Thermal, Structural and Biodegradability Properties of Bio-Based Kenaf/PMMA Composites Reinforced with Chitosan

Authors

  • NURQISTINA NABILAH ABDUL RAHAMAN Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al Sultan Abdullah,
  • NOR HANUNI RAMLI Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al Sultan Abdullah
  • NURJANNAH SALIM Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al Sultan Abdullah

Keywords:

Bio-based Filler, Chitosan, Kenaf Fiber, PMMA Composite

Abstract

This study investigates the incorporation of chitosan into kenaf/poly(methyl methacrylate) (PMMA) hybrid composites to enhance thermal, physical, and biodegradability properties. Kenaf fibers were alkali-treated, ground, and mixed with PMMA, while chitosan was incorporated at 10 g and 20 g concentrations in PMMA. The composites were fabricated via hot pressing method and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Thermogravimetric Analysis (TGA), water absorption and soil burial analyses. FTIR spectra revealed intensified –OH and –NH stretching peaks (~3351 cm⁻¹), indicating strong hydrogen bonding and compatibility between chitosan and the PMMA matrix. SEM micrographs showed improved fiber–matrix adhesion with reduced void formation in the 20 g chitosan composite. TGA results demonstrated enhanced thermal stability, with char residue increasing from 1.43% (0 g chitosan) to 2.07% (20 g chitosan) and degradation temperatures shifting toward higher ranges. Water absorption tests showed a reduction of up to 28% in moisture uptake in chitosan-modified samples compared to the control. Soil burial analysis confirmed improved biodegradability, with weight loss increasing by nearly 35% after 30 days for the highest chitosan-loaded sample. EDX analysis further confirmed successful chitosan incorporation with increased oxygen and carbon elemental signals. Overall, chitosan significantly improved the interfacial bonding, thermal stability, durability, and environmental responsiveness of the kenaf/PMMA hybrid composites, making them viable candidates for sustainable applications such as biodegradable panels and green furniture.

References

Ahmadzadeh, S., Azadmard, D.S., Valizadeh, H., & Peighambardoust, S. H. (2018). Production of chitosan–gallic acid nanogel and its application in sunflower oil oxidative stability. Iranian Journal of Biosystems Engineering, 49(1): 121-128.

Akil, H., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Bakar, A. A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9): 4107-4121.

Amaregouda, Y., & Kamanna, K. (2024). Carboxymethyl cellulose/starch-based films incorporating chitosan nanoparticles for multifunctional food packaging. Cellulose, 31(4): 2413-2427.

Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in polymer science, 24(2): 221-274.

Du, Y., Wu, T., Yan, N., Kortschot, M. T., & Farnood, R. (2014). Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Composites Part B: Engineering, 56: 717-723.

Grząbka-Zasadzińska, A., Amietszajew, T., & Borysiak, S. (2017). Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. Journal of Thermal Analysis and Calorimetry, 130(1): 143-154.

Hu, S., Song, L., Pan, H., & Hu, Y. (2013). Effect of a novel chitosan-based flame retardant on thermal and flammability properties of polyvinyl alcohol. Journal of thermal analysis and calorimetry, 112(2): 859-864.

Ilyas, R., Sapuan, S., Harussani, M., Hakimi, M., Haziq, M., Atikah, M., Nurazzi, N. (2021). Polylactic acid (PLA) biocomposite: Processing, additive manufacturing and advanced applications. Polymers, 13(8): 1326.

Ilyas, R. A., Aisyah, H. A., Nordin, A. H., Ngadi, N., Zuhri, M. Y. M., Asyraf, M. R. M., Abral, H. (2022). Natural-fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications. Polymers, 14(5): 874.

Jawaid, M., & Khalil, H. P. S. A. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate polymers, 86(1): 1-18.

Kim, D., Lim, J., Jung, D., Oh, W., Kyeong, J., Kwon, S. H., & Lee, S. G. (2023). Thermal and mechanical properties of polymeric materials for automotive applications using molecular dynamics simulation. Materials Today Communications, 36: 106529.

Lin, H.-N., Peng, T.-Y., Kung, Y.-R., Chiou, Y.-J., Chang, W.-M., Wu, S.-H., Lin, C.K. (2023). Effects of the methyl methacrylate addition, polymerization temperature and time on the MBG@PMMA core-shell structure and its application as addition in electrospun composite fiber bioscaffold. Ceramics International, 49(5): 7630-7639.

Manyatshe, A., Cele, Z. E. D., Balogun, M. O., Nkambule, T. T. I., & Msagati, T. A. M. (2022). Lignocellulosic derivative-chitosan biocomposite adsorbents for the removal of soluble contaminants in aqueous solutions–preparation, characterization and applications. Journal of Water Process Engineering, 47: 102654.

Mokhothu, T. H., & John, M. J. (2017). Bio-based fillers for environmentally friendly composites. Wiley Publisher. pp. 243-270.

Popyrina, T. N., Khavpachev, M. A., Ivanov, P. L., Monakhova, K. Z., Kuchkina, I. O., Evtushenko, Y. M., & Zelenetskii, A. N. (2024). Morphology and Physical-Chemical Properties of Composite Materials Based on Polyolefins and Chitosan. Polymer Science, Series C, 66(1): 46-54.

Rachtanapun, P., & Suriyatem, R. (2012). Moisture sorption isotherms of soy protein isolate/carboxymethyl chitosan blend films. Journal of Agricultural Science and Technology. 2(1A): 50.

Rajamuneeswaran, S., Jayabal, S., Kalyana Sundaram, S., Balaji, N. S., & Ramkumar, P. (2015). Effect of chitosan particle addition on the tensile and flexural strength of coir fiber reinforced polyester composites. Applied Mechanics and Materials, 813: 30-33.

Râpă, M., Miteluţ, A. C., Tănase, E. E., Grosu, E., Popescu, P., Popa, M. E., Vasile, C. (2016). Influence of chitosan on mechanical, thermal, barrier and antimicrobial properties of PLA-biocomposites for food packaging. Composites Part B: Engineering, 102: 112-121.

Salim, N., & Sarmin, S. N. (2023). Biocomposites as Structural Components in Various Applications. In Abu, Z.Y., Mohd S.S., Junidah, L (eds). Cellulose. CRC Press. pp. 105-117

Salim, N., Sarmin, S. N., & Roslan, R. (2024). Effect of interfacial bonding characteristics of chemically treated of various natural fibers reinforced polymeric matrix composites. In Krishnasamy, S., Hemath Kumar, M., Parameswaranpillai, J., Mavinkere Rangappa, S., Siengchin, S. (eds). Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites. Composites Science and Technology. Springer. pp.317-337.

Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. Materials Degradation, 6(1): 68.

Sarmin, S. N., Jawaid, M., Ismail, A. S., Hashem, M., Fouad, H., Midani, M., & Salim, N. (2023). Effect of chitosan filler on the thermal and viscoelasticity properties of bio-epoxy/date palm fiber composites. Sustainable Chemistry and Pharmacy, 36, 101275.

Sharma, H., Arora, G., Singh, M. K., Rangappa, S. M., Bhowmik, P., Kumar, R., Siengchin, S. (2025). From composition to performance: Structural insights into polymer composites. Next Materials, 8: 100852. DOI:10.1016/j.nxmate.2025.100852

Sosiati, H., Al-Giffary, F., Adil, F. A., Kamiel, B. P., Adi, R. K., & Yusuf, Y. (2022). The properties of kenaf/carbon/PMMA hybrid composites by adding chitosan nano and microparticles. Materials Today: Proceedings, 66: 2908-2913.

Srivastava, S., Sarangi, S. K., & Singh, S. P. (2024). Water absorptivity and porosity investigation of nano bio-silica, hemp, and bamboo fibre-reinforced chitosan Bio-composite Material. Silicon, 16(11): 4723-4728. DOI:10.1007/s12633-024-03027-3

Thomas, S. K., Parameswaranpillai, J., Krishnasamy, S., Begum, P. M. S., Nandi, D., Siengchin, S., Sienkiewicz, N. (2021). A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydrate Polymer Technologies and Applications, 2: 100095.

Wang, Z., Yan, Y., Shen, X., Qian, T., Wang, J., Sun, Q., & Jin, C. (2018). Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 10(3): 341.

Downloads

Published

2025-12-29

How to Cite

ABDUL RAHAMAN, N. N. ., RAMLI, N. H. ., & SALIM, N. . (2025). Thermal, Structural and Biodegradability Properties of Bio-Based Kenaf/PMMA Composites Reinforced with Chitosan. Borneo Journal of Resource Science and Technology, 15(2), 138–150. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/9958