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Abstract 
 
IoT-based smart water supply network management applications generate huge volume of data from 

the installed sensing devices which are required to be processed (sometimes in-network), stored and 

transmitted to a remote centre for decision making. When the volume of data produced by diverse IoT 

smart sensing devices intensify, processing and storage of these data begin to be a serious issue. The 

large data size acquired from these applications increases the computational processing times, 

occupies the scarce bandwidth of data transmission and increases the storage space. Thus, data size 

reduction through the use of data compression algorithms is essential in IoT-based smart water 

network management applications. In this paper, the performance evaluation of four different data 

compression algorithms used for this purpose is presented. These algorithms, which include RLE, 

Huffman, LZW and Shanon-Fano encoding were realised using MATLAB software and tested on six 

water supply system data. The performance of each of these algorithms was evaluated based on their 

compression ratio, compression factor, percentage space savings, as well as the compression gain. 

The results obtained indicated that the LZW algorithm shows better performance based on the 

compression ratio, compression factor, space savings and the compression gain. However, its 

execution time is relatively slow compared to the RLE and the two other algorithms investigated. Most 

importantly, the LZW algorithm has a significant reduction in the data sizes of the tested files than all 

other algorithms. 

 

Keywords: background leakage, critical pipe, pressure reducing valve, water distribution network, 

water loss. 

 

 

1. Introduction 

 
We are at the dawn of the 21st century, whereby several key events in technological 

improvements and research studies have materialised. One of the emerging research areas in recent 

years is the internet of things (IoT). As its name implies, several smart devices can be coordinated and 

connected via the internet. IoT is a system of web-enabled smart devices and sensors equipped with 

embedded processors and communication technology to acquire, transmit and process the acquired 

data from an environment [1]. Due to its seamless monitoring capabilities, it has been utilised in water 

supply network applications such as leakage monitoring, pipeline health monitoring, water quality 

monitoring, among others. In IoT-based smart water network management (SWNM) applications 

illustrated in Figure 1, real-time continuous measurement, which relates to the state of the network is 
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required. The data must be continuously acquired, processed and transmitted via wireless means to a 

remote centre where further analysis takes place for optimal decision making. Modern smart sensing 

devices have in-built data storage and processing capabilities, thus, in-network processing of data can 

be achieved [2, 3]. In each of the IoT-based applications for SWNM, huge volume of data, in terms of 

size and number, is generated. Unfortunately, the data acquired by the sensing devices are analogue, 

which are transformed into digital format via analogue-to-digital conversion (processing) before 

transmitting over wireless media. When the data are in the digital format, they are indicated as 

bytes/bits and the bit volume could be enormous, making processing tedious.  The acquired water 

network data such as pressure (from pressure sensor), flow (from flow meters), sound (from acoustic 

sensors) etc. are converted into a digital stream comprising numerous bits of data. Large data size 

requires several bits to represent them, thus, during data pre-processing, the data are processed bit-by-

bit. Data compression enables bit reduction to take place. Consequently, the number of bits required to 

be processed is reduced which enhances data computation. Therefore, due to the large volume of 

continuous data generated during smart water network applications, savaging data storage as well as 

reducing computational processing times through data size reduction, could further make IoT-based 

technology a better choice in water network management applications. 

 

 

Figure 1: SWNM application framework. 

 
Modern smart sensors are developed to perform data pre-processing tasks to reduce the load on 

gateways and cloud resources. These sensors permit the conversion of the physical variable measured 

into a digital data stream for transmission to a gateway. The basic building block of a typical smart 

sensor is shown in Figure 2. Smart sensing is developed to perform sensing, computation/data 

processing and communication tasks. The former involves the acquisition of the water network data 

while the second task is where the smart sensing device performs some analysis on the acquired data 

while the last task is to transmit the pre-processed data to a remote node. As shown in Figure 2, a 

smart sensor is equipped with a sensing unit, signal condition unit, an analogue to digital conversion 

(ADC) unit, storage and communication unit, amongst others. Once the water network data is 

acquired, these data are converted to digital stream within the ADC unit. In this unit, data compression 

takes place to reduce the data size for the storage unit and before transmission via the internet (a 

function of the communication unit or transceiver). As previously mentioned, data size reduction will 

have a significant effect on the computational processes of most data analysis performed by the smart 
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sensors. These sensors are battery-powered, thus, enhancing the computational process by reducing 

the computational burdens which extends battery run-down time. Strictly speaking, computation is one 

of the major sources of energy consumption in modern smart sensors even though more energy is 

consumed during the communication task. The energy consumed during wireless transmission of a 

single bit of data may be about a thousand times more than that used for the computation of a single 

32-bit of data [4]. For transmitting a single bit of data, energy is consumed, thus the more the number 

of bits to be transmitted, the more the energy consumed. Therefore, bit reduction will significantly 

reduce the energy consumption rate. This bit reduction is known as data compression. Many onboard 

processing hardware is equipped with data compressing capabilities (with a good compression 

algorithm) to reduce the computational burdens.  

