
Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

* Corresponding author. Tel.: +234-805-918-7995
E-mail address: kezman0474@yahoo.com; kezmantech4@gmail.com

Manuscript History:
Received 15 May, 2020, Revised 09 September, 2020, Accepted 11 September, 2020, Published 30 October, 2020

e-ISSN: 2289-7771

 554

Performance Evaluation of Data Compression Algorithms for IoT-Based
Smart Water Network Management Applications

Kazeem B. Adedeji*
Department of Electrical & Electronics Engineering, The Federal University of Technology

Akure, Ondo State Nigeria

Abstract

IoT-based smart water supply network management applications generate huge volume of data from

the installed sensing devices which are required to be processed (sometimes in-network), stored and

transmitted to a remote centre for decision making. When the volume of data produced by diverse IoT

smart sensing devices intensify, processing and storage of these data begin to be a serious issue. The

large data size acquired from these applications increases the computational processing times,

occupies the scarce bandwidth of data transmission and increases the storage space. Thus, data size

reduction through the use of data compression algorithms is essential in IoT-based smart water

network management applications. In this paper, the performance evaluation of four different data

compression algorithms used for this purpose is presented. These algorithms, which include RLE,

Huffman, LZW and Shanon-Fano encoding were realised using MATLAB software and tested on six

water supply system data. The performance of each of these algorithms was evaluated based on their

compression ratio, compression factor, percentage space savings, as well as the compression gain.

The results obtained indicated that the LZW algorithm shows better performance based on the

compression ratio, compression factor, space savings and the compression gain. However, its

execution time is relatively slow compared to the RLE and the two other algorithms investigated. Most

importantly, the LZW algorithm has a significant reduction in the data sizes of the tested files than all

other algorithms.

Keywords: background leakage, critical pipe, pressure reducing valve, water distribution network,

water loss.

1. Introduction

We are at the dawn of the 21st century, whereby several key events in technological

improvements and research studies have materialised. One of the emerging research areas in recent

years is the internet of things (IoT). As its name implies, several smart devices can be coordinated and

connected via the internet. IoT is a system of web-enabled smart devices and sensors equipped with

embedded processors and communication technology to acquire, transmit and process the acquired

data from an environment [1]. Due to its seamless monitoring capabilities, it has been utilised in water

supply network applications such as leakage monitoring, pipeline health monitoring, water quality

monitoring, among others. In IoT-based smart water network management (SWNM) applications

illustrated in Figure 1, real-time continuous measurement, which relates to the state of the network is

mailto:kezman0474@yahoo.com

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 555

required. The data must be continuously acquired, processed and transmitted via wireless means to a

remote centre where further analysis takes place for optimal decision making. Modern smart sensing

devices have in-built data storage and processing capabilities, thus, in-network processing of data can

be achieved [2, 3]. In each of the IoT-based applications for SWNM, huge volume of data, in terms of

size and number, is generated. Unfortunately, the data acquired by the sensing devices are analogue,

which are transformed into digital format via analogue-to-digital conversion (processing) before

transmitting over wireless media. When the data are in the digital format, they are indicated as

bytes/bits and the bit volume could be enormous, making processing tedious. The acquired water

network data such as pressure (from pressure sensor), flow (from flow meters), sound (from acoustic

sensors) etc. are converted into a digital stream comprising numerous bits of data. Large data size

requires several bits to represent them, thus, during data pre-processing, the data are processed bit-by-

bit. Data compression enables bit reduction to take place. Consequently, the number of bits required to

be processed is reduced which enhances data computation. Therefore, due to the large volume of

continuous data generated during smart water network applications, savaging data storage as well as

reducing computational processing times through data size reduction, could further make IoT-based

technology a better choice in water network management applications.

Figure 1: SWNM application framework.

Modern smart sensors are developed to perform data pre-processing tasks to reduce the load on

gateways and cloud resources. These sensors permit the conversion of the physical variable measured

into a digital data stream for transmission to a gateway. The basic building block of a typical smart

sensor is shown in Figure 2. Smart sensing is developed to perform sensing, computation/data

processing and communication tasks. The former involves the acquisition of the water network data

while the second task is where the smart sensing device performs some analysis on the acquired data

while the last task is to transmit the pre-processed data to a remote node. As shown in Figure 2, a

smart sensor is equipped with a sensing unit, signal condition unit, an analogue to digital conversion

(ADC) unit, storage and communication unit, amongst others. Once the water network data is

acquired, these data are converted to digital stream within the ADC unit. In this unit, data compression

takes place to reduce the data size for the storage unit and before transmission via the internet (a

function of the communication unit or transceiver). As previously mentioned, data size reduction will

have a significant effect on the computational processes of most data analysis performed by the smart

