The Potential of Neolamarckia cadamba Seedling in Improving Growth Performance and Yield of Zea mays under Different Precipitation Patterns

Authors

  • ROMIA RONA TAGANG Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • HOLLENA NORI Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • WALFTOR DUMIN Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • SZE YEE WEE Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak
  • WEI SENG HO Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • MOHAMAD HILMI IBRAHIM Faculty of Resource Science and Technology, Universiti Malaysia Sarawak

Keywords:

Agroforestry, climate change, growth performance, precipitation pattern, Zea mays

Abstract

Climate change is altering rainfall, with more droughts and severe storms that harm agriculture. These shifts in temperature and precipitation disrupt soil moisture, which is essential for the growth of staple crops. Therefore, this study was conducted to investigate the effects of integrating Neolamarckia cadamba with Zea mays on growth performance under different precipitation patterns: low (T1), normal (T2) and high (T3). The experiment was conducted in a completely randomised block design (CRBD), with the first block representing N. cadamba integrated with Z. mays as agroforestry, the second block representing only Z. mays as a crop and the third block only N. cadamba as a tropical tree species. The growth parameters (number of leaves, diameter, plant height and chlorophyll content) were measured 120 days after planting and the yield parameters (fresh weight, dry weight, number of kernels, fresh weight of kernel, dry weight of kernel) were measured after harvesting. The results showed significant effects of rainfall and agroforestry integration on maize yield in term of dry weight, number of kernels, kernels fresh weight and kernel dry weight. Kernel yield parameters, including fresh weight and kernel number, were highest under T2 and T3 in the agroforestry (AGRO), indicating improved availability of resources and soil conditions by N. cadamba. In term of practices, AGRO produced higher chlorophyll (SPAD: 29.44±1.44 vs 22.47±2.31; p< 0.05) and dry weight (277.24±11.68 g vs 216.84±23.47 g; p< 0.05) than NON-AGRO. These results show an ecological trade-off such as in normal and wet conditions N. cadamba cools the canopy and conserves soil moisture, raising Z. mays performance while under drought, root water pre-emption and reduced light increase competition and depress kernel. At farm level, border or alley planting of N. cadamba with Z. mays can be promoted under normal and wet conditions, while wider spacing or soil-water conservation is advisable in dry conditions the policymakers can include maize and N. cadamba designs in agroforestry extension as part of climate-smart agriculture.

References

Alam, M.M., Siwar, C., Jaafar, A., Talib, B. & Salleh, K. (2013). Agricultural vulnerability and adaptation to climatic changes in Malaysia: Review on paddy sector. Political Economy: Taxation. DOI: 10.12944/CWE.8.1.01

Bayala, J. & Prieto, I. (2019). Water acquisition, sharing and redistribution by roots: Applications to agroforestry systems. Plant and Soil, 453: 17–28. DOI: 10.1007/s11104-019-04173-z

Das, P., Singh, V., Johar, V., Deepaboli & Singh, A. (2024). Agroforestry as a contraption for controlling soil erosion and improving soil health: A review. Pollution Research, 43(1–2): 14–22. DOI: 10.53550/pr.2024.v43i01-02.014

Dilla, A., Smethurst, P., Barry, K., Parsons, D. & Denboba, M. (2018). Tree pruning, zone and fertiliser interactions determine maize productivity in the Faidherbia albida (Delile) A. Chev parkland agroforestry system of Ethiopia. Agroforestry Systems, 92(6): 1807–1817. DOI: 10.1007/s10457-018-0304-9

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K. & Prasanna, B. (2022). Global maize production, consumption and trade: trends and R&D implications. Food Security, 14(5): 1295–1319. DOI: 10.1007/s12571-022-01288-7

Fahad, S., Chavan, S., Chichaghare, A.R., Uthappa, A.R., Kumar, M., Kakade, V., Pradhan, A., Jinger, D., Rawale, G., Yadav, D.K., Kumar, V., Farooq, T.H., Ali, B., Sawant, A., Saud, S., Chen, S. & Poczai, P. (2022). Agroforestry systems for soil health improvement and maintenance. Sustainability, 14(22): 14877. DOI: 10.3390/su142214877

Firdaus, R., Samsurijan, M., Singh, P., Yahaya, M.H., Latiff, A. & Vadevelu, K. (2018). Impak perubahan iklim ke atas pertanian berdasarkan model simulasi pertumbuhan tanaman (CGS). Malaysian Journal of Society and Space, 14(3): 67–79. DOI: 10.17576/GEO-2018-1403-05

