Antibiotic Resistance and Virulence Gene Profiles of Vibrio parahaemolyticus, Vibrio cholera, and Vibrio alginolyticus Isolated from Commercial Shrimp Farm in Kuching, Sarawak
Keywords:
Antibiotic resistance, shrimp, virulence genes, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio alginolyticusAbstract
In the management and treatment of Vibrio spp. infections in aquaculture, antibiotics have traditionally been used. Misuse of antibiotics, however, has led to the emergence of resistance strains. In this study, antibiotic susceptibility testing of 30 (n=30) Vibrio spp. isolates were performed by using 18 antibiotics, revealing resistance to at least two antibiotics. Antibiotics Ceftazidime, Meropenem, Gentamicin, Tetracycline, Nalidixic acid, Norfloxacin, Ciprofloxacin, and Chloramphenicol were 100% effective against all isolates of V. parahaemolyticus, V. cholerae, and V. alginolyticus. Meanwhile, 100% of V. parahaemolyticus and V. alginolyticus isolates were completely resistant to Penicillin G and Bacitracin, whereas 100% of V. cholerae isolates exhibited resistance to Penicillin G. The Multiple Antibiotic Resistance (MAR) indices of all isolates ranged from 0.11 to 0.33. The presence of isolates with MAR indices higher than 0.2 suggests potential contamination from sources with high antibiotic usage, such as wastewater or nearby agricultural and aquaculture activities. The findings highlight widespread antibiotic resistance among Vibrio spp., likely due to excessive antibiotics use in aquaculture settings. Additionally, virulence profile of each Vibrio spp. isolates was performed. While pathogenic potential is exhibited by some isolates, others lack key virulence genes associated with pathogenicity. All V. parahaemolyticus isolates showed the presence of tlh, toxR, and toxS genes, whille all V. cholerae isolates were positive with toxS, toxR, rtxA, and rtxC genes. None of the V. alginolyticus showed the presence of the nine tested virulence genes. However, given the high frequency of horizontal gene transfer among bacterial populations, continuous and comprehensive monitoring is crucial to prevent the spread of virulence genes between pathogenic and non-pathogenic strains. Therefore, continuous efforts to obtain more data on antibiotic resistance and bacterial virulence profiles in Sarawak is crucial for effective disease management and sustainable aquaculture practices.
References
Abd Wahid, M.E., Mohamad, M., Mohamed, N.N. & Afiqah-Aleng, N. (2022). Vibriosis in green mussels. In Aquaculture Pathophysiology, 515-529. DOI:10.1016/b978-0-323-95434-1.00069-3
Abdelaziz Gobarah, D.E., Helmy, S.M., Mahfouz, N.B., Fahmy, H.A., & Abou Zeid, M.A.E.H.M. (2022). Virulence genes and antibiotic resistance profile of Vibrio species isolated from fish in Egypt. Veterinary Research Forum, 13(3): 315-321. DOI:10.30466/vrf.2021.520767.3117
Abdullah Sani, N., Ariyawansa, S., