Modelling of Schiff Base Vanillin Derivatives Targeting Streptococcus Pneumoniae Bacterial Neuraminidase

Authors

  • WOON YI LAW Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MOHD RAZIP ASARUDDIN Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

Keywords:

Molecular docking, neuraminidase, pharmacophore modelling, Schiff base vanillin derivatives, Streptococcus pneumoniae

Abstract

Streptococcus pneumoniae is a pathogenic bacterium which has led to serious pneumococcal infections. Despite the fact that efficient therapeutic agents and vaccinations are available for the treatment of Streptococcus pneumoniae infections, more strains of Streptococcus pneumoniae have acquired significant resistance towards the available antibiotics. The neuraminidase of Streptococcus pneumoniae possess significant contribution in pathogenesis, aiding the release and spread of virus. Simultaneously, Schiff base vanillin derivatives were reported in past literature for their great deal of potential as inhibitors of influenza virus neuraminidase. Hence, the research aims to evaluate the inhibitory activity of Schiff base vanillin derivatives against Streptococcus pneumoniae neuraminidase via ligand-based pharmacophore modelling and structure-based molecular docking using LigandScout 4.4.9 and AutoDock 4.2. Ligand-based pharmacophore modelling was performed to analyse the anti-neuraminidase activity of Schiff base vanillin derivatives based on their pharmacophore fit values and matching pharmacophore features with a pharmacophore model, generated from a list of training sets, which are reported drugs against Streptococcus pneumoniae neuraminidase. In structure-based molecular docking, the Schiff base vanillin derivatives were evaluated based on their docking performances with the active sites of the crystal structure of PDB:2YA8. Evaluations were based on their pharmacophore scores, binding affinity and matching interactions with the inhibitory ligand of 2YA8. 20 out of 21 Schiff base vanillin derivatives successfully show good results in ligand-based pharmacophore modelling, as well as satisfying docking performances in structure-based molecular docking. Furthermore, they also fulfill the Lipinski’s Rule of 5, thus displaying appreciable potential as inhibitors of Streptococcus pneumoniae neuraminidase.

References

Al-Shar’i, N., & Musleh, S. (2020). Identification of CHK1 Kinase Inhibitors Using Structure-Based Pharmacophore Modelling and Molecular Docking. Indian Journal of Pharmaceutical Sciences, 82: 472–482. DOI: 10.36468/pharmaceutical-sciences.670

Asaruddin, M. R. (2016). Modelling and Syntheses of Vanillin Derivatives Targeting Influenza Virus Neuraminidase. (PhD thesis), Universiti Sains Malaysia, Malaysia.

Benet, L. Z., Hosey, C. M., Ursu, O. & Oprea, T. I. (2016). BDDCS, the Rule of 5 and Drugability. Advanced Drug Delivery Reviews, 101: 89–98.

Benton, D. J., Wharton, S. A., Martin, S. R. & McCauley, J. W. (2017). Role of Neuraminidase in Influenza A(H7N9) Virus Receptor Binding. Journal of Virology, 91(11): e02293–16. DOI: 10.1128/jvi.02293-16

Bogaert, D., de Groot, R. & Hermans, P. W. M. (2004). Streptococcus Pneumoniae Colonisation: The Key to Pneumococcal Disease. The Lancet Infectious Diseases, 4(3): 144–154. DOI: 10.1016/S1473-3099(04)00938-7

Centers for Disease Control and Prevention. (2023). Pneumococcal Vaccination. Retrieved June 15, 2024, from https://www.cdc.gov/pneumococcal/vaccines/index.html

Centers for Disease Control and Prevention. (2024). Antibiotic-Resistant Streptococcus Pneumoniae. Retrieved June 16, 2024, from https://www.cdc.gov/pneumococcal/php/drug-resistance/index.html

Dion, C.F. & Ashurst, J.V. (2022). Streptococcus Pneumoniae. Retrieved June 16, 2024 from https://www.ncbi.nlm.nih.gov/books/NBK470537/