 

 

Figure 2: Basic building block of typical smart sensors [5]. 
 

Within the SWNM framework as illustrated in Figure 1, and as the need for application 

efficiency is  increased,  it is required that a plethora of smart sensing devices are utilised to acquire 

water network data. Thus, several MB/GB of the acquired data must be processed and transmitted to a 

remote centre via a communication network. It is well known that a large size data consumes 

bandwidth during transmission over the network. Unfortunately, bandwidth is limited and must be 

used effectively, one of the reasons why bandwidth optimisation research is frequently being 

conducted. Therefore, reducing the data size before transmission over the network is a better way of 

using optimizing bandwidth. This, together with the computing resource storage requirement due to 

increasing SWNM applications, have made the study of compression techniques within the SWNM 

framework crucial. In view of this, the performance of some compression techniques is analysed for 

their application within the SWNM framework. There are limited research papers within this 

framework, and therefore this study could be of importance to water utilities and research 

communities. It is expected that utilising one or a combination of data compression algorithms will 

improve transmission bandwidth as well as permit optimal use of the storage capacities. In terms of 

the storage capacities, most IoT-based systems have cloud storage features, thus stressing the fact that 

optimum use of storage is crucial. This, among other reasons, makes data compression an important 

research area for IoT vision. In the past and in recent times, data compression algorithms have been 

used in many applications [6-16]. One of the notable applications is telemedicine [8-12]. Nowadays, 

IoT systems are currently being applied to critical infrastructure monitoring [15, 16]. A typical 

example of such application is the water supply network monitoring. Motivated by this, the 

performance evaluation of some data compression algorithms for IoT-based water network 

management applications is presented. The article is arranged as follows: Section 2 briefly discusses 

the types of data compression, Section 3 presents the methodology, overview of the algorithms and 

the metrics used to assess the performance of each algorithm,  Section 4 discusses the results obtained 

from the assessment, and finally, Section 5 presents the conclusion and future work.  
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2. Background: Data Compression 

 
Data compression is a method utilised to reduce the number of bits required to express data. 

This method can save space, accelerate file transmission, and reduce transmission bandwidth and 

hardware storage costs [3]. Data compression can either be lossless or lossy. The former allows a file 

to be restored exactly to its initial state without losing a single bit of data during decompression. 

Considering the second type, it permanently removes irrelevant bits of data from the initial data. Thus, 

such type of data compression is used in applications such as images, where the elimination of some 

data bits is considered to have no significant impact on the data content. The lossless compressions are 

used in situations where the initial and decompressed data must be the same, or where a shift from the 

initial data would have a significant effect on the result. For instance, the data generated from the 

water supply system monitoring application must be perfectly reconstructed after compression without 

loss of information. Any loss of information or loss of numbers in the sensor readings would change 

the information which would significantly affect the analysis and decision making. For this reason, the 

focus of this study is on the use of lossless data compression. There exist varieties of lossless data 

compression as indicated in Figure 3 ranging from run-length encoding (RLE) to entropy-based 

coding. In this study, the performance of the RLE, LZW, Huffman and Shanon-Fano algorithms 

(selected from each sub-class as shown in Figure 1) was evaluated. These algorithms, will, of course, 

yield varying results, but all rely on the same fundamental principle of removing redundancy from the 

original data. 

 

 

Figure 3: Types of lossless data compression algorithm. 
 

3. Research Method 
 

This work involved examining the performance of some data compression algorithms namely 

RLE, LZW, Shanon-Fano and Huffman coding, for IoT-based applications in water supply networks. 

These algorithms were executed in MATLAB software environment and tested on some water supply 

network data of varying sizes. Thereafter, the performance of each algorithm was evaluated based on 

their compression ratio, percentage space savings, compression factor and compression gain. An 

overview of the operation involved in some of these algorithms is first presented.  

3.1 Overview of the data compression algorithms 

3.1.1 LZW algorithm 

LZW is a popular data compression algorithm named after the inventors Abraham Lempel, 

Jakob Ziv, and Terry Welch [17]. It operates by reading-in a series of symbols and arranging them 

https://whatis.techtarget.com/definition/bit-binary-digit
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into strings, before transforming the strings into codes. During the compression process, variables; 

CHAR and STR were utilised. CHAR holds a single character (that is, a single byte value between 0 

and 255) while STR captures a group of one or more characters. Each character in the STR has a 

single byte. As shown in Figure 4(a), the algorithm begins by taking in the first byte of the input file 

and storing it in the STR. Thereafter, looping each additional byte of the input file commences. 