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 556

sensors. These sensors are battery-powered, thus, enhancing the computational process by reducing

the computational burdens which extends battery run-down time. Strictly speaking, computation is one

of the major sources of energy consumption in modern smart sensors even though more energy is

consumed during the communication task. The energy consumed during wireless transmission of a

single bit of data may be about a thousand times more than that used for the computation of a single

32-bit of data [4]. For transmitting a single bit of data, energy is consumed, thus the more the number

of bits to be transmitted, the more the energy consumed. Therefore, bit reduction will significantly

reduce the energy consumption rate. This bit reduction is known as data compression. Many onboard

processing hardware is equipped with data compressing capabilities (with a good compression

algorithm) to reduce the computational burdens.

Figure 2: Basic building block of typical smart sensors [5].

Within the SWNM framework as illustrated in Figure 1, and as the need for application

efficiency is increased, it is required that a plethora of smart sensing devices are utilised to acquire

water network data. Thus, several MB/GB of the acquired data must be processed and transmitted to a

remote centre via a communication network. It is well known that a large size data consumes

bandwidth during transmission over the network. Unfortunately, bandwidth is limited and must be

used effectively, one of the reasons why bandwidth optimisation research is frequently being

conducted. Therefore, reducing the data size before transmission over the network is a better way of

using optimizing bandwidth. This, together with the computing resource storage requirement due to

increasing SWNM applications, have made the study of compression techniques within the SWNM

framework crucial. In view of this, the performance of some compression techniques is analysed for

their application within the SWNM framework. There are limited research papers within this

framework, and therefore this study could be of importance to water utilities and research

communities. It is expected that utilising one or a combination of data compression algorithms will

improve transmission bandwidth as well as permit optimal use of the storage capacities. In terms of

the storage capacities, most IoT-based systems have cloud storage features, thus stressing the fact that

optimum use of storage is crucial. This, among other reasons, makes data compression an important

research area for IoT vision. In the past and in recent times, data compression algorithms have been

used in many applications [6-16]. One of the notable applications is telemedicine [8-12]. Nowadays,

IoT systems are currently being applied to critical infrastructure monitoring [15, 16]. A typical

example of such application is the water supply network monitoring. Motivated by this, the

performance evaluation of some data compression algorithms for IoT-based water network

management applications is presented. The article is arranged as follows: Section 2 briefly discusses

the types of data compression, Section 3 presents the methodology, overview of the algorithms and

the metrics used to assess the performance of each algorithm, Section 4 discusses the results obtained

from the assessment, and finally, Section 5 presents the conclusion and future work.

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 557

2. Background: Data Compression

Data compression is a method utilised to reduce the number of bits required to express data.

This method can save space, accelerate file transmission, and reduce transmission bandwidth and

hardware storage costs [3]. Data compression can either be lossless or lossy. The former allows a file

to be restored exactly to its initial state without losing a single bit of data during decompression.

Considering the second type, it permanently removes irrelevant bits of data from the initial data. Thus,

such type of data compression is used in applications such as images, where the elimination of some

data bits is considered to have no significant impact on the data content. The lossless compressions are

used in situations where the initial and decompressed data must be the same, or where a shift from the

initial data would have a significant effect on the result. For instance, the data generated from the

water supply system monitoring application must be perfectly reconstructed after compression without

loss of information. Any loss of information or loss of numbers in the sensor readings would change

the information which would significantly affect the analysis and decision making. For this reason, the

focus of this study is on the use of lossless data compression. There exist varieties of lossless data

compression as indicated in Figure 3 ranging from run-length encoding (RLE) to entropy-based

coding. In this study, the performance of the RLE, LZW, Huffman and Shanon-Fano algorithms

(selected from each sub-class as shown in Figure 1) was evaluated. These algorithms, will, of course,

yield varying results, but all rely on the same fundamental principle of removing redundancy from the

original data.

Figure 3: Types of lossless data compression algorithm.

3. Research Method

This work involved examining the performance of some data compression algorithms namely

RLE, LZW, Shanon-Fano and Huffman coding, for IoT-based applications in water supply networks.

These algorithms were executed in MATLAB software environment and tested on some water supply

network data of varying sizes. Thereafter, the performance of each algorithm was evaluated based on

their compression ratio, percentage space savings, compression factor and compression gain. An

overview of the operation involved in some of these algorithms is first presented.

3.1 Overview of the data compression algorithms

3.1.1 LZW algorithm

LZW is a popular data compression algorithm named after the inventors Abraham Lempel,

Jakob Ziv, and Terry Welch [17]. It operates by reading-in a series of symbols and arranging them

https://whatis.techtarget.com/definition/bit-binary-digit

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 558

into strings, before transforming the strings into codes. During the compression process, variables;

CHAR and STR were utilised. CHAR holds a single character (that is, a single byte value between 0

and 255) while STR captures a group of one or more characters. Each character in the STR has a

single byte. As shown in Figure 4(a), the algorithm begins by taking in the first byte of the input file

and storing it in the STR. Thereafter, looping each additional byte of the input file commences.

Subsequent reading of bytes from the input file is stored in the CHAR, thus creating a data table. This

table is scanned to ascertain whether a code has already been designated to the concatenation of

STR+CHAR. It only outputs a code for the STR when a match in the table is not spotted. Otherwise,

the concatenation of STR+CHAR is stored in the STR, without further action.

3.1.2 Huffman Encoding

This is a well-known algorithm used for lossless compression of data. As shown in Figure 4(b),

upon estimating the likelihood of each symbol, it creates a complete binary tree for different symbols

and positions it in descending order. Huffman encoding uses variable-length encoding where all the

characters are given a variable-length code based on how often they occur in the text [15]. The most

frequently occurring character receives the smallest code while the least frequent ones get the largest

code. The details of the operational process may be found in [13].

Figure 4: Flow chart for the lossless data compression algorithms (a) LZW (b) Huffman coding [13].

3.1.3 RLE

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 559

This is a simple and common algorithm based on the idea of substituting a long sequence of the

same symbol by a shorter one. As shown in Figure 5(a), runs of data, which is the sequences at which

similar data values occurring in successive data elements are stored as a single data value and count

rather than as the original run. This method minimises the rate of replicating symbols in a string

through the use of a special marker at the start of the symbol. The details of the operational process

may be found in [18].

3.1.4 Shannon-Fano

This is an entropy-based encoding technique which utilises a variable-length code for encoding

a source symbol. In a similar manner to the Huffman coding, it generates a frequency table and then

divides this into the upper and lower part. During operation, it ensures that either of these parts has

nearly the same sum of frequencies [18]. This process is repeated until only a single symbol is left.

The flow chart of the Shannon-Fano lossless data compression algorithm is illustrated in Figure 5(b).

Figure 5: Flow chart for lossless data compression algorithms (a) RLE (b) Shanon-Fano algorithm

[18].

3.2 The algorithm evaluation

Each of these algorithms with the flow chart displayed in Figure 4 and Figure 5 were used to

compress and decompress six case study test data having properties shown in Table 1. The description

of each data file was reported in Table 1. These data are derived from a water supply network

reporting pressure, flow and leak discharge in the network within a specific period. For example, the

test file 1 which consists of a minimum night flow (MNF) data reports the flow measurements within

the water supply network obtained between the hours of 2:00 am and 4.00 am. As mentioned earlier,

these data were used to test the data compression algorithms. The execution times for both

compression and decompression processes were recorded in each case. The simulation was performed

in MATLAB software environment on a system with an Intel(R) Core i7-2620M, 2.7 GHz processor

with Windows 10.1 platform. Thereafter, the performance of the algorithms was evaluated by

estimating the performance indices discussed in sub-section 3.3.
Table 1: Properties of the test file data used as case studies.

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 560

S/N Test file Size (byte) Description

1 Test file 1 9524 Minimum night flow data

2 Test file 2 12342 24 hours water flow data within the piping network

3 Test file 3 15340 24 hours leak discharge data.

4 Test file 4 47102 24 hours pressure data within the piping network

5 Test file 5 51211 48 hours water flow data

6 Test file 6 95501 1 year water consumption data

3.3 Performance evaluation index

Several indices can be utilised to analyse the performance of these algorithms. In this study, the

compression ratio, percentage space savings, compression factor, and compression gain were used.

Among these, the compression ratio is the most frequently used [19]. The compression ratio describes

the average number of bits needed to store the compressed data. The compression ratio CR is

expressed as

c c

unc unc

N S
CR

N S
  (1)

where Nc and Nunc depict the number of bits in the compressed and uncompressed (original) data

respectively, Sc is the size of the compressed data while Sunc is the size of the original data. The

compression factor Cf is another measure used to assess the performance of these algorithms. The Cf

is seen as the inverse of the CR. It is expressed as
1 unc unc

c c

N S
Cf

CR N S
   (2)

Since compression algorithms permit optimum use of storage, it is important to assess them

based on the space-saving aspect. Thus, percentage space savings (%SS) is also considered. This

index, expressed in equation (3), defines the reduction in file size relative to its uncompressed size

[19].

