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ABSTRACT

Unemployment, especially after the COVID-19 pandemic, is a critical issue for any country as it has economic
and social ramifications. Consequently, forecasting unemployment becomes an essential task as it can guide
government policy. Time series data are frequently influenced by outliers (unexpected events), and some
outliers may exist with extreme observation to reduce the forecasting effectiveness of robust estimators. This
study compared the performance of Autoregressive Integrated Moving Average (ARIMA), Seasonal
Autoregressive Integrated Moving Average (SARIMA) and Generalised Autoregressive Conditional
Heteroscedasticity (GARCH) models in modelling and forecasting unemployment rates during the COVID-
19 pandemic among the ASEAN-5 countries. These countries include Malaysia, Singapore, Thailand, the
Philippines and Indonesia. The monthly unemployment data from January 2010 to December 2021 were
applied for all cases, except Thailand, until December 2020. Each adequate model from both forecasting
mechanisms underwent forecasting. Their performance was compared based on root mean squared error
(RMSE), mean absolute error (MAE), Theil inequality coefficient and symmetric mean absolute percentage
error (SMAPE). Static forecasting from the ARIMA and SARIMA models was found to perform better than
the GARCH model in modelling and forecasting the unemployment rate among ASEAN-5 countries during
the pandemic period.

Keywords: Unemployment, Forecasting, A/SARIMA and GARCH

Submission: 3" February 2023
Accepted: 18" September 2023
https://doi.org/10.33736/ijbs.6393.2023

* Corresponding author: Economic and Financial Policy Institute (ECOFI), School of Economics, Finance and Banking, Universiti
Utara Malaysia, 06010 Sintok, Kedah. Tel no: +604-9286808, Email: shamzaeffa@uum.edu.my
967


https://doi.org/10.33736/ijbs.6393.2023

Kuang Yong Ng, Zalina Zainal and Shamzaeffa Samsudin

1. INTRODUCTION

Labour is one of the most important resources besides land and capital. As an essential quasi-input
in production, labour issues, especially unemployment, will always be a focal point in the
macroeconomy. People need work to survive, while work requires people to operate. Both depend
on each other to achieve their objective. When people lose a job, they also lose their source of
income. Many economic and social impacts arise from unemployment, such as poverty, reduced
economic productivity, divorce and even suicides. In general, unemployment follows business
cycle trends. When the business cycle goes downward, unemployment tends to increase. This
situation results from the negative economic growth affecting business operations, thus reducing
labour demand. Firms typically implement retrenchment as a survival technique during an
economic crisis. In contrast, job opportunities are enhanced and associated with economic
expansion. People attain jobs more easily, and this lessens unemployment. Consequently, a
negative shock on the business cycle has a significantly positive impact on the job loss situation.
The world has recently undergone a public health crisis, namely the Coronavirus disease (COVID-
19) pandemic. The COVID-19 pandemic is not only a shock to the health system but also to the
economy. During the COVID-19 pandemic, most governments implemented lockdown policies to
reduce the transmission of the virus. For instance, Malaysia and Singapore started their lockdown
policies on 18™ March 2020 and 71" April 2020, respectively. Meanwhile, the lockdown policy
implemented in Thailand and the Philippines started on 3" April and 15" March, respectively. On
70 April 2020, Indonesia declared a regional lockdown policy in Jakarta. Consequently, the
lockdown, which restricted the operation of economic activities, jeopardised the economy.

Table 1: The Lockdown and Reopening of the Border among ASEAN-5 Countries

Country Start lockdown Days Start reopening border
Malaysia 18t March 2020 2 years and 13 15t April 2022
days
Singapore 7t April 2020 1 year and 359 15t April 2022
days
Thailand 3 April 2020 2 years and 28 1t May 2022
days
Philippines 15t March 2020 2 years and 17 1%t April 2022
days
Indonesia 7t April 2020 1 year and 281 12 January 2022
(Jakarta) days

Sources: Sullivan (2022), Metro Manila to be placed (2020), Consulate General of the Republic of Indonesia (2021),
Dechsupa et al. (2020), Tong (2022), Ministry of Foreign Affairs Malaysia (2022), 14-day movement control order (2020),
Thailand drops post-arrival (2022), Singapore to see most workplaces (2020), Jakarta to impose partial lockdown (2020)

During the pandemic, ASEAN-5 countries faced a significant increase in unemployment. In
Malaysia, the unemployment rate was beyond 4%, which was the total employment rate for the
country. Besides, the unemployment rate of Singapore also increased and exceeded more than 3%.
Meanwhile, it was over 1% and closer to a 2% unemployment rate in Thailand. Interestingly,
unemployment in Malaysia, Singapore and Thailand was stable and under control during the pre-
pandemic period. Nevertheless, it lost control and increased beyond the full employment line
during the pandemic. The Philippines and Indonesia had an unemployment rate of more than 4%.
Figure 1 reveals an unstable situation, which was an upward and downward trend, especially in the
Philippines. During the pandemic, unemployment in the Philippines surged to 17.6% in the second
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quarter of 2020. It remained constant by more than 8%. Indonesia’s unemployment rate
demonstrated an upward trend beyond the 6% line after the second quarter of 2020.

From the previous discussion, the unemployment rate in ASEAN-5 countries was no longer at full
employment nor stable due to the COVID-19 pandemic. The pandemic exacerbated unemployment
as employers were forced to reduce the labour demand to sustain their businesses. Accordingly,
job loss rose, leading to an imbalance between labour demand and supply. People lost faith in their
government as it failed to solve unemployment, and the people’s burden increased. Consequently,
political stability is affected as people are unsatisfied with their government’s performance (Dabros
et al., 2015; Martin et al., 2022). A full employment rate is one of the targets for unemployment,
enabling governments to convince their people regarding the credibility of their policies. Therefore,
forecasting unemployment becomes a vital tool to ensure future policies concerning the
disturbance of the labour market. When unemployment is forecasted to be high, the government
needs to plan and implement appropriate policies to mitigate it.