Subsequent reading of bytes from the input file is stored in the CHAR, thus creating a data table. This 

table is scanned to ascertain whether a code has already been designated to the concatenation of 

STR+CHAR. It only outputs a code for the STR when a match in the table is not spotted. Otherwise, 

the concatenation of STR+CHAR is stored in the STR, without further action.  

 
3.1.2 Huffman Encoding 
 

This is a well-known algorithm used for lossless compression of data. As shown in Figure 4(b), 

upon estimating the likelihood of each symbol, it creates a complete binary tree for different symbols 

and positions it in descending order. Huffman encoding uses variable-length encoding where all the 

characters are given a variable-length code based on how often they occur in the text [15]. The most 

frequently occurring character receives the smallest code while the least frequent ones get the largest 

code. The details of the operational process may be found in [13]. 

 

 

Figure 4: Flow chart for the lossless data compression algorithms (a) LZW (b) Huffman coding [13]. 

 

3.1.3 RLE 
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This is a simple and common algorithm based on the idea of substituting a long sequence of the 

same symbol by a shorter one. As shown in Figure 5(a), runs of data, which is the sequences at which 

similar data values occurring in successive data elements are stored as a single data value and count 

rather than as the original run. This method minimises the rate of replicating symbols in a string 

through the use of a special marker at the start of the symbol. The details of the operational process 

may be found in [18]. 

 
3.1.4 Shannon-Fano 
 

This is an entropy-based encoding technique which utilises a variable-length code for encoding 

a source symbol. In a similar manner to the Huffman coding, it generates a frequency table and then 

divides this into the upper and lower part. During operation, it ensures that either of these parts has 

nearly the same sum of frequencies [18]. This process is repeated until only a single symbol is left. 

The flow chart of the Shannon-Fano lossless data compression algorithm is illustrated in Figure 5(b). 

 

 

Figure 5: Flow chart for lossless data compression algorithms (a) RLE (b) Shanon-Fano algorithm 

[18]. 
 

3.2 The algorithm evaluation 

 

Each of these algorithms with the flow chart displayed in Figure 4 and Figure 5 were used to 

compress and decompress six case study test data having properties shown in Table 1. The description 

of each data file was reported in Table 1. These data are derived from a water supply network 

reporting pressure, flow and leak discharge in the network within a specific period. For example, the 

test file 1 which consists of a minimum night flow (MNF) data reports the flow measurements within 

the water supply network obtained between the hours of 2:00 am and 4.00 am. As mentioned earlier, 

these data were used to test the data compression algorithms. The execution times for both 

compression and decompression processes were recorded in each case. The simulation was performed 

in MATLAB software environment on a system with an Intel(R) Core i7-2620M, 2.7 GHz processor 

with Windows 10.1 platform. Thereafter, the performance of the algorithms was evaluated by 

estimating the performance indices discussed in sub-section 3.3.  
Table 1: Properties of the test file data used as case studies. 
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S/N Test file Size (byte) Description 

1 Test file 1 9524 Minimum night flow data 

2 Test file 2 12342 24 hours water flow data within the piping network 

3 Test file 3 15340 24 hours leak discharge data. 

4 Test file 4 47102 24 hours pressure data within the piping network 

5 Test file 5 51211 48 hours water flow data 

6 Test file 6 95501 1 year water consumption data 

 

3.3 Performance evaluation index 

 
Several indices can be utilised to analyse the performance of these algorithms. In this study, the 

compression ratio, percentage space savings, compression factor, and compression gain were used. 

Among these, the compression ratio is the most frequently used [19]. The compression ratio describes 

the average number of bits needed to store the compressed data. The compression ratio CR is 

expressed as  

c c

unc unc

N S
CR

N S
                (1) 

where Nc and Nunc depict the number of bits in the compressed and uncompressed (original) data 

respectively, Sc is the size of the compressed data while Sunc is the size of the original data. The 

compression factor Cf is another measure used to assess the performance of these algorithms. The Cf 

is seen as the inverse of the CR. It is expressed as 
1 unc unc

c c

N S
Cf

CR N S
                 (2) 

Since compression algorithms permit optimum use of storage, it is important to assess them 

based on the space-saving aspect. Thus, percentage space savings (%SS) is also considered. This 

index, expressed in equation (3), defines the reduction in file size relative to its uncompressed size 

[19]. 

% 1 100% 100%c unc c

unc unc

N S S
SS

N S

   
       
   

           (3) 

This study also considers the compression gain (CG) of each algorithm. This is expressed in 

equation (4). 

