Optimization of Lactic Acid Fermentation Conditions for the Production of Antibacterial Peptides Targeting Pantoea spp. for Rice Leaf Blight Control

Authors

  • SITI NORAZURA JAMAL 1Faculty of Applied Sciences, Universiti Teknologi MARA, Kuala Pilah Campus, Pekan Parit Tinggi, 72000 Kuala Pilah, Negeri Sembilan, Malaysia; 2Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia https://orcid.org/0000-0001-8717-5433
  • DHILIA UDIE LAMASUDIN Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia https://orcid.org/0000-0002-2568-0909
  • BELAL J. MUHIALDIN Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN 55108, USA https://orcid.org/0000-0003-4684-536X
  • NOOR BAITY SAIDI Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia https://orcid.org/0000-0002-0715-2133
  • KOK SONG LAI Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, UAE https://orcid.org/0000-0002-1887-2232
  • MOHD TERMIZI YUSOF Department of Microbiology Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia https://orcid.org/0000-0002-5241-3443

Keywords:

Antimicrobial Peptides, Bioactive Molecules, Lactic Acid Fermentation, Pantoea spp., Rice Disease Control

Abstract

This study aimed to optimize the production of antibacterial peptides from Bactronophorus thoracites via lactic acid fermentation, specifically focusing on Pantoea species to manage rice leaf blight. The main goal was to investigate sustainable and environmentally friendly approaches to address this agricultural disease using bioactive compounds derived from marine sources. The fermentation process was refined using Response Surface Methodology (RSM), producing highly reliable results confirmed by the analysis of variance (ANOVA) and strong determination coefficients (R² = 0.9952 for Pantoea ananatis and R² = 0.9967 for Pantoea stewartii). The optimized parameters included a 4-day fermentation duration, a 3% (w/v) glucose concentration, and a 0.92% (w/v) solid-to-water ratio. These conditions closely matched predictive models and were further validated by a residual standard error (RSE) of less than 5%. The study identified the minimum inhibitory concentration (MIC) of the bioactive peptides, determining that 125 µg/mL was effective against the target bacteria. The hydrolysates produced in this study show promise as a natural method to control rice leaf blight and may have broader applications in agricultural disease management. This research highlights the potential of optimized lactic acid fermentation to produce effective antimicrobial agents, contributing to sustainable agriculture and offering new biotechnological strategies for plant disease control.

References

Abdallah, Y., Liu, M., Ogunyemi, S.O., Ahmed, T., Fouad, H., Abdelazez, A., Yan, C., Yang, Y., Chen, J. & Li, B. (2020). Bioinspired Green Synthesis of Chitosan and Zinc Oxide Nanoparticles with Strong Antibacterial Activity against Rice Pathogen Xanthomonas oryzae pv. oryzae. Molecules, 25(20): 4795. DOI:10.3390/molecules25204795

Amin, A.M. & Cheng, S.K. (2019). Optimization of enzymatic hydrolysis condition of angelwing clam (Pholas orientalis) meat using alcalase® to obtain maximum degree of hydrolysis. Malaysian Applied Biology, 48(3): 55–62. https://jms.mabjournal.com/index.php/mab/article/view/1839

Arulrajah, B., Muhialdin, B.J., Zarei, M., Hasan, H. & Saari, N. (2020). Lacto-fermented Kenaf (Hibiscus cannabinus L.) seed protein as a source of bioactive peptides and their applications as natural preservatives. Food Control, 110: 106969. DOI:10.1016/j.foodcont.2019.106969

Arulrajah, B., Muhialdin, B.J., Qoms, M.S., Zarei, M., Hussin, A.S.M., Hasan, H. & Saari, N. (2021). Production of cationic antifungal peptides from kenaf seed protein as natural bio preservatives to prolong the shelf-life of tomato puree. International Journal of Food Microbiology, 359: 109418. DOI:10.1016/j.ijfoodmicro.2021.109418

Azizi, M.M.F., Ismail, S.I., Hata, E.M., Zulperi, D., Ina-Salwany, M.Y. & Abdullah, M.A.F. (2019). First Report of Pantoea stewartii subsp. indologenes Causing Leaf Blight on Rice in Malaysia. Plant Disease, 103(6): 1407–1407. DOI:10.1094/PDIS-08-18-1403-PDN

