Microplastic Quantification in Meretrix lyrata through Rapid Screening Method using Nile Red

Authors

  • NGIE-HAO ERIC LAU Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • AAZANI MUJAHID Faculty of Resource Science and Technology, Universiti Malaysia Sarawak
  • CINDY PETER Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak
  • MORITZ MÜLLER Swinburne University of Technology Sarawak Campus

Keywords:

Fluorescent tagging, High lipid content samples, Microplastics, Nile red, Rapid screening method

Abstract

Microplastic have emerged as a significant form of plastic pollution. Many ingestions in biota were reported worldwide. Filter feeder such as bivalves are prone to microplastic ingestion due to the non-selective feeding behavior. Shellfish are usually consumed as whole, without gut removal, which can pose a threat towards human consumption. Meretrix lyrata was chosen in this study to investigate the rate of microplastic ingestion under two factors: size class and harvesting seasons. This will be the first documentation of microplastic ingestion in M. lyrata using a rapid screening approach. Rapid screening approach is using fluorescent tagging on microplastic for biota samples in microplastic quantification. All samples (n = 81) in this study were positive with microplastic ingestion. A total of 15,867 microplastic were quantified, with the average microplastic ingestion of 195.90 ± 43.6 microplasticindividuals-1. Smaller sized clam tended to ingest more microplastic compared to larger sized clams but no significant differences (p = 0.05) in microplastic ingestion were observed according to harvesting season. Polyvinylchloride, polypropylene with silicate mix, resin dispersion and polydimethylsiloxane were identified. Microplastics pose threats by carrying toxic substances, causing harmful behavioral changes in marine life, damaging health when combined with contaminants, and increasing human exposure through contaminated seafood. Result from this study indicate that habitats for M. lyrata have pervasive microplastic pollution and raise the issue of high microplastic uptake in humans via M. lyrata consumption.

Author Biographies

AAZANI MUJAHID, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak

Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

CINDY PETER, Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak

Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

MORITZ MÜLLER, Swinburne University of Technology Sarawak Campus

Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia

References

Álvarez-Muñoz, D., Llorca, M., Blasco, J. & Barceló, D. (2016). Contaminants in the Marine Environment. In Blasco. J., Chapman, P, M., Campana, O. & Hampel, M. (eds.) Marine Ecotoxicology: Current knowledge and future issue, Cambridge: Academic Press. pp. 1-34.

Ambie, S., Peter, C., Minton, G., Ngeian, J., Zulkifli Poh, A. N., Mujahid, A. & Tuen, A. A. (2023). Utilizing interview-based data to measure interactions of artisanal fishing communities and cetacean populations in Kuching Bay, Sarawak, East Malaysia. Ocean & Coastal Management, 239: 106592. https://doi.org/10.1016/j.ocecoaman.2023.106592

Auta, H. S., Emenike, C. U. & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102: 165-176. 10.1016/j.envint.2017.02.013

Brach, L., Deixonne, P., Bernard, M. F., Durand, E., Desjean, M. C., Perez, E., Sebilie, E. V. & Ter Halle, A. (2018). Anticyclonic eddies increase accumulation of microplastics in the North Atlantic subtropical gyre. Marine Pollution Bulletin, 126: 191-196. 10.1016/j.marpolbul.2017.10.077

Chinfak, N., Sompongchaiyakul, P., Charoenpong, C., Shi, H., Yeemin, T. & Zhang, J. (2021). Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi Phumduang river system and Bandon Bay, Thailand. Science of The Total Environment, 781: 146700. 10.1016/j.scitotenv.2021.146700

Cho, Y., Shim, W. J., Jang, M., Han, G. M. & Hong, S. H. (2019). Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental Pollution, 245: 1107-1116. 10.1016/j.envpol.2018.11.091

Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin. 62: 2588–2597. 10.1016/j.marpolbul.2011.09.025

Cowger, W., Steinmetz, Z., Gray, A., Munno, K., Lynch, J., Hapich, H. & Herodotou, O. (2021). Microplastics spectral classification needs an open source community: Open specy to the rescue! Analytical Chemistry, 93(21): 7543–7548. 10.1021/acs.analchem.1c00123

Deng, H., He, J., Feng, D., Zhao, Y., Sun, W., Yu, H. & Ge, C. (2021). Microplastics pollution in mangrove ecosystems: A critical review of current knowledge and future directions. Science of The Total Environment, 753: 142041. 10.1016/j.scitotenv.2020.142041

Ding, J. F., Sun, C. J., He, C. F., Li, J. X., Ju, Peng., & Li, F. M. (2021). Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Science of The Total Environment, 782: 146830. https://doi.org/10.1016/j.scitotenv.2021.146830

Erni-Cassola, G., Gibson, M. I., Thompson, R. C. & Christie-Oleza, J. A. (2017). Lost, but found with Nile Red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 51(23): 13641–13648. 10.1021/acs.est.7b04512

Fu, Z., Chen, G., Wang, W. & Wang, J. (2020). Microplastics pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environmental Pollution, 266: 115098. 10.1016/j.envpol.2020.115098

Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7): e1700782. 10.1126/sciadv.1700782

Green, D. S., Boots, B., O’Connor, N. E. & Thompson, R. (2017). Microplastics affect the ecological functioning of an important biogenic habitat. Environmental Science & Technology, 51(1): 68-77. 10.1021/acs.est.6b04496

Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L. & Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, 53(3): 1039–1047. 10.1021/acs.est.8b05297

Hasbudin, H., Harith, M. N. & Idrus, F. A. (2022). A review on microplastic ingestion in marine invertebrates from Southeast Asia. Songklanakarin Journal of Science and Technology 44(3): 609–618. 10.14456/sjst-psu.2022.84

Idrus, F. A., Fadhli, N. M. & Harith, M. N. (2022a). Occurrence of microplastics in the Asian freshwater environments: A Review. Applied Environmental Research, 44(2), 1–17. https://doi.org/10.35762/AER.2022.44.2.1

Idrus, F. A., Roslan, N. S. & Harith, M. N. (2022b). Occurrence of macro- and micro-plastics on Pasir Pandak Beach, Sarawak, Malaysia. Jurnal Ilmiah Perikanan Dan Kelautan 14(2). https://doi.org/10.20473/jipk.v14i2.34034

Karbalaei, S., Hanachi, P., Walker, T. R. & Cole, M. (2018). Occurrence, sources, human health impacts and mitigation of microplastics pollution. Environmental Science and Pollution Research, 25(36): 36046–36063. 10.1007/s11356-018-3508-7

Karim, N., Musa, S. & Mat Lazim, A. (2023). Microplastics physicochemical properties in commercial bivalves from Malaysia. SSRN preprint. 10.2139/ssrn.4366421

Ke, A.Y., Chen, J., Zhu, J., Wang, Y.-H., Hu, Y., Fan, Z. L., Chen, M., Peng, P., Jiang, S. W., Xu, X. R. & Li, H. X. (2019). Impacts of leachates from single-use polyethylene plastic bags on the early development of clam Meretrix Meretrix (Bivalvia: Veneridae). Marine Pollution Bulletin, 142: 54–57. 10.1016/j.marpolbul.2019.03.029

Kieu-Le, T.-C., Tran, Q.-V., Truong, T.-N.-S. & Strady, E. (2022). Anthropogenic fibres in white clams, Meretrix lyrata, cultivated downstream a developing megacity, Ho Chi Minh City, Viet Nam. Marine Pollution Bulletin, 174. 113302. 10.1016/j.marpolbul.2021.113302

Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K. & Shi, H. (2018). Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion. Science of the Total Environment, 610: 635-640. 10.1016/j.scitotenv.2017.08.053

Lavers, J. L. & Bond, A. L. (2017). Exceptional and rapid accumulation of anthropogenic debris on one of the world’s most remote and pristine islands. Proceedings of the National Academy of Sciences, 114(23): 6052-6055. 10.1073/pnas.1619818114

Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajibane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debelijak, P., Maral, H., Schoeneich-Argent, R., Brambini, R. & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8(1): 1-15. 10.1038/s41598-018-22939-w

Lebreton, L., Egger, M. & Slat, B. (2019). A global mass budget for positively buoyant macroplastic debris in the ocean. Scientific Reports, 9(1): 1–10. 10.1038/s41598-019-49413-5

Li, Q., Sun, C., Wang, Y., Cai, H., Li, L., Li, J. & Shi, H. (2019). Fusion of microplastics into the mussel byssus. Environmental Pollution, 252: 420–426g. 10.1016/j.envpol.2019.05.093

Luan, L., Wang, X., Zheng, H., Liu, L., Luo, X. & Li, F. (2019). Differential toxicity of functionalized polystyrene microplastics to clams (Meretrix meretrix) at three key development stages of life history. Marine Pollution Bulletin, 139: 346–354. 10.1016/j.marpolbul.2019.01.003

Lusher, A. L. & Hernandez-Milian, G. (2018). Microplastic extraction from marine vertebrate digestive tracts, regurgitates and scats: A protocol for researchers from all experience levels. Bio Protocol, 8(22): 10.21769/BioProtoc.3087.

Maes, T., Jessop, R., Wellner, N., Haupt, K. & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7(1): 1–10. 10.1038/srep44501

Mazni, M. Z., Azman, S., Mohd Ismail, M. I. & Muhammad, M. K. (2022). Microplastics contents in natural and maricultured shellfish from Pasir Putih estuary in Johor, Malaysia. Journal of Sustainability Science and Management, 17(10): 121–135. 10.46754/jssm.2022.10.009

Nuelle, M.-T., Dekiff, J. H., Remy, D. & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184: 161–169. 10.1016/j.envpol.2013.07.027

Prata, J. C., Alves, J. R., da Costa, J. P., Duarte, A. C. & Rocha-Santos, T. (2020). Major factors influencing the quantification of Nile red stained microplastics and improved automatic quantification (MP-VAT 2.0). Science of The Total Environment, 719: 137498. 10.1016/j.scitotenv.2020.137498

Prata, J. C., Sequeira, I. F., Monteiro, S. S., Silva, A. L. P., da Costa, J. P., Dais Pereira, P., Fernandes, A. J. S., da Costa, F. M., Duarte, A. C. & Rocha Santos, T. (2021). Preparation of biological samples for microplastic identification by Nile Red. Science of The Total Environment, 783: 147065. https://doi.org/10.1016/j.scitotenv.2021.147065

Quinn, B., Murphy, F. & Ewins, C. (2017). Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, 9(9): 1491–1498. 10.1039/C6AY02542K

Reed, S., Clark, M., Thompson, R. & Hughes, K. A. (2018). Microplastics in marine sediments near Rothera research station, Antarctica. Marine Pollution Bulletin, 133: 460–463. 10.1016/j.marpolbul.2018.05.068

Rist, S. E., Assidqi, K., Zamani, N. P., Appel, D., Perschke, M., Huhn, M. & Lenz, M. (2016). Suspended micro-sized PVC particles impair the performance and decrease survival in the asian green mussel Perna viridis. Marine Pollution Bulletin, 111(1-2): 213–220. 10.1016/j.marpolbul.2016.07.006

Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastics in the aquatic environment. Environmental Science & Technology Letters, 4(7): 258–267. 10.1021/acs.estlett.7b00164

Sathish, M. N., Jeyasanta, K. I. & Patterson, J. (2020). Monitoring of microplastics in the clam Donax Cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India. Environmental Pollution, 266: 115219. 10.1016/j.envpol.2020.115219

Scott, N., Porter, A., Santillo, D., Simpson, H., Lloyd-Williams, S. & Lewis, C. (2019). Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Marine Pollution Bulletin, 146: 125–133. 10.1016/j.marpolbul.2019.05.041

Shahul Hamid, F., Bhatti, M. S., Anuar, N., Anuar, N., Mohan, P. & Periathamby, A. (2018). Worldwide distribution and abundance of microplastics: How dire is the situation? Waste Management and Research, 36(10): 873–897. 10.1177/0734242X18785730

Sparham, C., Van Egmond, R., Hastie, C., O’Connor, S., Gore, D. & Chowdhury, N. (2011). Determination of decamethylcyclopentasiloxane in river and estuarine sediments in the UK. Journal of Chromatography A, 1218(6): 817¬–823. 10.1016/j.chroma.2010.12.030

Tang, R., Zhang, T., Song, K., Sun, Y., Chen, Y., Huang, W. & Feng, Z. (2022) Microplastics in commercial clams from the intertidal zone of the South Yellow Sea, China. Frontiers in Marine Science, 9: 905923. 10.3389/fmars.2022.905923

Tran-Nguyen, Q. A., Nguyen, T. Q., Phan, T. L., Vo, M. V. & Trinh-Dang, M. (2023). Abundance of microplastics in two venus clams (Meretrix Lyrata and Paratapes Undulatus) from estuaries in central Vietnam. Water, 15(7): 1312. 10.3390/w15071312

Whelan, M. J., Sanders, D. & Van Egmond, R. (2009). Effect of aldrich humic acid on water–atmosphere transfer of decamethylcyclopentasiloxane. Chemosphere, 74(8): 1111–1116. 10.1016/j.chemosphere.2008.10.037

Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D. & Matrai, P. A. (2018). Microplastics fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin, 137: 638–645. 10.1016/j.marpolbul.2018.10.061

Wu, F., Pennings, S. C., Tong, C. & Xu, Y. (2020). Variation in microplastics composition at small spatial and temporal scales in a tidal flat of the Yangtze Estuary, China. Science of The Total Environment, 699. 134252. 10.1016/j.scitotenv.2019.134252

Yoshida, S. (2014). Quantitative evaluation of an epoxy resin dispersion by infrared spectroscopy. Polymer Journal, 46(7): 430–434. 10.1038/pj.2014.15

Zarfl, C. (2019). Promising techniques and open challenges for microplastics identification and quantification in environmental matrices. Analytical and Bioanalytical Chemistry, 411(17): 3743–3756. 10.1007/s00216-019-01763-9

Zhang, F., Man, Y. B., Mo, W. Y., Man, K. Y. & Wong, M. H. (2020). Direct and indirect effects of microplastics on bivalves, with a focus on edible species: A mini-review. Critical Reviews in Environmental Science and Technology, 50(20): 2109–2143. 10.1080/10643389.2019.1700752

Zhang, T., Song, K., Meng, L., Tang, R., Song, T., Huang, W. & Feng, Z. (2022). Distribution and characteristics of microplastics in barnacles and wild bivalves on the coast of the Yellow Sea, China. Frontiers in Marine Science, 8: 78961. 10.3389/fmars.2021.78961

Downloads

Published

2025-12-29

How to Cite

LAU, N.-H. E. ., MUJAHID, A. ., PETER, C. ., & MÜLLER, M. . (2025). Microplastic Quantification in Meretrix lyrata through Rapid Screening Method using Nile Red . Borneo Journal of Resource Science and Technology, 15(2), 67–79. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/8508