Figure 1: Unemployment Rate Among ASEAN-5 Countries, Q1 2011-Q4 2020
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Sources: Bank Indonesia (2022), Bank Negara Malaysia (2022), Bank of Thailand (2022), Ministry of Manpower
Singapore (2022), Philippines Stastitics Authority (2022)

Regarding forecasting, the Box-Jenkins methods are always used, including Autoregressive
Integrated Moving Average (ARIMA) and Seasonal Autoregressive Integrated Moving Average
(SARIMA). Box-Jenkins involves stringent assumptions about residuals to determine the most
desirable model (Mahipan et al., 2013). The ARIMA model is the most common model used for
forecasting purposes. For instance, Malaysia (Ramli et al., 2018), Singapore (Lai et al., 2021),
Thailand (Mahipan et al., 2013), the Philippines (Angco et al., 2021) and Indonesia (Mahmudah,
2017). The ARIMA model is conducive to forecasting because it is flexible for time series data in
linear or non-linear forms (Mahipan et al., 2013). Moreover, it can handle many time series for
forecasting, and the multivariate models’ problem can be avoided via this model (Meyler et al.,
1998). The model can be conveniently applied and manipulated, especially for a new forecaster.
Conversely, SARIMA lacks the capability to estimate unemployment during the COVID-19
pandemic. During the pandemic, the unemployment rate exhibited a seasonal trend, which went
upward and downward as it was impacted by the lockdown and confirmed cases. SARIMA is a
modified version of the ARIMA model, with the additional set components of autoregressive
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average and moving average. This condition indicates the frequency of seasonality that can offset
the additional lags for the model (Dritsaki, 2016; Davidescu et al., 2021). Besides the ARIMA and
SARIMA models, another model is also popular in forecasting: the GARCH model. The GARCH
model provides insights into the persistence and clustering of volatility, capturing important
patterns in the data (Khan et al., 2023). It can improve the forecasting for the times series data with
significant volatility and allow for more accurate risk assessments (Verma, 2021). Unemployment
demonstrates a volatility clustering with an upward and downward trend (Katris, 2020). As a result,
it suits the GARCH model for forecasting.

Additionally, Nkoane and Seeletse (2021) stated that robust estimators, such as ARIMA, can easily
handle time series data affected by outliers, especially during the recent COVID-19 pandemic. Ab
Aziz et al. (2023) also mentioned that outliers with extreme observation may influence the
forecasting performance of the estimators. Therefore, this study responds to the call from Azimi
and Shahidzada (2019), who claimed that a comparative analysis of the empirical findings
regarding variance forecast and optimal estimation of time series variables with volatility using
ARIMA and GARCH models remains largely unexplored. This study aims to compare the
performance of ARIMA, SARIMA and GARCH models in modelling and forecasting
unemployment rates during the COVID-19 pandemic among the ASEAN-5 countries. This paper
is structured as follows: Section 2 touches on the empirical literature that used the ARIMA,
SARIMA and GARCH models to forecast unemployment. Section 3 discusses the methodology
adopted, while Section 4 presents the result of all models estimated by comparing the performance
for the forecasting between these forecasting mechanisms. Lastly, the conclusion is discussed in
Section 5.

2. LITERATURE REVIEW

Scholars usually adopt the ARIMA model or Box-Jenkins method in forecasting certain variables.
As unemployment is an important variable in the economy, it is used for forecasting the period
before and during the COVID-19 pandemic. Prior to the COVID-19 pandemic, yearly
unemployment was applied for forecasting (Ayik & Erkal, 2021; Mahmudah, 2017; Nguyen et al.,
2021). Mahmudah (2017) used the yearly unemployment data in Indonesia by utilising the ARIMA
model. He found that ARIMA (0, 2, 1) was the most suitable model in the case of Indonesia.
Meanwhile, Ayik and Erkal (2021) and Nguyen et al. (2021) denoted that ARIMA (2,1,1) and
ARIMA (1,0,1) were the most adequate ARIMA models for Turkey and Vietnam, respectively.
Moreover, it was determined that ARIMA (2,1,0) was suitable for forecasting the quarterly
unemployment in the Philippines by utilising the quarterly data from 2005 to 2019 (Angco et al.,
2021). Davidescu et al. (2021) also conducted this quarterly forecasting method in Romania by
applying data from the first quarter of 2000 to the fourth quarter of 2018. Besides yearly and
quarterly data, unemployment was also forecasted monthly. Lip et al. (2021) manipulated the
monthly data from January 2012 until December 2018 to forecast unemployment in Malaysia. They
discovered that ARIMA (2,1,3) suited the model and stated that the forecasted unemployment
portrayed low fluctuation from January 2019 until December 2019. Their model conflicted with
Ramli et al.’s (2018) case, which stated that ARIMA (2,1,2) was the most suitable model in
Malaysia. Nonetheless, Ramli et al. (2018) used the yearly unemployment data for Malaysia’s case.
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During the COVID-19 pandemic, the popularity of ARIMA in forecasting was still high. Ismail et
al. (2022) applied the monthly unemployment from January 2010 until July 2021 to forecast this
variable from January 2021 to July 2021, the COVID-19 pandemic period. From the ARIMA result,
they found that ARIMA (2,1,2) was the most appropriate model after filtering by the Akaike
information criterion (AIC) and Schwarz criterion (SC). This result differed from Lip et al.’s (2021)
study, although the same form of time series data was adopted. Lai et al. (2021) predicted five
advanced and five developing countries in Asia regarding unemployment, whereby Malaysia,
Singapore and Indonesia were included in their study. Interestingly, their results revealed that
ARIMA (2,1,2) was suited for Singapore, ARIMA (3,1,2) was suited for Malaysia, and Indonesia
was suited to ARIMA (3,1,2). Meanwhile, Tufaner and So6zen (2021) argued that ARIMA (3, 1, 2)
was the best unemployment model in Turkey between January 2014 and November 2020. The
quarterly unemployment data from 2010 to 2020 fitted the ARIMA (1,1,1) model in South Africa
(Nkoane & Seeletse, 2021).

Apart from the ARIMA, the modified version of the ARIMA model, namely SARIMA, was also
applied in previous studies. Generally, the SARIMA model best fits data with seasonal trends.
Dritsaki (2016) emphasised that SARIMA (0,2,1)(1,2,1)12 best fitted the unemployment model
from April 1998 until September 2015 in Greece. She noticed that static forecasting had better
performance and ability than dynamic forecasting, according to the root mean squared error
(RMSE), mean absolute error (MAE) and Theil index. The SARIMA model was also adopted by
Dritsakis and Klazoglou (2018) to predict unemployment in the United States. By employing the
unemployment data from January 1955 to July 2017, they emphasised that SARIMA
(1,1,2)(1,1,1)12— GARCH (1,1) was the best model. In other European countries, S6jka (2017) and
Stoklasova (2012) studied the forecasting of unemployment by adopting monthly unemployment.
Stoklasova (2012) found that SARIMA (1,1,0)(1,1,0)12 was well suited to estimating the forecasted
unemployment in the Czech Republic. For the case of ASEAN-5 countries, SARIMA was also
conducted in the Philippines and Thailand. Urrutia et al. (2017) finalised that SARIMA (6,1,5)
(0,1,1)4 was best for the Philippines, where a range of data between the first quarter of 1988 and
the fourth quarter of 2014 was used. Meanwhile, SARIMA (1,1,0)1> was proven by Mahipan et al.
(2013) as an adequate model for forecasting unemployment in Thailand.

