Growth Performance of Pentaspadon motleyi Seedlings Inoculated with Arbuscular Mycorrhiza Fungi for Waterway Rehabilitation

Authors

  • CLARY SINAWAT Sabah Forestry Department
  • JOHN KEEN CHUBO Universiti Putra Malaysia
  • GARY LEEHAN LUHAT Samling Timber Malaysia

Keywords:

Arbuscular Mycorrhiza Fungi (AMF), growth, Pentaspadon motleyi, seedlings, waterway

Abstract

Stream development causes changes to the ecosystems of an area. Planting of trees in cleared area along waterways can help in reviving and create new habitats. Planting of riverine species such as Pentaspadon motleyi is one way to rehabilitate disturbed riverine area. The ability of seedlings to survive in new and harsh open environment depends on the seedlings’ early growth as well as species adaptability. Arbuscular mycorrhiza fungi (AMF) have the capability to promote superior and stronger seedlings with better growth performance when planted in the fields. Thus, the objectives of this study were: (i) to measure the growth performance of P. motleyi seedlings planted along a waterway in Universiti Putra Malayisa Bintulu Sarawak Campus and (ii) to determine the effect of AMF on the growth of P. motleyi seedlings. A total of 30 seedlings were planted along a waterway stretch in UPMKB and 15 seedlings were treated with AMF while another 15 seedlings were left untreated. Parameters measured include plant height, collar diameter and leaf number were recorded for a period of 10 weeks. Leaf area and root morphology of P. motleyi seedlings were compared after the tenth week. AMF treated seedlings showed five times higher height and collar diameter growth than non-AMF treated seedlings while leaf number and leaf area were superior for all AMF treated seedlings. Roots of AMF treated seedlings were healthier with more fibrous and fine roots. AMF inoculation contributed to P. motleyi seedlings by forming mycorrhiza hyphae that helped the root system with the exploration and access to more soil nutrients from the surrounding area. Better nutrient uptake improved plant health including plant biomass. AMF treatment showed good potential in enhancing early growth performance of P. motleyi seedlings thus promoting better survival when being transplanted in the open field. Such conditions will benefit the rehabilitation activities of disturbed waterways.

Author Biographies

CLARY SINAWAT, Sabah Forestry Department

Forest Research Centre, Sepilok, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan Sabah

GARY LEEHAN LUHAT, Samling Timber Malaysia

Samling Timber Malaysia, Wisma Samling, Lot 296, Jalan Temenggong Datuk Oyong Lawai Jau, 98000 Miri, Sarawak

References

Adnan, M., Zainuddin, A.F., Hamzah, M.A., Moorthy, M. & Mohamad Zaki, M.I. (2018). Koleksi Pokok Taman Botani Kepong. Institut Penyelidikan Perhutanan Malaysia (FRIM), Malaysia. 234 p.

Alqarawi, A.A., Abd Allah, E.F. & Hashem, A. (2014). Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. Journal of Plant Interactions, 9(1): 802-810.

Balliu, A., Sallaku, G. & Rewald, B. (2015). AMF Inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7: 15967–15981. DOI: 10.3390/su71215799

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of arbuscular Mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10:1068. DOI: 10.3389/fpls.2019.01068

Bourles, A., Guentas, L., Charvis, C., Gensous, S., Majorel, C., Crossay, T., Cavaloc, Y., Burtet-Sarramegna, V., Jourand, P & Amir, H. (2020). Co-Inoculation with a bacterium and arbuscular mycorrhizal fungi improves root colonization, plant mineral nutrition, and plant growth of a Cyperaceae plant in an ultramafic soil. Mycorrhiza, 30: 121–131. DOI: 10.1007/ s00572-019-00929-8

Bowles, T.M., Barrios-Masias, F.H., Carlisle, E.A., Cavagnaro, T.R., and Jackson, L.E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566: 1223–1234. DOI: 10.1016/j.scitotenv. 2016.05.178.

Browne, F.G. (1955). Forest Trees of Sarawak and Brunei. Government Printer, Kuching, Sarawak. 112 p.

Burgess, P.F. (1966). Timbers of Sabah. Sabah Forest Records No. 6., Forest Department Sabah. pp. 30-32.

Chinnathambi, S., Peeran, M.F., Srinivasan, V., Sankar, S.M. & George, P. (2024). Optimizing mycorrhizal fungi application for improved nutrient uptake, growth, and disease resistance in cardamom seedlings (Elettaria cardamomum (L.) Maton). Heliyon, 10: e39227.

Dai, M. and Nimasow, O.D. (2024). An investigation on soil-plant-AMF relationships in lateral transitional zones of a Riverine Island. Journal of Bioresources, 11: 77-83.

Dufour, S. & Piégay, H. (2019). From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Research and Applications, 25: 568-581.

Fougnies, L, Renciot, S., Muller, F., Plenchette, C., Prin, Y., de Faria, S.M., Bouvet, J.M., Sylla, S. Nd., Dreyfun, B. & Bâ, A.M. (2007). Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza, 17: 159-166.

Hartmond, U., Schaesberg, N.V., Graham, J.H. & Syvertsen, J.P. (1987). Salinity and flooding stress effects on mycorrhizal and nonmycorrhizal citrus rootstock seedlings. Plant and Soil, 104: 37-43.

Heyne, K. (1987). Tumbuhan Berguna Indonesia. Jilid II. Jakarta: Badan Litbang Kehutanan. pp. 1233-1244.

Jia, W., Ma, M., Chen, J. & Wu, S. (2021). Plant morphological, physiological and anatomical adaptation to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 22: 1088.