% 1 100% 100%c unc c

unc unc

N S S
SS

N S

   
       
   

 (3)

This study also considers the compression gain (CG) of each algorithm. This is expressed in

equation (4).

 100log 100logunc

e e

c

S
CG Cf

S

 
  

 
 (4)

Even though the CR and Cf are sufficient to assess the performance of lossless data compression

algorithms as reported in [19], other indices described above were also analysed. It is noteworthy to

stress that for lossy compression algorithms, where the decompressed data varies slightly from its

initial form, more performance measures are required to appraise the level of distortion, fidelity and

quality of the data such as an image.

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 561

4. Results and Analysis

Each of the four lossless compression algorithms is executed in MATLAB software programme

and tested on six different data of varying sizes. Figure 6 shows the compression ratio and the

compression factor for each algorithm. In Figure 6(a), it was observed that both LZW and Huffman

algorithms had the lowest CR. This means that fewer bits were required to store the compressed file

using these algorithms. It was observed in Figure 6(a) that the CR for the LZW was better than the

other three algorithms. Furthermore, analysing Figure 6(a) considering the test file 1, the LZW had

a CR of 0.48. This implied that it could reduce the data size by 52% while RLE could achieve a

reduction capacity of 28%. The reduction capacity for Shanon-Fano and Huffman coding was

observed to be 38% and 44% respectively considering the test file 1. The Cf results (Figure 6(b)) also

showed that the LZW algorithm, having the highest Cf performed better than the other algorithms.

Figure 7 illustrates the percentage space savings and the compression gain of the compression

algorithms. In Figure 7(a), it was observed that both LZW and Huffman algorithms had the highest

space savings while RLE had the lowest. As noticed for all the test files, the LZW algorithm achieved

better space-saving. The results of the compression gain also indicated that the LZW algorithm had

better performance than the other three algorithms tested on the test files.

Figure 6: Plot of the algorithm performance based on (a) compression ratio and (b) compression

factor.

Figure 7: Plot of the algorithm performance considering (a) % space savings (b) compression gain.

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 562

The results in Table 2 shows the comparison of the compressed file size as well as the execution

times for the four lossless data compression algorithms. Considering the file size reduction, LZW had

a better file size reduction followed by Huffman coding. Table 2 and test file 1 with size 9524 bytes

show that the LZW algorithm produced a compressed file with size less than half the original file size.

The same result was noticed when test file 2 to 6 were considered. In respect of the three other

algorithms, that is, RLE, Shanon-Fano and Huffman, the compressed file sizes were more than half the

original file sizes for all the test files. Amongst these algorithms, the RLE produced the least

performance. In terms of the execution time in milliseconds (ms), it was observed that RLE was

relatively faster during both compression and decompression processes than the other three algorithms

for the same data size. For all the four algorithms, it was observed that it took more time to

decompress the data files. In most cases, the decompression time (DT) was observed to be more than

twice the compression time for all the algorithms. The execution time, will, however, depend on the

CPU structure and the RAM size of the computing system used to perform the test.

Table 2: Comparison of the compressed file sizes and execution times for each algorithm.

Original

File size

(bytes)

Compressed file size (bytes)

RLE LZW

Shanon-

Fano Huffman

RLE LZW

Shanon-

Fano

Huff

man CT DT CT DT CT DT CT DT

9524 6852 4521 5891 5341 41 110 42 123 34 150 35 144

12342 7812 5231 6101 5810 40 125 73 131 42 180 60 172

15340 8563 6341 7932 7342 50 140 80 142 53 192 69 163

47102 22121 19321 21022 20322 59 180 130 170 62 480 128 310

51211 27342 20894 23321 21011 81 301 172 470 120 510 92 410

95501 53041 41832 44321 42013 143 312 169 310 230 710 159 601

CT: Compression time (ms); DT: Decompression time (ms)

4. Conclusions

In this paper, the performance of four different lossless data compression algorithms for IoT-

based smart water network management application is presented. The results obtained showed that the

LZW algorithm had a better performance in terms of compression ratio, compression factor, space

savings and the compression gain. However, its execution time was relatively slow compared to RLE

and the two other algorithms investigated. In general, the LZW algorithm gave a significant reduction

in the data sizes of the tested files compared to all other algorithms. As the future of the IoT-based

smart water management applications grow, the application requirements will also be heightened

necessitating the further development of incorporated smart sensors. Thus, more volume of data will

be produced by the various IoT smart sensing devices which makes storage, transmission bandwidth

and data processing challenging. Future research studies should consider the development of a hybrid

data compression matrix that will balance the trade-off between space savings and the speed of

compression for applications that require real-time continuous data analysis. This will alleviate data

bottleneck issues.

Journal of Applied Science & Process Engineering
Vol. 7, No. 2, 2020

e-ISSN: 2289-7771

 563

References

[1] Adedeji, K.B., Nwulu, N and Aigbavboa, C. (2019). IoT-based smart water network management:

Challenges and future trend. In: Proceedings of the IEEE Africon Conference, September 25–27, Accra,

Ghana.

[2] Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., Kantarci B. and Andreescu S.

(2015). Health monitoring and management using IoT sensing with cloud-based processing: Opportunities

and challenges, In: Proceedings of the 2015 IEEE International Conference on Services Computing: 285–

292.

[3] Al-Turjman, F. and Alturjman S. (2018). Confidential smart-sensing framework in the IoT era, The Journal

of Spercomputing, Vol. 74, No. 10, 5187–5198.

[4] Barr, K.C., and Asanović, K. (2006). Energy-aware lossless data compression, ACM Transactions on

Computing Systems, Vol. 24, 250–291.

[5] Tech Briefs (2018). Smart sensor technology for the IoT, Tech Briefs Magazine, Engineering Solution for

Design & Manufacturing, Vol. 42, No. 11. www.techbriefs.com.

[6] Deepu, C.J., Heng, C.H. and Lian, Y. (2016). A hybrid data compression scheme for power reduction in

wireless sensor for IoT, IEEE Transactions on Biomedical Circuits and Systems, Vol. 11, No. 2, 245–254.

[7] Hwang, W.J., Chine, C.F. and Li, K.J. (2003). Scalable medical data compression and transmission using

wavelet transform for telemedicine applications, IEEE Transactions on Information Technology in

Biomedicine, Vol. 7, No. 1, 54–63.

[8] Antonopoulos, C.P. and Voros, N.S. (2016). Resource efficient data compression algorithms for demanding,

WSN based biomedical applications, Journal of Biomedical Informatics, Vol. 59, 1–4.

[9] Lucas, L.F., Rodrigues, N.M., da Silva, C.L. and Faria, S.M. (2017). Lossless compression of medical

images using 3-D predictors, IEEE Transactions on Medical Imaging, Vol. 36, No. 11, 2250–2260.

[10] Reddy, B.V., Reddy, P.B, Kumar, P.S. and Reddy, A.S. (2016). Lossless compression of medical images for

better diagnosis, In: 2016 IEEE 6th International Conference on Advanced Computing, Feb., 27, 404–408.

[11] Kumar, V., Saxena, S.C. and Giri, V.K. (2006). Direct data compression of ECG signal for telemedicine,

International Journal of System Science, Vol. 37, No. 1, 45–63.

[12] Ayinde, B.O. (2017). A fast and efficient near-lossless image compression using zipper transformation,

arXiv preprint arXiv:1710.02907: 1–13.

[13] Mahmud, S. (2012). An improved data compression method for general data, International Journal of

Scientific and Engineering Research, Vol. 3, No. 3, 1–4.

[14] Boban, A. and Vladan, V. (2018). Efficient image compression and decompression, Electronics and

Energetics, Vol. 31, No. 3, 461–485.

[15] Mohamed, M.I, Wu, W.Y. and Moniri, M. (2013). Adaptive data compression for energy harvesting

wireless sensor nodes, In proceedings of the 10th IEEE international conference on networking, sensing and

control, April 10, 633v638.

[16] Richard, J., Heiko, M. and Veit, H. (2018). Comparison of lossless compression scheme for high rate

electrical grid time series for smart grid monitoring and analysis, Computers and Electrical Engineering,

Vol. 71, 465–476.

[17] Ziv, J and Lempel, A. (1977). A universal algorithm for sequential data compression, IEEE Transactions on

Information Theory, Vol. 23, No. 3, 337v343.

[18] Kavitha, P. (2016). A survey on lossless and lossy data compression methods, International Journal of

Computer Science & Engineering Technology, Vol. 7, No. 3, 110–114.

[19] Uthayakumar, J., Vengattaraman, T. and Dhavachelvan, P. (2019). Survey on data compression techniques:

From the perspective of data quality, coding schemes, data type and applications, Journal of King Saud

University –Computer and Information Sciences. In press.