During the COVID-19 pandemic, the SARIMA model’s capacity to forecast unemployment
continued in some countries. Most studies concentrated on the progress of unemployment during
the COVID-19 pandemic. Cuestas et al. (2021), Waffa and Wahiba (2022) and Davidescu et al.
(2021) mentioned that SARIMA (1,1,1)(1,1,1)s, SARIMA (5,1,3)(1,0,0)1 and SARIMA
(0,1,6)(1,0,1)1> were the ideal SARIMA models in forecasting unemployment in Spain, Algeria
and Romania, respectively. Besides, Cuestas et al. (2021) denoted that the impact of COVID-19
on the forecasted unemployment was long-lasting and persistent, enhancing unemployment at a
higher rate in Spain. Waffa and Wahiba (2022) also found a steady and substantial growth of the
forecasted unemployment rate in Algeria between January 2021 and December 2021.

Another forecasting tool is the GARCH model. The GARCH model is normally used for a model
with high volatility. It is used to forecast economic indicators, such as gross domestic product
(GDP) growth (Dritsaki & Dritsaki, 2021), inflation (Uwilingiyimana et al., 2016) and exchange
rate (Zhou et al., 2020). Importantly, it also includes unemployment (Azimi & Shahidzada, 2019).
Habibullah et al. (2022) forecasted the loss of employment in Malaysia using the GARCH family
models, namely GARCH-M, EGARCH-M and PGARCH-M models. Most of the studies utilised
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the combination of the ARIMA and GARCH models or a comparison between ARIMA and
GARCH in forecasting unemployment. Katris (2020) employed the FARIMA models with
GARCH to predict the monthly unemployment rate from M1 2000 to M12 2014 among 22
Mediterranean countries. Mugaloglu & Kili¢ (2021) claimed that the SARIMA-GARCH model
offered a better unemployment prediction between 1995 and 2019 among G-7 countries.
Meanwhile, several studies compared the forecasting machines between ARIMA and GARCH.
Azimi and Shahidzada (2019) explained that the GARCH model forecasted better than ARIMA,
as GARCH demonstrated a lower standard error and provided closer values with the actual data.
Miswan et al. (2014) and Ab Aziz et al. (2023) also emphasised that the GARCH model had a
better performance in forecasting than the ARIMA model. Nonetheless, it has been shown that the
ARIMA model is better than GARCH in forecasting according to performance (Haque & Shaik,
2021; Nuryatin, 2020).

Consequently, this study used the ARIMA, SARIMA and GARCH models to forecast
unemployment during the COVID-19 pandemic among ASEAN-5 countries, i.e., Malaysia,
Singapore, Thailand, the Philippines and Indonesia. The forecasting performance between both
forecasting mechanisms was compared to identify the adequate mechanism in terms of forecast
unemployment among ASEAN-5 countries.

3. RESEARCH METHODOLOGY
3.1. ARIMA model

In the ARIMA model, AR indicates autoregressive, | is integrated, and MA is the moving average
(Box & Jenkins, 1976). In the AR(p) and MA(q) models, p and q in the bracket represent the
number of the models’ lagged dependent variables. The AR(p) model has the following equation:

Yi=01Yea + @Yo+ ...+ OpYip+ U (1)
Meanwhile, the MA(q) model has the following equation:

Yt= Ut + 01Uea+ Galiea+ ... + Bl @)

After that, the ARMA (p,q) model is generated from the combination of the two processes shown
below:

Y= 01Ye1 + @Yo+ oo+ OpYip+ Ut + O1Uer + Ol + ... + OgUtig 3)
Where:
Y = Unemployment
u = Error or residuals
@ = Polynomial function of unemployment
0 = Polynomial function of error
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3.2. SARIMA model

Ag% = (1-L%)Py, 4)
Where:
A¢ = A order difference
L = The lag operator, which demonstrated periodic seasonal behaviour.

Afterwards, the seasonal ARMA (p,q) model for every s is rewritten into:

B(L)y: = 0(L%)u; ()
Where:
U = White noise
0 = Seasonal lag parameter, u;_;,

Following the ARMA (p,q) model, Equation (5) is considered in the form of Equation (6).
A(L)u, = 0(L)e, (6)
Where:

A(L) = Polynomial for p;
O (L)&, = Polynomial for q.

The seasonal ARMA model (p,q)(p,q)s formed as a result of the replacement of Equation (7)
substitutes Equation (6).

ALy, = 0(L)O (L), ()

Lastly, Equation (8) will be modified to suit ARIMA (p,d,q)(P,D,Q)s, in which the p,d,q in front
stand for ARIMA while the P,D,Q at the back represent the additional seasonal components.

AL)BLS)(1 - L)1 = L)y, =0(L)O(L)e, (8)
3.3. Box-Jenkins Procedure

The Box-Jenkins procedure is divided into three stages: identification, estimation and diagnostics.
In the identification process, the first step is to check the stationary of the model. The stationary
test of this paper was done through the Augmented Dickey-Fuller (ADF) and Phillips-Perron tests
to identify whether the model has either a “unit root” problem or no “unit root” problem. Otherwise,
spurious regression may exist in the model. If the P-value from the test is less than 5%, the “unit
root” problem does not exist in the model, the null hypothesis is rejected and the model is stationary
over time. If the P-value exceeds 5%, this indicates the existence of the “unit root” problem in the
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model. The null hypothesis failure is rejected, and the model is not stationary over time. Therefore,
the first differences should be taken to the model, and then the unit root test is repeated to determine
its stationarity.