Jung, S.C., Martinez Medina, A., Lopez-Raez, J.A. & Pozo, M.J. (2012). Mycorrhiza-induced resistance and priming of plant defences. Journal of Chemical Ecology, 38: 651-664. DOI: 10.1007/s10886-012-0134-6

Kim, S.J., Eo, J.K., Lee, E.H., Park, H. & Eom, A.H. (2017). Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology, 45(1): 20-24.

Kochummen, K.M. (1989). Anacardiaceae. In: Ng, F.S.P. (ed.). Tree Flora of Malaya, Vol. 4. Longman Malaysia, Petaling Jaya, Malaysia. pp. 9-57.

Kumar, A., Gupta, A., Aggarwal, A., Singh, J.P. & Parkash, V. (2021). Ethno-medicinal and AMF diversity conservation aspects of some weeds of Himachal Pradesh, India. Journal of Research in Weed Science, 4(1): 43-56.

Lim, T.K. (2012). Edible Medicinal and Non-Medicinal Plants, Vol. 1. Dordrecht, The Netherlands: Springer. pp. 656-687.

Lin, Y., Ye, Y., Wu, C. & Shi, H. (2020). Changes in microbial structure under land consolidation in paddy soils: A case study in eastern China. Ecological Engineering, 145: 105696.

Mathur, S., Sharma, M.P. and Jajoo, A. (2016). Improved photosynthetic efficacy of maize Zea mays plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 180: 149-154. DOI: 10.1016/j. jphotobiol.2018.02.002.

Miller, S.P. & Sharitz R.R. (2000). Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semi-aquatic grass species. Functional Ecology, 14: 738-748

Morgan, J.B. & Connolly, E.L. (2013). Plant-soil interactions: Nutrient uptake. Nature Education Knowledge, 4(8): 2.

Navarro-Garcia, A., Del Pilar Banon Arias, S., Morte, A. & Snachez-Blanco, M.J. (2011). Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza, 21: 53-64.

Neto, D., Carvalho, L.M., Cruz, C. & Martin-Louçao, M.A. (2006). How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant and Soil, 279: 51–63.

Nicotra, A.B., Leigh, A., Boyce, C.K., Jones, C.S., Niklas, K.J., Royer, D.L. & Tsukaya, H. (2011). The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 38(7): 535-552. DOI: 10.1071/FP11057

Paterson, E., Sim, A., Davidson, J. & Daniell, T.J. (2016). Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralization. Plant and Soil. 408: 243-254. DOI: 10.1007/s11104-016-2928-8

Peng, Z., Zulfiqar, T., Yang, H., Wang, M. & Zhang, F. (2024). Effect of Arbuscular mycorrhizal fungi (AMF) on photosynthetic characteristics of cotton seedlings under saline-alkali stress. Scientific Reports. 14: 8633.

Rani, A., Kumar, N., Ram, A., Dev, I., Uthappa, A.R., Shukla, A. & Parveen, S. (2019). Effect of growing media and arbuscular mycorrhiza fungi on seedling growth of Leucaena leucocephala (Lam.) de Wit. Indian Journal of Agroforestry, 21(2): 22-28.

Ring, E., Andersson, E., Armolaitis, K., Eklöf, K., Finér, L., Gil, W., Glazko, Z., Janek, M., Lībieté, Z., Lode, E., Małek, S. & Piirainen, S. (2018). WAMBAF - Good Practices for Forest Buffers to Improve Surface Water Quality in the Baltic Sea Region. http://urn.fi/URN:ISBN:978-952-326-576-9. Downloaded on 10 June 2022.

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M. & Agnolucci, M. (2015). Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Scientia Horticulturae, 196: 91–108. DOI: 10.1016/j.scienta.2015.09.002.

Smith, S. & Read, D. (2008). Mycorrhiza Symbiosis. Third Edition. San Diego, California: Academic Press.

Smith, S.E. & Smith, F.A. (2012). Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 104: 1–13.

Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 105: 921–929. DOI: 10.1111/1365-2745.12788.

van der Maarel, E. & Franklin, J. (Eds) (2013). Vegetation Ecology: Historical notes and outline. pp. 1-27. DOI:10.1002/9781118452592

Wiart, C. (2006). Medicinal Plants of Asia and the Pacific. CRC Press, Boca Raton. pp.177-182.

Wong, T.M. (1975). Wood Structure of the Lesser-Known Timbers of Peninsular Malaysia. Malayan Forest Records No. 28. Forest Research Institute Malaysia, Kepong, Kuala Lumpur. 115 p.

Yusro, F. (2011). Aktivitas anti rayap tanah (Coptotermes curvignathus Holmgren) tiga fraksi ekstrak kayu pelanjau (Pentaspadon motleyi Hook. f). Jurnal Wana Tropika, 1(2): 42-50.

Zheng, F-L., Liang, S-M., Chu, X-N., Yang, Y.L. & Wu, Q.S. (2020). Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant, Soil and Environment, 66: 624-631.

Zou, Y.N., Srivastava, A.K. & Wu, Q.S. (2016). Glomalin: a potential soil conditioner for perennial fruits. International Journal of Agriculture and Biology, 18, 293–297. DOI: 10.17957/ IJAB/15.0085.

Downloads

Published

2025-12-29

How to Cite

SINAWAT, C. ., CHUBO, J. K. ., & LUHAT, G. L. . (2025). Growth Performance of Pentaspadon motleyi Seedlings Inoculated with Arbuscular Mycorrhiza Fungi for Waterway Rehabilitation. Borneo Journal of Resource Science and Technology, 15(2), 18–27. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/8089