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Abstract 
 

Underwater glider is an important equipment for ocean research, water quality detection and other 

ocean missions. It needs very high precision requirements to meet underwater glider motion control. 

When the position of buoyancy system changes, the balance parameters will change significantly. This 

paper presents a method for calculating the balance parameters of underwater glider based on neural 

network. In order to verify the effectiveness of the neural network control, the South China Sea 

experiment was carried out. By comparing the analysis results with the actual situation, the 

experiment shows that the neural network model is feasible. 
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1. Introduction 

 

With the rapid development of marine bionic robots, more and more robots are used in ocean 

exploration and ocean monitoring. The underwater glider can accomplish various tasks and has 

various functions. At the same time, the underwater glider has the adaptive ability to various complex 

environments. In recent years, the rapid development of underwater vehicles has been applied to more 

and more challenging underwater missions. The underwater glider becomes a low-cost autonomous 

underwater glider by changing the position of the buoyancy system [1-4]. When the position of 

buoyancy system changes, the equilibrium parameters will change critically. Balance parameters are 

very important for motion control and glider flight trajectory. Under complex sea conditions, the 

equilibrium parameters are not constants, but a series of dynamic numbers. Usually, the equilibrium 

parameters are obtained through a large number of experiments to find out a series of feasible 

parameters. Although this method is simple, it has great uncertainty, especially when the environment 

changes. This method is not suitable for complex underwater environment. 

In this paper, a new motion control method of underwater glider based on neural network with 

balanced parameters is proposed. The purpose of this study is to find the most suitable balance 

parameters to optimize the balance effect of glider and further improve the control effect of glider 

navigation. In the mathematical model of PETREL Glider, the estimation of hydrodynamics and the 

analysis of motion control are carried out. In this paper, Newton method is used to model the motion 

of glider under the action of current. In addition, the strip theory and computational fluid dynamics 

(CFD) are used to estimate the hydrodynamics. Considering the balance state and the influence of 

wave and current, a motion control model of PETREL Glider based on neural network is proposed. 

The dynamics of Underwater Gliders in the ocean can be described more accurately. According to the 

equilibrium parameters and CFD fluid dynamics, the dynamic equation is established by using neural 
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network predictive control (NNPC), and the state equation is rewritten. It can better adapt to different 

marine environments. 

 

2. PETREL Glider 
 

Combining with hydrodynamics and mechanism theory, UG structure, performance and various 

control parameters are optimized to enhance the ability of glider to detect various complex marine 

environments and select operation strategies independently. A new type of PETREL Glider is 

designed. The glider consists of a cylindrical hull, two symmetrical wings, two rudders, a sealed 

bunker, a turbo generator, an electromagnetic generator, a pervious tank and a control and drive 

mechanism. PETREL Glider has higher working efficiency and better observation accuracy, which 

further improves the endurance of underwater glider, and provides insistent basis for long-range, 

large-scale ocean observation technology and low-speed accurate observation in small waters. Table 1 

presents the principal characteristics of the glider, while in Figure 1, presents the reference frames of 

the glider. 

Table 1. Principal characteristics of the glider 

Characteristics Value 

Cylindrical hull length 1.75m 

Cylindrical hull diameter 0.2m 

Symmetrical wing length 0.45m 

Symmetrical wing width 0.12m 

Rudder length 0.225m 

Rudder width 0.12m 

Cylindrical hull mass 20kg 

Symmetrical wing mass 0.4kg 

Water density 1025kg/m3 

x

z

 
Figure 1. Reference frames of the glider 

 

3. Instruments 
 

Through the characteristics of strong modeling ability of neural network for underwater glider, 

the dimension size of data needed for prediction model is effectively reduced, and the value of data is 

really excavated. In this paper, the balance parameters of underwater glider are analyzed, and the 

practical problems such as sea water fluctuation are combined. By comparing with other traditional 

methods, it is proved that the neural network has higher accuracy and applicability [6-8]. 

 

3.1. Pitch adjusting tests 
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Two groups or more of pitch adjusting tests are held in the pool which imitates the sea 

condition. The more tests we do, the more precision. The pitch adjusting test contains two steps: Step I 

is moving the position of battery pack, step II is moving of the position of oil mass.. When diving or 

rising, the underwater glider changes buoyancy by changing the amount of oil inside and outside the 

oil sac. The state of glider is chang at the same time. The purpose of the test is to find the relationship 

of the battery position, oil mass and the pitching angle.  

 

3.2. Extract data and data preprocessing 

 

Data preprocessing refers to some processing of data before the main processing. It is necessary 

to eliminate the impact of a large lag system. Two sets of data were taken from the water glider 

adjustment test. According to the analysis, the position of the battery pack and the amount of oil as an 

input factor are suitable for the prediction model, and the output factor is the pitch angle. One set of 

data is used as training data and another set of data is used as test data. 

 

3.3. Second-order headings 

 

The network model including five parts, they respectively are the input layer and input nodes, 

the hidden layer and hidden nodes, the output layer and output nodes, the transfer function used in the 

PETREL Glider and the training methods based on the neural network. So, in the PETREL Glider, the 

most significant aspect of the decision in the neural network model development is to choose how 

many hidden nodes to be used in PETREL Glider. Compared with ordinary neural networks, the 

biggest difference of PETREL Glider neural network is that each hidden layer unit is not independent. 

Each hidden layer is not only related to each other, but also related to the timing input before the time 

it receives. This feature is very helpful for processing time-related data. This article analyzed the 

change trend and the experience formula under different ocean conditions in a large number of 

experiments, and choose equation (1). 
1/2( )l m n   

 (1) 

Where, l is the number of hidden layer nodes, m is the number of input layer nodes, n is the number of 

output layer nodes, and α =1, 2.....10.  