Figure 2: Box-Jenkins Procedure
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After the model is stationary, the process proceeds to determine the p and g orders of the
ARIMA model through the correlogram. Significant spikes from the ACF for AR or
PACF for MA are detected. After the number of lags for the combination of the ARMA
(p,q) model is determined, several models are estimated to determine the most adequate
model. The Akaike information criterion (AIC), Schwarz Bayesian criterion (SC) and
Hannan-Quinn criterion (HQ) are used to compare the estimated result. The best model is
selected according to the requirement, with the smallest AIC, SC and HQ. Then, the model
undergoes diagnostic checking again to ensure that all the spikes are within the bounds of
the stationarity for the AR and MA coefficients. If the model exists with seasonal trends
or characteristics, the model proceeds with SARIMA.. The procedure is similar to the Box-
Jenkins process by adding the seasonal P and Q lags (s = 12, s=24). Nevertheless, if the
seasonal component for the model is not significant, the adequate model adopts the
ARIMA model only, which is the non-seasonal model.
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3.4. Generalised Auto-Regressive Conditional Heteroscedasticity (GARCH)

The GARCH model is renowned for addressing heteroscedasticity, where the variance is not
constant over time. This model has gained popularity in the forecasting field. These domains often
exhibit data with significant variability and high volatility throughout different periods. The
GARCH model will be transformed for p = 0 for the model to be reduced to ARCH (q). The value
of the variance scaling parameter, h;, now depends on its past values and the shocks’ past values.
Lagged squared residual terms capture the past values of the shocks, whereas lagged h; terms
capture the past values of the model. As a result, the GARCH model is written as GARCH (p,q)
and can be indicated as the equation below:

hi= yo+dihei+ yiuf; )
3.5. Forecasting

After the three stages of the Box-Jenkins procedure, the adequate model for ARIMA or SARIMA
is identified. Meanwhile, the appropriate model of GARCH is recognised. Next, the models from
both methods are utilised and compared for forecasting. Dynamic and static forecasting are
generated, and their performance is compared by evaluating the criteria. These criteria are based
on the mean squared error (MSE), root mean squared error (RMSE), mean absolute percentage
error (MAPE) and Theil inequality index.

MSE = ~3T_, (¥t — vt)? (10)

" 11

RMSE = /% T (Yt —Yt)? ()

MAPE =137, [*=1] (12)
TH=L] e

Bradery” (13)

2 2
J%ZLI(W) +3 371 (VD)

Theil inequality index, U =

Where:
vt = Actual output
Yt = Observed output

T = Number of time-varying observation
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4. RESULTS AND DISCUSSION

41, Data

The monthly data on the unemployment rate is adopted and applied in this study. As the targeted
countries were Malaysia, Singapore, Thailand, the Philippines and Indonesia, the unemployment
data from the five countries were required. The unemployment data from January 2011 to
December 2021 were obtained for Malaysia, Singapore, the Philippines and Indonesia. The sources
were Bank Negara Malaysia (BNM), the Ministry of Manpower of Singapore, the Philippines
Statistics Authority (PSA) and Bank Indonesia. Meanwhile, for Thailand’s case, the monthly
unemployment data from January 2011 to December 2020 were applied because the authority had
not generated the data for 2021. The data were gained from the Bank of Thailand (BOT).

4.2. ARIMA or SARIMA Model

4.2.1. ldentification

According to the Box-Jenkins procedure, the identification stage first underwent the unit root test
to determine whether the variable was clear from the “unit root” problem or stationary. The
Augmented Dickey-Fuller test was conducted for this objective. This result was supported by using
the Phillips-Perron test.

Table 2: Results of the Augmented Dickey-Fuller Test

Variable Level First Difference
Intercept Trend and Intercept Trend and
intercept intercept

Unemployment of -1.6781 -3.0885 -12.3207*** -12.2663***

Malaysia (UEM)

Unemployment of -2.3162 -3.1293 -4.2098*** -4.2028***

Singapore (UES)

Unemployment of -1.8548 -5.0755*** -10.3252*** -10.3194***

Thailand (UET)

Unemployment of the -4.2182%** -4.2515%** -8.5286*** -8.4994***

Philippines (UEP)

Unemployment of -3.1937** -2.7916 -2.8601* -3.2341*

Indonesia (UEI)
Notes: (***), (**) and (*) denote the significance level at 1%, 5% and 10%, respectively.

Table 3: Results of the Phillips-Perron Test

Variable Level First Difference
Intercept Trend and Intercept Trend and
intercept intercept

Unemployment of -1.5692 -3.1008 -12.7999*** -12.7626***

Malaysia (UEM)

Unemployment of -1.7068 -2.1809 -4.3003*** -4.2948***

Singapore (UES)

Unemployment of -2.8041* -5.2866*** -14.6827*** -14.7937***

Thailand (UET)
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Unemployment of the -2.9164** -2.9319 -8.6643*** -8.6143***
Philippines (UEP)
Unemployment of -2.0756 -1.6347 -4,6573*** -4.7019***

Indonesia (UEI)
Notes: (***), (**) and (*) denote the significance level at 1%, 5% and 10%, respectively.

From Table 2, the Augmented Dickey-Fuller result demonstrated that the unemployment
data in the level form existed with a “unit root” problem for Malaysia and Singapore either
in the intercept or trend and intercept form. Meanwhile, a “unit root” problem occurred
when unemployment was in the intercept form in Thailand and the trend and intercept
form in Indonesia. Nonetheless, the result revealed that no “unit root” problem existed in
the level of unemployment in the Philippines case. When unemployment was the first
difference, all the unemployment data among the ASEAN-5 countries were stationary in
both forms. The result from the Phillips-Perron test was also in line with the result of the
Augmented Dickey-Fuller test, except for Indonesia’s case. The Phillips-Perron test stated
that the level of unemployment data was not stationary for intercept and trend and
intercept forms. Therefore, it was suggested that the unemployment data of Indonesia
should be the first difference. Nevertheless, this stationary result was verified again by
using the Correlogram.

The procedure was continued with the correlogram. Figure 3 demonstrates the
correlogram of the unemployment rate level, while Figure 4 reveals the correlogram of
the first difference in the unemployment rate. From Figure 2, the autocorrelation (ACF)
for Malaysia, Singapore, Thailand, the Philippines and Indonesia cases was observed that
they did not diminish or experience a slow downturn. The result indicated that the series
for those cases were non-stationary. It demonstrated that the model was non-stationary.
Consequently, the first difference was replaced with the level form of the data to prevent
spurious regression in the models of Malaysia, Singapore, Thailand, the Philippines and
Indonesia cases. When taking the first difference, it was observed that the autocorrelation
exhibited a quick fall, indicating that the data were stationary for each case. Therefore,
the ARIMA (p, d, q) value was d = 1 for the Malaysia, Singapore, Thailand, the
Philippines and Indonesia cases.
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Figure 3: Correlogram for Unemployment Levels
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Source: Result from Eview-10

Figure 4 shows that the correlogram for the first difference series in the cases of Singapore,
Thailand, the Philippines and Indonesia had seasonal properties. This situation was because the
autocorrelation at lags 1 and 12 was greater than the bounds of the correlogram in Singapore.
Besides, the cases in Thailand, the Philippines and Indonesia were more than the bounds for the
autocorrelation’s lags 1, 12 and 24. Nevertheless, the first difference indicated no seasonal pattern
in Malaysia’s case. As a result, Malaysia’s unemployment was forecasted using the ARIMA model,
while the SARIMA model was applied to Singapore, Thailand, the Philippines and Indonesia.
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Figure 4: Correlogram for Unemployment in First Difference
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Source: Result from Eview-10
4.2.2. Estimation

The procedure was continued to identify the corresponding ARIMA (p,q) through the correlogram.
The estimation process is displayed in Table 4.

Table 4: Estimation of the ARIMA Model

Malaysia

ARIMA model (4,1,4) (4,1,9) (9,1,4) (9,1,9)

AIC -0.4713 -0.4632 -0.4523 -0.4350
SC -0.3835 -0.3754 -0.3645 -0.3472
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HQ -0.4356 -0.4275 -0.4166 -0.3993
Singapore

ARIMA model (1,1,1) (1,1,3) (3,1,1) (3,1,3)

AlC -3.8258 -3.9111 -3.5127 -3.0785

SC -3.7380 -3.8233 -3.4249 -2.9907

HQ -3.7901 -3.8754 -3.4771 -3.0429

Thailand

ARIMA model (1,1,1) (1,1,2) (2,1,1) (2,1,2)

AlC -0.6503 -0.6509 -0.6518 -0.5173

sC -0.5569 -0.5575 -0.5583 -0.4239

HQ -0.6124 -0.6130 -0.6138 -0.4794
Philippines

ARIMA model (1,1,1) (1,1,3) (3,11) (3,1,3)

AIC 2.5061 2.3299 2.4029 2.4223

sC 2.5939 2.4377 2.4907 2.5101

HQ 2.5418 2.3856 2.4386 2.4580
Indonesia

ARIMA model (1,1,1) (1,1,6) (6,1,1) (6,1,6)

AIC -2.4321 -3.0307 -2.5620 -2.0605

sC -2.3443 -2.9429 -2.4742 -1.9727

HQ -2.3964 -2.9950 -2.5263 -2.0249

Source: Result from Eview-10

Figure 5: ARIMA (4,1,4) for Malaysia

Variable Coefficient  Std. Error t-Statistic Prob.
C 0.007222 0.016301 0.443018 0.6585
AR(4) -0.773457 0.188565 -4.080174 0.0001
MA(4) 0.575194 0.260021 2212106 0.0287
SIGMASQ 0.034238 0.001961 17.46130 0.0000

Source: Result from Eview-10

From the estimation result, the ARIMA model, which had the lowest AIC, SC, and HQ, was
considered the most adequate. By comparing the criterion, ARIMA (4,1,4) in Malaysia, ARIMA
(1,1,3) in Singapore, ARIMA (2,1,1) in Thailand, ARIMA (1,1,3) in the Philippines and ARIMA
(1,1,6) in Indonesia were the most suitable ARIMA models for each case respectively.
Consequently, the ARIMA model chosen for Malaysia’s case was resumed for the diagnostic stage.
In contrast, the selected ARIMA model for the Singapore, Thailand, Philippines and Indonesia
cases was modified into SARIMA.

4.2.3.  Seasonal Autoregressive Model (SARIMA)

As mentioned, Singapore, Thailand, the Philippines and Indonesia’s unemployment variables had
seasonal trends. Therefore, these cases were eligible for the SARIMA model. The estimation of
the SARIMA is shown in Table 5.
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Table 5: Estimation of the SARIMA Model

Singapore
ARIMA  (1,1,3)(1,1,1)2  (1,1,3)(1,1,0)2 (1,1,3)(0,1,1)1>  (1,1,3)(2,1,0)12  (1,1,3)(2,1,1)12
model
AlIC -3.9511 -3.9232 -3.9275 -3.8972 --3.9185
SC -3.8194 -3.8135 -3.8177 -3.7875 -3.7868
HQ -3.8976 -3.8786 -3.8829 -3.8527 -3.8650
Thailand
ARIMA  (2,11) (1,112 (211) (1,102 (2,1,1)(0,1,1)2  (2,1,1) (21,0)2  (2,1,1) (2,1,1)12
model
AlIC -0.8100 -0.7420 -0.6965 -0.7683 -0.8121
SC -0.6698 -0.6252 -0.5797 -0.6515 -0.6720
HQ -0.7531 -0.6946 -0.6491 -0.7209 -0.7552
Philippines
ARIMA  (1,13)(1,1,1)12 (1,1,3)(1,1,002 (1,1,3)(0,1,1)12  (1,1,3)(21,0)12  (1,1,3)(2,1,1)12
model
AIC 2.3690 2.3539 2.3541 2.3646 2.3689
SC 2.5007 3.4636 2.4639 2.4744 2.5005
HQ 2.4225 2.3984 2.3987 2.4092 2.4223
Indonesia
ARIMA (1,16) (1,1,1)2 (1,1,6) (1,1,0)12 (1,1,6)(0,1,1)12 (1,1,6) (2,1,0)12 (1,1,6) (2,1,1)12
model
AIC -3.3234 -3.2120 -3.1381 -3.3111 -3.3455
SC -3.1917 -3.1023 -3.0283 -3.2014 -3.2138
HQ -3.2699 -3.1674 -3.0935 -3.2665 -3.2920

Source: Result from Eview-10

For the Singapore case, SARIMA (1,1,3)(1,1,1)12 had the lowest value for AIC, SC and HQ.
Nevertheless, this model’s SMA(12) component was insignificant. As a result, SARIMA
(1,1,3)(0,1,1)1o was the most suitable for Singapore’s case.