 100log 100logunc

e e

c

S
CG Cf

S

 
  

 
             (4) 

Even though the CR and Cf are sufficient to assess the performance of lossless data compression 

algorithms as reported in [19], other indices described above were also analysed. It is noteworthy to 

stress that for lossy compression algorithms, where the decompressed data varies slightly from its 

initial form, more performance measures are required to appraise the level of distortion, fidelity and 

quality of the data such as an image. 
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4. Results and Analysis 
 

Each of the four lossless compression algorithms is executed in MATLAB software programme 

and tested on six different data of varying sizes. Figure 6 shows the compression ratio and the 

compression factor for each algorithm. In Figure 6(a), it was observed that both LZW and Huffman 

algorithms had the lowest CR. This means that fewer bits were required to store the compressed file 

using these algorithms. It was observed in Figure 6(a) that the CR for the LZW was better than the 

other three algorithms. Furthermore, analysing Figure 6(a) considering the test file 1, the LZW had 

a CR of 0.48. This implied that it could reduce the data size by 52% while RLE could achieve a 

reduction capacity of 28%. The reduction capacity for Shanon-Fano and Huffman coding was 

observed to be 38% and 44% respectively considering the test file 1. The Cf results (Figure 6(b)) also 

showed that the LZW algorithm, having the highest Cf performed better than the other algorithms. 

Figure 7 illustrates the percentage space savings and the compression gain of the compression 

algorithms. In Figure 7(a), it was observed that both LZW and Huffman algorithms had the highest 

space savings while RLE had the lowest. As noticed for all the test files, the LZW algorithm achieved 

better space-saving. The results of the compression gain also indicated that the LZW algorithm had 

better performance than the other three algorithms tested on the test files. 

 

 

Figure 6: Plot of the algorithm performance based on (a) compression ratio and (b) compression 

factor. 

 

Figure 7: Plot of the algorithm performance considering (a) % space savings (b) compression gain. 
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The results in Table 2 shows the comparison of the compressed file size as well as the execution 

times for the four lossless data compression algorithms. Considering the file size reduction, LZW had 

a better file size reduction followed by Huffman coding. Table 2 and test file 1 with size 9524 bytes 

show that the LZW algorithm produced a compressed file with size less than half the original file size. 

The same result was noticed when test file 2 to 6 were considered. In respect of  the three other 

algorithms, that is, RLE, Shanon-Fano and Huffman, the compressed file sizes were more than half the 

original file sizes for all the test files. Amongst these algorithms, the RLE produced the least 

performance. In terms of the execution time in milliseconds (ms), it was observed that RLE was 

relatively faster during both compression and decompression processes than the other three algorithms 

for the same data size. For all the four algorithms, it was observed that it took more time to 

decompress the data files. In most cases, the decompression time (DT) was observed to be more than 

twice the compression time for all the algorithms. The execution time, will, however, depend on the 

CPU structure and the RAM size of the computing system used to perform the test. 
 

Table 2: Comparison of the compressed file sizes and execution times for each algorithm. 

Original 

File size 

(bytes) 

Compressed file size (bytes) 

RLE LZW 

Shanon-

Fano Huffman  

RLE LZW 

Shanon-

Fano 

Huff

man CT DT CT DT CT DT CT DT 

9524 6852 4521 5891 5341 41 110 42 123 34 150 35 144 

12342 7812 5231 6101 5810 40 125 73 131 42 180 60 172 

15340 8563 6341 7932 7342 50 140 80 142 53 192 69 163 

47102 22121 19321 21022 20322 59 180 130 170 62 480 128 310 

51211 27342 20894 23321 21011 81 301 172 470 120 510 92 410 

95501 53041 41832 44321 42013 143 312 169 310 230 710 159 601 

CT: Compression time (ms); DT: Decompression time (ms) 

 

4. Conclusions 

In this paper, the performance of four different lossless data compression algorithms for IoT-

based smart water network management application is presented. The results obtained showed that the 

LZW algorithm had a better performance in terms of compression ratio, compression factor, space 

savings and the compression gain. However, its execution time was relatively slow compared to RLE 

and the two other algorithms investigated. In general, the LZW algorithm gave a significant reduction 

in the data sizes of the tested files compared to all other algorithms. As the future of the IoT-based 

smart water management applications grow, the application requirements will also be heightened 

necessitating the further development of incorporated smart sensors. Thus, more volume of data will 

be produced by the various IoT smart sensing devices which makes storage, transmission bandwidth 

and data processing challenging. Future research studies should consider the development of a hybrid 

data compression matrix that will balance the trade-off between space savings and the speed of 

compression for applications that require real-time continuous data analysis. This will alleviate data 

bottleneck issues. 
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