European Centre for Disease Prevention and Control. (2023). Factsheet About Pneumococcal Disease. Retrieved June 13, 2024, from https://www.ecdc.europa.eu/en/pneumococcal-disease/facts

Grienke, U., Richter, M., Walther, E., Hoffmann, A., Kirchmair, J., Makarov, V., Nietzsche, S., Schmidtke, M. & Rollinger, J. M. (2016). Discovery of Prenylated Flavonoids with Dual Activity Against Influenza Virus and Streptococcus Pneumoniae. Scientific Reports, 6: 27156. DOI: 10.1038/srep27156

Guan, S., Zhu, K., Dong, Y., Li, H., Yang, S., Wang, S. & Shan, Y. (2020). Exploration of Binding Mechanism of a Potential Streptococcus Pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation. International Journal of Molecular Sciences, 21(3): 1003. DOI: 10.3390/ijms21031003

Gut, H., Xu, G., Taylor, G. L. & Walsh, M. A. (2011). Structural Basis for Streptococcus Pneumoniae NanA Inhibition by Influenza Antivirals Zanamivir and Oseltamivir Carboxylate. Journal of Molecular Biology. 409(4): 496–503. DOI: 10.1016/j.jmb.2011.04.016

Hsiao, Y. S., Parker, D., Ratner, A. J., Prince, A. & Tong, L. (2009). Crystal Structures of Respiratory Pathogen Neuraminidases. Biochemical and Biophysical Research Communications. 380(3): 467–471. DOI: 10.1016/j.bbrc.2009.01.108

Iyer, U. & Perloff S. (2023). Pneumococcal Infections (Streptococcus Pneumoniae). Medscape. Retrieved June 13, 2024, from https://emedicine.medscape.com/article/225811-overview

Joseyphus, R. S. & Nair, M. S. (2008). Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II). Mycobiology, 36(2): 93–98. DOI: 10.4489/MYCO.2008.36.2.093

Li, N., Wang, F., Niu, S., Cao, J., Wu, K., Li, Y., Yin, N., Zhang, X., Zhu, W. & Yin, Y. (2009). Discovery of Novel Inhibitors of Streptococcus Pneumoniae Based on the Virtual Screening with the Homology-Modeled Structure of Histidine Kinase (VicK). BMC Microbiology, 9(1): 129. DOI: 10.1186/1471-2180-9-129

Lv, Q., Zhang, P., Quan, P., Cui, M., Liu, T., Yin, Y. & Chi, G. (2020). Quercetin, a Pneumolysin Inhibitor, Protects Mice Against Streptococcus Pneumoniae Infection. Microbial Pathogenesis, 140: 103934. DOI: 10.1016/j.micpath.2019.103934

Maisch, N. A., Bereswill, S. & Heimesaat, M. M. (2022). Antibacterial Effects of Vanilla Ingredients Provide Novel Treatment Options for Infections with Multidrug-Resistant Bacteria - A Recent Literature Review. European Journal of Microbiology & Immunology, 12(3): 53–62. DOI: 10.1556/1886.2022.00015

Maragakis, L. L., Perencevich, E. N. & Cosgrove, S. E. (2008). Clinical and Economic Burden of Antimicrobial Resistance. Expert Review of Anti-Infective Therapy, 6(5): 751–763. DOI: 10.1586/14787210.6.5.751

Musher, D. M. (2019). Streptococcus Pneumoniae. Haymarket Medical Network. Retrieved June 15, 2024, from https://www.infectiousdiseaseadvisor.com/ddi/streptococcus-pneumoniae/

Nayian, N. A. & Yusof, H. A. (2020). Inhibition of Streptococcus pneumoniae Hyaluronidase by Honeys of Malaysian origins. Bioremediation Science and Technology Research, 8(1): 1–6.