Figure 6: SARIMA (1,1,3)(1,1,1)12 and (1,1,3)(0,1,1)1. for Singapore

Variable Coefficient  Std. Error  t-Statistic Prob.
C 0.002731 0.006859 0.398183 0.6912
AR(1) 0.860726 0.062664 13.73564 0.0000
SAR(12) 0.698173 0.203120  3.437240 0.0008
MA(3) -0.481668 0.065910 -7.307968 0.0000
SMA(12) -1.000000 8336974 -0.001199 0.9990
SIGMASQ 0.000921 (0.383811 0.002400  0.9881

Variable Coefficient  Std. Error  t-Statistic Prob.
C 0.002345 0.010862 0.215912 0.8294
AR(1) 0.860054 0.057038 15.07873 0.0000
MA(3) -0.472548 0.063034 -7.496704 0.0000
SMA(12) -0.194571 0.062488 -3.113744 0.0023
SIGMASQ 0.001053 8.29E-05 12.70352 0.0000

Source: Result from Eview-10
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Figure 7: SARIMA (2,1,1)(2,1,1)12 for Thailand

Variable Coefficient  Std. Error t-Statistic Prob.
C 0.010403 0.018248 0.570093 0.5697
AR(2) -0.152271 0.088845 -1.713805 0.0893
SAR(24) 0.465079 0.120156 3.870626 0.0002
MA(1) -0.272341 0.084257 -3.232251 0.0016
SMA(12) 0.322853 0.105380 3.063702 0.0027
SIGMASQ 0.022320 0.002928 7623086 0.0000

Source: Result from Eview-10

Figure 8: SARIMA (1,1,3)(1,1,0)12 for the Philippines

Variable Coefficient  Std. Error  t-Statistic Prob.
C -0.000548 0.100647 -0.005448 0.9957
AR(1) 0.302392 0.033900 8920158 0.0000
SAR(12) 0.115155 0.068351 1.684777 0.0945
MA(3) -0.435891 0.046812 -9.311523 0.0000
SIGMASQ 0.567356 0.032658 17.37247 0.0000

Source: Result from Eview-10

Figure 9: SARIMA (1,1,6)(2,1,1)1, for Indonesia

Variable Coefficient  Std. Error {-Statistic Praob.
C -0.005330 0.033965 -0.156925 0.8756
AR(1) 0.916445 0.066071 13.87067 0.0000
SAR(24) 0.682331 0.076662 8900495 0.0000
MA(B) -0.897182 0.050572  -17.74053 0.0000
SMA(12) 0.252940 0.069380 3.660151 0.0004
SIGMASQ 0.001666 0.000118 14.09141 0.0000

Source: Result from Eview-10

Meanwhile, SARIMA (2,1,1)(2,1,1)12, SARIMA (1,1,3)(1,1,0)12 and SARIMA (1,1,6) (2,1,1)1
were the most suitable models for Thailand, the Philippines and Indonesia, respectively. These
models were selected based on the lowest criterion among AIC, SC and HQ.

4.2.4. Diagnostic

The last stage after the estimation process was diagnostic checking. The residuals test for the
autocorrelation with conditional heteroscedasticity was conducted for Malaysia’s ARIMA model
and the SARIMA model of Singapore, Thailand, the Philippines and Indonesia. The result revealed
that the P-value for autocorrelation and partial autocorrelation coefficients were more than 0.05,
indicating that all lags were insignificant. As a result, the residuals were not autocorrelated, thus
allowing the model to be used for forecasting.
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Figure 10: Diagnostic Residuals’ Autocorrelation Test
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4.3. Generalised Auto-Regressive Conditional Heteroscedasticity (GARCH)

Before adopting the GARCH model, it is required to check the volatility of the data. Ab Aziz et al.
(2023) suggested that the methods of kurtosis and skewness can be applied, in which the kurtosis
value is larger than three while the skewness is either to the left or right.

Table 6: Skewness, Kurtosis and Normality Tests

Country Skewness Kurtosis Jarque-Bera Probability
Malaysia 1.3023 10.7448 364.4266 0.0000
Singapore 0.6912 4.1884 18.1401 0.0001
Thailand 1.3331 5.8417 75.9215 0.0000
The Philippines 2.2545 19.2745 1556.668 0.0000
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Indonesia 1.5322 7.1824 146.7334 0.0000
Source: Result from Eview-10

From Table 6, each country portrayed a rightward skewness, and the values of kurtosis were more
than three. Both indicators revealed that the volatility of the model allowed the application of the
GARCH model. Nevertheless, the volatility should be ensured in the heteroscedastic state (Yunita,
2016). The white test demonstrated that the model fulfilled the heteroscedastic with all the P-values
smaller than 0.05.

Table 7: White Test

Country Obs*R-squared Prob. Chi-square
Malaysia 131 0.0000
Singapore 131 0.0000
Thailand 119 0.0000

The Philippines 131 0.0000
Indonesia 131 0.0000

Source: Result from Eview-10

As the models were volatile, stationary and heteroscedastic, they were eligible for the GARCH
model. Several models were estimated for each country, and the most appropriate model depended
on the smallest AIC and SC values. From the outcome of the estimation for the GARCH model,
the most appropriate model for Malaysia was GARCH (1,0), Singapore was GARCH (3,0),
Thailand was GARCH (1,3), the Philippines was GARCH (2,2) and Indonesia was GARCH (3,3).

Table 8: GARCH Model

Model p=1 p=2 p=3 q=1 q=2 q=3 AIC SC
(.9
Malaysia
GARCH  0.8232* -0.9377  -0.8495
1,0
GARCH 0.7636*  0.1207 -0.9350  -0.8247
(2,0
GARCH 0.7735*  0.1586 -0.0316 -0.9191  -0.7868
(3,0)
GARCH 0.7616* 0.1301 -0.9353  -0.8351
(1,1)
GARCH 0.5720* 0.2564 -0.1593 -0.9075  -0.7752
(1,2)
GARCH 0.7470* 0.1495 -0.0143  -0.0079  -0.9043  -0.7499
(1,3)
GARCH 0.7723*  -0.0199 0.1523 -0.9190  -0.7867
(2,1)
GARCH 0.7334*  -0.4432 0.7624 -0.1066 -0.9064  -0.7520
(2,2)
GARCH 0.5023*  0.2462 -0.2780  0.0517 -0.0904  -0.8942  -0.7177
(2,3)
GARCH 0.7378*  -0.2996  -0.0933  0.5947 -0.9065  -0.7521
(3,1)
GARCH 0.7393*  -0.3755  -0.0352  0.6736 -0.0610 -0.8909  -0.7145