Froufe, L., Schwiderke, D.K., Castilhano, A.C., Cezar, R., Steenbock, W., Seoane, C.E.S., Bognola, I.A. & Vezzani, F. (2019). Nutrient cycling from leaf litter in multistrata successional agroforestry systems and natural regeneration at Brazilian Atlantic Rainforest Biome. Agroforestry Systems, 94: 159–171. DOI: 10.1007/s10457-019-00377-5

Hooper, D., Chapin, F., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J., Lodge, D., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A., Vandermeer, J. & Wardle, D. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75: 3–35. DOI: 10.1890/04-0922

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76: 1–10. DOI: 10.1007/s10457-009-9229-7

Khatta, A.N.M., Mekai, M.H.A., Kadir, A.M., Suhinin, O.A., Suhaidi, H., Abdullah, N., Nyen, K.P.K., Kimjus, K., Terhem, R. & Hassan, A. (2023). Acclimatisation of white laran (Neolamarckia cadamba Roxb. Bosser) and binuang (Octomeles sumatrana Miq.) seedlings to water-logged and water-stress conditions. Forests, 14(3): 500. DOI: 10.3390/f14030500

Kumar, Y., ManojKumar, S. & Behera, L. (2022). Tree root dynamics: An essential tool to combat root competition in agroforestry. Ecology, Environment and Conservation, 28(4): 1805–1811. DOI: 10.53550/eec.2022.v28i04s.057

Lorenz, K. & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems: A review. Agronomy for Sustainable Development, 34: 443–454. DOI: 10.1007/s13593-014-0212-y

Mishra, A., Sinha, B., Kumar, R., Barth, M., Hakkim, H., Kumar, V., Kumar, A., Datta, S., Guenther, A. & Sinha, V. (2020). Cropland trees need to be included for accurate model simulations of land-atmosphere heat fluxes, temperature, boundary layer height, and ozone. The Science of the Total Environment, 751: 141728. DOI: 10.1016/j.scitotenv.2020.141728

Ngaba, M.J.Y., Mgelwa, A.S., Gurmesa, G.A., Uwiragiye, Y., Zhu, F., Qiu, Q., Fang, Y., Hu, B. & Rennenberg, H. (2023). Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant and Soil, 496: 589–607. DOI: 10.1007/s11104-023-06385-w

Széles, A., Horváth, É., Simon, K., Zagyi, P. & Huzsvai, L. (2023). Maize production under drought stress: nutrient supply, yield prediction. Plants, 12(18): 3301. DOI: 10.3390/plants12183301

Tang, K. (2019). Climate change in Malaysia: Trends, contributors, impacts, mitigation, and adaptations. The Science of the Total Environment, 650(2): 1858–1871. DOI: 10.1016/j.scitotenv.2018.09.316

Wamalwa, D.S., Musyimi, D., Sikuku, P. & Odhiambo, D. (2021). Growth and gas exchange responses of maize and banana plants in an intercrop with agroforestry tree species in Vihiga County, Kenya. Asian Journal of Agricultural and Rural Studies, 6(3): 10–18. DOI: 10.9734/ajrcs/2021/v6i330119

Wang, H., Chen, B. & Shen, X. (2024). Extreme rainfall, farmer vulnerability, and labor mobility—evidence from rural China. The Science of the Total Environment, 919: 170866. DOI: 10.1016/j.scitotenv.2024.170866

Yin, X., Jabloun, M., Olesen, J., Öztürk, I., Wang, M. & Chen, F. (2015). Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast farming region of China. The Journal of Agricultural Science, 154: 1171–1189. DOI: 10.1017/S0021859616000150

Zomer, R., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., van Noordwijk, M. & Wang, M. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6: 29987. DOI: 10.1038/srep29987

Downloads

Published

2025-12-29

How to Cite

TAGANG, R. R., NORI, H., DUMIN, W., WEE, S. Y., HO, W. S., & IBRAHIM, M. H. . (2025). The Potential of Neolamarckia cadamba Seedling in Improving Growth Performance and Yield of Zea mays under Different Precipitation Patterns. Borneo Journal of Resource Science and Technology, 15(2), 94–101. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/8534