Azizi, M.M.F., Zulperi, D., Rahman, M.A.A., Abdul-Basir, B., Othman, N.A., Ismail, S.I., Hata, E.M., Ina-Salwany, M.Y. & Abdullah, M.A.F. (2019). First Report of Pantoea ananatis Causing Leaf Blight Disease of Rice in Peninsular Malaysia. Plant Disease, 103(8): 2122. DOI:10.1094/PDIS-01-19-0191-PDN

Buda De Cesare, G., Cristy, S.A., Garsin, D.A. & Lorenz, M.C. (2020). Antimicrobial Peptides: a New Frontier in Antifungal Therapy. MBio, 11(6): 1–21. DOI:10.1128/mBio.02123-20

Che Sulaiman, I.S., Basri, M., Fard Masoumi, H.R., Chee, W.J., Ashari, S.E. & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1): 54. DOI:10.1186/s13065-017-0285-1

De Zoysa, M. (2013). Antimicrobial Peptides in Marine Mollusks and their Potential Applications. In Marine Proteins and Peptides, John Wiley & Sons, Ltd. pp. 695–707. DOI:10.1002/9781118375082.ch35

Erdem Büyükkiraz, M. & Kesmen, Z. (2022). Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology, 132(3): 1573–1596. DOI:10.1111/jam.15314

González, A.D., Franco, M.A., Contreras, N., Galindo-Castro, I., Jayaro, Y. & Graterol, E. (2015). First Report of Pantoea agglomerans Causing Rice Leaf Blight in Venezuela. Plant Disease, 99(4): 552–552. DOI:10.1094/PDIS-07-14-0736-PDN

Harun, Z., Amin, A.M., Sarbon, N.M. & Zainol, M.K.M. (2017). Optimisation of enzymatic protein hydrolysis of mud crab (Scylla sp.) to obtain maximum angiotensin-converting enzyme inhibitory (ACEI) activity using response surface methodology. Malaysian Applied Biology, 46(3): 33–40. http://mabjournal.com/index.php?option=com_content&view=article&id=674&catid=59:current-view&Itemid=56

Jamal, S.N., Donny, D.A. & Lamasudin, D.U. (2022). The Influence of Enzymatic Hydrolysis on Antimicrobial Activity Against Rice Pathogens from Bactronophorus thoracites (Shipworm) Protein Hydrolysate. Malay. J. Biochem. Mol. Biol., 25(3): 47–57. DOI:10.22452/mjbmb.vol25no3.1

Jamal, S.N., Muhialdin, B.J., Saidi, N.B., Song, L.K., Yusof, M.T. & Lamasudin, D.U. (2022). The effect of lactic acid fermentation of Bactronophorus thoracites on antimicrobial activity against rice pathogens. Malaysian Journal of Microbiology, 18(6): 592–601. DOI:10.21161/mjm.221499

Khan, J.A., Siddiq, R., Arshad, H.M.I., Anwar, H.S., Saleem, K. & Jamil, F.F. (2012). Chemical control of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae. Pakistan Journal of Phytopayjology, 24(2): 97–100. DOI:10.7324/JOP.2012.97

Kuppusamy, A. & Ulagesan, S. (2016). Antimicrobial Activity of Protein Hydrolysate from Marine Molluscs Babylonia spirata (Linnaeus, 1758). Journal of Applied Pharmaceutical Science, 6(7): 73–77. DOI:10.7324/JAPS.2016.60711

Lee, S.Y., Mohamed, R. & Lamasudin, D.U. (2019). Morphology and molecular phylogenetic placement of a coastal shipworm (Bactronophorus thoracites (Gould, 1862), Teredinidae) from Peninsular Malaysia. Regional Studies in Marine Science, 29: 100694. DOI:10.1016/j.rsma.2019.100694

Mohamad Asri, N., Muhialdin, B.J., Zarei, M. & Saari, N. (2020). Low molecular weight peptides generated from palm kernel cake via solid state lacto-fermentation extend the shelf life of bread. LWT, 134: 110206. DOI:10.1016/j.lwt.2020.110206

Muhialdin, B.J., Abdul Rani, N.F. & Meor Hussin, A.S. (2020). Identification of antioxidant and antibacterial activities for the bioactive peptides generated from bitter beans (Parkia speciosa) via boiling and fermentation processes. LWT, 131: 109776. DOI:10.1016/j.lwt.2020.109776