(3.2)
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GARCH 0.6042*  0.1898 0.0438 0.0274 -0.1565  -0.0161  -0.8808  -0.6822
(3.3)

Singapore
GARCH -0.0251 -3.8313  -3.7430
(1,0)
GARCH 0.2524 0.5334* -3.9048  -3.7945
(2,0) *
GARCH - - 0.4928* -4.4038  -4.2714
@3,0) 0.0307*  0.0261*
GARCH 0.2279 0.6025%* -3.9357  -3.8254
(1,1)
GARCH 0.3099 0.9905* - -4.0849  -3.9526
(1,2) 0.4483*
GARCH 0.2968* 0.506%*  0.1445 -0.27 -4.0062  -3.8518
(1.3)
GARCH - 0.6242* 0.3792%* -4.0277  -3.8954
2,1 0.0658%*
GARCH - 0.5574%* 0.6418* - -4.1380  -3.9836
2,2) 0.0637* 0.2732%*

%

GARCH -0.0433  0.307** 0.5916 -0.2071  -0.0728  -4.0624  -3.8860
2.3)
GARCH - - 0.6552*  0.1750 -0.0366 -4.3420  -4.1655
(3,2) 0.0437*  0.0255*
GARCH -0.0413  -0.0136  0.5555*  0.1847 -0.0457  -0.0810  -4.2294  -4.0309
(3.3)

Thailand
GARCH 0.0502 -0.6324  -0.5385
(1,0)
GARCH 0.0014 0.3479* -0.6619  -0.5445
(2,0) *
GARCH -0.0068  0.3626*  0.0574 -0.6452  -0.5043
(3,0)
GARCH 0.1122 0.7694* -0.6370  -0.5196
(1,1)
GARCH 0.0954 0.9916 -0.1950 -0.6207  -0.4798
1,2)
GARCH 0.1612* 1.1737* - 0.5853*  -0.6849  -0.5205
(1,3) * 1.1613*
GARCH -0.0017  0.3525* 0.0668 -0.6456  -0.5047
2.1 *
GARCH -0.0106  0.3689* 0.1297 -0.2686 -0.6747  -0.5103
2.2) *
GARCH -0.0186  0.3480* 0.1509 -0.3262  0.3514 -0.6736  -0.4857
2,3) *
GARCH 0.0065 0.3402*  -0.1872  0.5509 -0.6254  -0.4610
3.1) *
GARCH -0.0075  0.3609*  -0.0964 03718 -0.3022 -0.6464  -0.4585
(3,2) *
GARCH 0.0103 0.3064*  -0.0754  0.3708 -0.3943  0.2724 -0.6485  -0.4372
(3.3) *

The Philippines
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GARCH 6.2306* 1.1090 1.1972
(1,0)
GARCH 6.2281*  -0.0036 1.1237 1.2340
(2,0
GARCH 6.2302* -0.0006 1.1242 1.2345
(1,1)
GARCH 3.1042* - 0.0887* 1.3723 1.5047
(1,2) 0.2595%*
GARCH 1.6655* - 0.0302 0.1492*  1.2687 1.4231
(1,3) 0.4456*
GARCH 1.5251 -0.2598 0.0463 0.4299* 0.9589 1.1133
(2,2)
GARCH 1.4105* - 0.8961*  0.5018* 0.9745 1.1289
3, 1.0142%*
GARCH 1.6801* -1.0102  0.2910 0.0882 0.0851 1.4844 1.6608
(3,2)
GARCH 0.2762 0.4695 0.0274 0.3014 -0.0634  -0.0845 1.7642 1.9627
(3.3

Indonesia
GARCH 0.4293* -2.5043 -2.4161
(1,0) *x
GARCH 0.0665 0.4209 -2.5075  -2.3973
(2,0)
GARCH 0.0681 0.4677 -0.0177 -2.4934  -2.3610
(3,0)
GARCH 0.1277 0.6046 -2.4966  -2.3863
(1,1)
GARCH 0.0644 1.5560* - -2.5725  -2.4402
(1,2) 0.7433*
GARCH 0.0590 1.1972 -0.0911 -0.3392  -2.5518  -2.3974
(1,3)
GARCH 0.0578 0.0673 0.6031 -2.4836  -2.3513
(2,1)
GARCH 0.0803 0.0938 -0.2989  0.706** -2.6921 -2.5377
(2,2)
GARCH -0.0157  0.0555*  0.4006* - 0.8852* -2.7174  -2.5410
2,3) 0.5396*
GARCH 0.0653 0.4845 -0.2962  0.5369 -2.4794  -2.3250
(3,1
GARCH 0.0051 -0.0064  0.0947 1.4706*  -0.7915 -2.6364  -2.4599
(3.2) *
GARCH - -0.0066  0.2575 0.0250 -0.0385  0.4071 -2.7465  -2.5479
3.3) 0.0193*

%

Notes: (*), (**) and (***) denote the significance level at 1%, 5% and 10%, respectively.
Source: Result from Eview-10
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4.4, Forecasting

After completing the Box-Jenkins and the GARCH model procedures, the models most suitable
for every case were ready for forecasting. Both dynamic and static methods of forecasting were
compared with the performance.

Table 9: Type of Forecasting According to Performance

Malaysia
Method Type of Forecasting performance
forecasting Root Mean Mean Theil Symmetric
Squared Absolute Inequality MAPE
Error Error Coefficient
ARIMA (4,1,4) Dynamic 0.1885 0.1156 0.8947 189.7260
Static 0.1829 0.1128 0.7341 162.2057
GARCH (1,0) Dynamic 0.1900 0.1175 0.9286 188.7749
Static 0.1934 0.1196 0.8142 175.9895
Singapore
Method Type of Forecasting performance
forecasting Root Mean Mean Theil Symmetric
Squared Absolute Inequality MAPE
Error Error Coefficient
SARIMA Dynamic 0.0523 0.0373 0.9335 190.5053
(1,1,3)(0,1,1)12 Static 0.0326 0.0195 0.3515 112.0736
GARCH (3,0) Dynamic 0.0532 0.0391 0.8700 177.0393
Static 0.0349 0.0197 0.3699 109.5522
Thailand
Method Type of Forecasting performance
forecasting Root Mean Mean Theil Symmetric
Squared Absolute Inequality MAPE
Error Error Coefficient
SARIMA Dynamic 0.1631 0.1317 0.7104 152.7781
(2,1,1)(2,1,1)12 Static 0.1483 0.1135 0.5367 118.1269
GARCH (1,3) Dynamic 0.2807 0.1471 0.9338 184.9316
Static 0.1713 0.1327 0.6895 132.3059
The Philippines
Method Type of Forecasting performance
forecasting Root Mean Mean Theil Symmetric
Squared Absolute Inequality MAPE
Error Error Coefficient
SARIMA Dynamic 0.9048 0.4139 0.9843 189.5218
(1,1,3)(1,1,0)12 Static 0.7922 0.3938 0.5956 135.9636
GARCH (2,2) Dynamic 0.8642 0.3937 0.9886 188.0251
Static 0.8318 0.3646 0.6843 137.9364
Indonesia
Method Type of Forecasting performance
forecasting Root Mean Mean Theil Symmetric
Squared Absolute Inequality MAPE
Error Error Coefficient
SARIMA Dynamic 0.0956 0.0513 0.6455 97.3473
(1,1,6)(2,1,1)12 Static 0.0418 0.0207 0.2088 39.7484



