMOS transistors for all the configurations are quite significant for the temperature 
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variation. These showed PMOS transistors are more sensitive to the change of temperature compared 

with NMOS transistors. 
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 Figure 14(a):Standard Deviation with respect to Process (A=1,B=0) 
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 Figure 14(b):Standard Deviation with respect to Process (A=0,B=1) 
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 Figure 15(a):Standard Deviation with respect to Temperature (A=1,B=0) 
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 Figure 15(b):Standard Deviation with respect to Temperature (A=0,B=1) 
 

 

6. Conclusions 
 

Soft error affects digital circuit by corrupting the data in the circuit. In this paper, current pulse 

causing SEU is injected to every nodes of different implementation of C-elements. The factors that we 

used as a variable in the simulation are process corner and temperature. Each of the variables is varied 

and the critical charge needed to change the state is obtained. For process corner, FF gives the highest 

critical charges due to the larger pull up and pull down strength of transistors. As a result, the strength 

of transistors give better stabilization in the voltage level of the storage node and hence higher critical 

charge is needed to flip the output. For temperature, as temperature increases, it degrades the threshold 

voltage, carrier mobility and saturation velocity [12]. As a result, the drain current becomes lower and 

the sensitivity of the node towards SEU is increased. Hence, the critical charge needed to flip the 

output is decreased. It is observed that process corner is the most important factors of critical charge 

variation since it has the highest standard deviation compared with temperature. It is also observed that 

the standard deviations for SIL are the highest compared with other single rail configurations (SS and 

SC) since it has the least number of transistors.  
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