Neela, M. M. V. & Peram, S. (2025). Computational Approaches for Drug-Protein Interaction Analysis in Cancer: Machine Learning and Structural Bioinformatics Perspectives. Journal of Information Systems Engineering and Management, 10, 231–247. https://doi.org/10.52783/jisem.v10i10s.1368

Nguyen, T. L. A. & Bhattacharya, D. (2022). Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules, 27(8): 2494. DOI: 10.3390/molecules27082494

Oliver, F. (2019). Streptococcus Pneumoniae (pneumococcus): Overview. News-Medical. Retrieved June 12, 2024, from https://www.news-medical.net/health/Streptococcus-pneumoniae-(pneumococcus)-Overview.aspx

Owen, C. D., Lukacik, P., Potter, J. A., Sleator, O., Taylor, G. L. & Walsh, M. A. (2015). Streptococcus Pneumoniae NanC: Structural Insights into The Specificity and Mechanism of a Sialidase That Produces a Sialidase Inhibitor. The Journal of Biological Chemistry, 290(46): 27736–27748. DOI: 10.1074/jbc.M115.673632

Parker, D., Soong, G., Planet, P., Brower, J., Ratner, A. J. & Prince, A. (2009). The NanA Neuraminidase of Streptococcus Pneumoniae is Involved in Biofilm Formation. Infection and Immunity, 77(9): 3722–3730. DOI: 10.1128/IAI.00228-09

Rohani, M. Y., Raudzah, A., Ng, A. J., Ng, P. P., Zaidatul, A. A., Asmah, I., Murtaza, M., Parasakthy, N., Mohd Yasmin, M. Y. & Cheong, Y. M. (1999). Epidemiology of Streptococcus Pneumoniae Infection in Malaysia. Epidemiology and Infection, 122(1): 77–82. DOI: 10.1017/s0950268898001605

Sharapova, Y., Suplatov, D. & Švedas, V. (2018). Neuraminidase A from Streptococcus Pneumoniae Has a Modular Organization of Catalytic and Lectin Domains Separated by a Flexible Linker. The FEBS Journal, 285(13): 2428–2445. DOI: 10.1111/febs.14486

Sharapova, Y., Švedas, V. & Suplatov, D. (2021). Catalytic and Lectin Domains in Neuraminidase A from Streptococcus Pneumoniae are Capable of an Intermolecular Assembly: Implications for Biofilm Formation. The FEBS Journal, 288: 3217–3230. DOI: 10.1111/febs.15610

Shityakov, S. & Förster, C. (2014). In Silico Predictive Model to Determine Vector-Mediated Transport Properties for the Blood-Brain Barrier Choline Transporter. Advances and Applications in Bioinformatics and Chemistry, 7: 23–36. DOI: 10.2147/AABC.S63749

Syed, S., Hakala, P., Singh, A. K., Lapatto, H. A. K., King, S. J., Meri, S., Jokiranta, T. S. & Haapasalo, K. (2019). Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood. Frontiers in Cellular and Infection Microbiology, 9: 218. DOI: 10.3389/fcimb.2019.00218

Walther, E., Richter, M., Xu, Z., Kramer, C., von Grafenstein, S., Kirchmair, J., Grienke, U., Rollinger, J. M., Liedl, K. R., Slevogt, H., Sauerbrei, A., Saluz, H. P., Pfister, W. & Schmidtke, M. (2015). Antipneumococcal Activity of Neuraminidase Inhibiting Artocarpin. International Journal of Medical Microbiology. 305(3): 289–297. DOI: 10.1016/j.ijmm.2014.12.004

World Health Organization. (2022). Pneumonia in Children. Retrieved June 12, 2024, from https://www.who.int/news-room/fact-sheets/detail/pneumonia

Xu, L., Fang, J., Ou, D., Xu, J., Deng, X., Chi, G., Feng, H. & Wang, J. (2023). Therapeutic Potential of Kaempferol on Streptococcus Pneumoniae Infection. Microbes and Infection, 25(3): 105058. DOI: 10.1016/j.micinf.2022.105058

Downloads

Published

2025-12-29

How to Cite

LAW, W. Y. ., & ASARUDDIN, M. R. . (2025). Modelling of Schiff Base Vanillin Derivatives Targeting Streptococcus Pneumoniae Bacterial Neuraminidase. Borneo Journal of Resource Science and Technology, 15(2), 28–54. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/8309