As shown in this experiment of the PETREL Glider neural network model of hidden layer 

network, two hidden layer network is much better than one hidden layer network. The best hidden 

nodes is l1 = 8, and l2 = 6. As shown in Figure 2 below. 

 
1

2

3

4

5

6

7

8

1

2

3

4

5

6

1

2
1

Battery position

Mass oil

INPUT

LAYER

OUTPUT

DATA

OUTPUT

LAYER

HIDDEN

LAYER

INPUT

DATA

 
Figure 2. Neural network model 
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4. Hydrodynamic model 
 

4.1. Hydrodynamic parameters 

 

The movement of the water glider is easily affected by the irregular force of the ocean current. 

When it is disturbed by the outside world, the irregular movement state experienced due to the uneven 

force and the acceleration and deceleration phases appear. The severity hydrodynamic directly 

determines the outcome of the movement is good or bad. In the vertical plane movement, 

hydrodynamic mainly lift Resistance and trim moment. According to the references [9-11], equation 

(2) (3) (4) can be shown as below. 

2 2 2

0 1 3

1
( ) ( )( )

2
L L LL C AV K K v v       (2) 

2 2 2 2

0 1 3

1
( ) ( )( )

2
D D DD C AV K K v v       (3) 

2 2 2

0 1 3

1
( ) ( )( )

2
DL M M MM C AV K K v v       (4) 

Where, ρ is the density of sea water, A is the cross sectional area of glider, V is the resultant velocity of 

glider, v1 and v3 respectively are the horizontal speed component and vertical speed component of 

glider, α is angle of attack, CL(α), CD(α), CM(α) respectively are the parameters of hydrodynamic 

model. 

 

4.2. Propeller thrust 

 

According to the references [9-11], equation (5) can be shown as below. 
4 2

T pT K d n
 (5) 

Where, T is the propeller thrust of the glider, KT is the coefficient of the glider, ρ is the density of sea 

water, d is the diameter of the glider, n is the rotate speed of propeller. 

 

4.3. Dynamic model of underwater glider  

 

According to the stress analysis, using the Lagrangian method is to set up the dynamic equation 

of the glider in vertical plane. Equation (6)-(15) can be shown as below. 

1 3cos sinx v v    (6) 

1 3sin cosz v v     (7) 

2  
 (8) 

2 3 1 1 3 1 1 3 3 2 1 3 3 1 1 3

2

1
[( ) ( ) ( cos sin ) ]P P P P P P DL P Pm m v v r P r P mg r r M r u r u

J
           

 

(9) 

1 3 3 2 3 2 0 1

1

1
( sin sin cos + )Pv m v P m g L D u T

m
          

 

 (10) 

3 1 1 2 1 2 0 3

3
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3 3 3 1 2

1
P P P

p

r P v r
m

   
 

(13) 

1 1PP u  (14) 

3 3PP u  (15) 

Where, rp1, rp3 respectively are the position of sliding mass in the x and z direction, pp1, pp3 respectively 

are the force of sliding mass in the x and z direction, mp is the internal sliding mass, m1, m3 respectively 

are the hull mass in the x and z direction. 

 
5. Experiments 
 

According to the neural network model build insection 4, select the parameters, battery position 

and oil mass, as the equilibrium state. Balance parameters are important for motion control and 

glider’s path. In the complex sea conditions, balance parameters are not constant numbers, but these 

are a series of dynamic numbers. Balance parameters are obtained through the neural network model 

build in section 4 to find a series of feasible parameters. This neural network model method is suitable 

for the complex underwater environment. 

As shown in Figure 3, iterative learning can get the parameters of battery position and the oil 

mass position. As shown in Figure 4, the output of glider system and model output used NN method is 

same with the tolerable error. As shown in Figure 5, control signal and system output can meet the 

needs. 

 

 

Figure 3. Number of iterative learning times 

 

Figure 3 shows the number of iterative learning times. From Figure 3, it can be seen that the 

number of learning curve exceeds 300, and the mean square error level is greatly reduced. 
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Figure 4. The output of glider system and model output used NN method 

 

Figure 4 shows the output of glider system and model output used NN method. From Figure 4, 

it can be seen that the number of learning curve exceeds 300, and the mean square error level is greatly 

reduced. 
 

 

Figure 5. Control signal and system output 

 

Figure 5 shows the control signal and system output. From Figure 5, it can be seen that the 

number of learning curve exceeds 300, and the mean square error level is greatly reduced.In order to 

verify the effectiveness of the neural network method, experiments were conducted in the South China 

Sea. PETREL Glider used the neural network model began to glide and complete the task well 

according to the given tasks. After a number of tests, the error of the PETREL Glider's water discharge 

position and the set position is within 5% during a gliding cycle. Under the traditional method，the 

error of the PETREL Glider's water discharge position and set position is about 10%. Compared with 

the traditional method, neural network has a significant improvement. 

 

6. Conclusions 
 

Mechanical structure according to PETREL Glider, through pitch adjusting tests, extract data 

and data preprocessing and second-order headings, select the neural network method, build the 

Hydrodynamic model, and test in the South China Sea. Underwater glider motion control based on 

neural network is an effective system and it can reduce the error of the PETREL Glider's water 

discharge position and the set position from 10% to 5%. By comparing the analysis results with the 

actual situation, the experiment shows that the neural network model is feasible.  
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