Muhialdin, B.J., Kadum, H. & Meor Hussin, A.S. (2021). Metabolomics profiling of fermented cantaloupe juice and the potential application to extend the shelf life of fresh cantaloupe juice for six months at 8 °C. Food Control, 120: 107555. DOI:10.1016/j.foodcont.2020.107555

Naiel, M.A.E., Ghazanfar, S., Negm, S.S., Shukry, M. & Abdel-Latif, H.M.R. (2023). Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture – A mini-review. Annals of Animal Science, 23(3): 691–701. DOI:10.2478/aoas-2022-0090

Naqvi, S.A.H. (2019). Bacterial Leaf Blight of Rice: An Overview of Epidemiology and Management with Special Reference to-Indian-Sub-Continent. Pakistan Journal of Agricultural Research, 32(2): 359–380. DOI:10.17582/journal.pjar/2019/32.2.359.380

Rodríguez de Olmos, A., Correa Deza, M. A. & Garro, M. S. (2017). Selected lactobacilli and bifidobacteria development in solid state fermentation using soybean paste. Argentine Journal of Microbiology, 49(1): 62–69. DOI:10.1016/j.ram.2016.08.007

Sánchez-Clemente, R., Guijo, M.I., Nogales, J. & Blasco, R. (2020). Carbon Source Influence on Extracellular pH Changes along Bacterial Cell-Growth. Genes, 11(11): 1292. DOI:10.3390/genes11111292

Sanchez Armengol, E., Harmanci, M. & Laffleur, F. (2021). Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiological Research, 252: 126867. DOI:10.1016/j.micres.2021.126867

Seyfi, R., Kahaki, F.A., Ebrahimi, T., Montazersaheb, S., Eyvazi, S., Babaeipour, V. & Tarhriz, V. (2020). Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action. International Journal of Peptide Research and Therapeutics, 26(3): 1451–1463. DOI:10.1007/s10989-019-09946-9

Sopialena, Suyadi, Jannah, R. & Tantiani, D. (2021). Control of bacterial leaf blight disease in several varieties of rice plants (Oryza sativa L.) by using bacteria of Paenibacilus polymyxa Mace. IOP Conference Series: Earth and Environmental Science, 800(1): 12026. DOI:10.1088/1755-1315/800/1/012026

Tassanakajon, A., Somboonwiwat, K. & Amparyup, P. (2015). Sequence diversity and evolution of antimicrobial peptides in invertebrates. Developmental & Comparative Immunology, 48(2): 324–341. DOI:10.1016/j.dci.2014.05.020

Toh, W.K., Loh, P.C. & Wong, H.L. (2019). First Report of Leaf Blight of Rice Caused by Pantoea ananatis and Pantoea dispersa in Malaysia. Plant Disease, 103(7): 1764–1764. DOI:10.1094/PDIS-12-18-2299-PDN

Yuan, C., Zheng, X., Liu, K., Yuan, W., Zhang, Y., Mao, F. & Bao, Y. (2022). Functional Characterization, Antimicrobial Effects, and Potential Antibacterial Mechanisms of NpHM4, a Derived Peptide of Nautilus pompilius Hemocyanin. Marine Drugs, 20(7): 459. DOI:10.3390/md20070459

Zainol, M.K., Abdul Sukor, F.W., Fisal, A., Tuan Zainazor, T.C., Abdul Wahab, M.R. & Zamri, A.I. (2021). Optimization of enzymatic protein hydrolysis conditions of Asiatic hard clam (Meretrix meretrix). Food Research, 5(4): 153–162. DOI:10.26656/fr.2017.5(4).701

Zakaria, F., Tan, J.-K., Mohd Faudzi, S.M., Abdul Rahman, M.B. & Ashari, S.E. (2021). Ultrasound-assisted extraction conditions optimisation using response surface methodology from Mitragyna speciosa (Korth.) Havil leaves. Ultrasonics Sonochemistry, 81: 105851. DOI:10.1016/j.ultsonch.2021.105851

Downloads

Published

2025-06-26

How to Cite

JAMAL, S. N. ., LAMASUDIN, D. U. ., MUHIALDIN, B. J. ., SAIDI, N. B., LAI, K. S., & YUSOF, M. T. . (2025). Optimization of Lactic Acid Fermentation Conditions for the Production of Antibacterial Peptides Targeting Pantoea spp. for Rice Leaf Blight Control. Borneo Journal of Resource Science and Technology, 15(1), 70–80. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/7752