Kuang Yong Ng, Zalina Zainal and Shamzaeffa Samsudin

GARCH (3,3) Dynamic 0.1058 0.0756 0.9100 159.5516
Static 0.0722 0.0312 0.3611 47.9911
Source: Result from Eview-10

From Table 9, the static models exhibited lower values for RMSE, MAE, Theil inequality
coefficient, and symmetric MAPE compared to the dynamic forecasting method. Consequently,
this study used static forecasting for each country case. Based on the forecasting performances,
both the ARIMA and SARIMA models outperformed the GARCH model. Therefore, the ARIMA
and SARIMA models were more suitable for forecasting unemployment among ASEAN-5
countries when compared to the GARCH model. Using ARIMA or SARIMA, the forecasted
unemployment rates were compared with the actual unemployment rate. The comparison focused
on the COVID-19 pandemic period, from January 2020 to December 2021 for Malaysia, Singapore,

the Philippines and Indonesia, and from January 2020 to December 2020 for Thailand. The results
are displayed in Figures 11 to 15.

Figure 11: The Actual and Forecasted Unemployment Rates in Malaysia, January 2020—
December 2021
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Figure 12: The Actual and Forecasted Unemployment Rates in Singapore, January 2020—

December 2021
4
——-—_—
3 _——— ——————————___
2
1
0
O O O O O O O 0 0o 0 O O f 4 A A A A A A A A A
g gaggaagFgaagFgFagFFa
cC O = = cC = O B O C O = = cC = O QB (5]
mwwa%:gstSwmmwa%:E,:moém
L=l s 7 LN O zo~>uL =<3 > I B0 2A

= Actual Unemployment Rate (%) Forecasted Unemployment Rate (%)
Source: Result from Eview-10

988



Kuang Yong Ng, Zalina Zainal and Shamzaeffa Samsudin

Figure 13: The Actual and Forecasted Unemployment Rates in Thailand, January 2020—

December 2020
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Figure 14: The Actual and Forecasted Unemployment Rates in the Philippines, January 2020—
December 2021
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Figure 15: The Actual and Forecasted Unemployment Rates in Indonesia, January 2020—

December 2021
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Based on the findings, the forecasted unemployment rate was the same as the actual unemployment
rate for Malaysia, Singapore and Indonesia. Therefore, the ARIMA model was suitable for
forecasting unemployment in Malaysia. This result was in line with the studies by Ismail et al.
(2022) and Lip et al. (2021). Meanwhile, the SARIMA model adequately forecasted
unemployment in Singapore and Indonesia. For these two countries, the forecasted results added
new knowledge to the existing literature review, whereby the SARIMA model can compute with
suitable forecasted results. The forecasted results in Thailand and the Philippines deviated from
the actual data; however, the trends still followed the same pattern as the actual result. Therefore,
the SARIMA model was suitable for forecasting unemployment in Thailand and the Philippines
and tallied with the studies conducted by Mahipan et al. (2013) and Urrutia et al. (2017).

5. CONCLUSION

In conclusion, this study aimed to compare the performance of ARIMA, SARIMA, and GARCH
models in modelling and forecasting unemployment rates during the COVID-19 pandemic among
the ASEAN-5 countries: Malaysia, Singapore, Thailand, the Philippines and Indonesia. An
adequate model is vital to obtain a better forecast result. Each country’s ARIMA and SARIMA
models were selected based on the lowest value in the Akaike information criterion, Schwarz
Bayesian criterion and Hannan-Quinn criterion. From the results, Malaysia’s case could not
proceed with SARIMA because there was no seasonal pattern in the unemployment variable.
Therefore, the most fitted model for Malaysia was ARIMA (4,1,4). Meanwhile, Singapore,
Thailand, the Philippines and Indonesia were most suited with SARIMA (1,1,3)(0,1,1)12, SARIMA
(2,1,1) (2,1,1)12, SARIMA (1,1,3)(1,1,0)12 and SARIMA (1,1,6) (2,1,1)12, respectively. The
adequate GARCH model was selected according to the lowest AIC and SC values. The most
appropriate model for Malaysia was GARCH (1,0), Singapore was GARCH (3,0), Thailand was
GARCH (1,3), the Philippines was GARCH (2,2) and Indonesia was GARCH (3,3).

Based on the root mean squared error, mean absolute error, Theil inequality coefficient
and symmetric MAPE, the ARIMA and SARIMA models showed a better result when compared
with the GARCH model among theASEAN-5 countries to forecast unemployment. Consequently,
this condition was the same as that of Haque and Shaik (2021) and Nuryatin (2020). This study’s
result was also aligned with Ismail et al. (2022) and Waffa and Wahiba (2022), in which the
ARIMA and SARIMA models are the best fit to forecast unemployment, even during the COVID-
19 pandemic period. Therefore, forecasting is paramount to planning future policies to overcome
economic disturbance. The COVID-19 pandemic has deteriorated ASEAN economies, especially
in terms of unemployment. The forecasted unemployment rate can guide government agencies in
implementing related policies to recover from unemployment. Future studies can utilise different
types of time series data, for example, yearly and quarterly data, to further the forecasting capacity.
Moreover, other forecasting techniques, including Simple Exponential Smoothing (SES), Holt’s
model and Avrtificial Neutral Network (ANN), are recommended to be adopted and compared with
the ARIMA and SARIMA models.
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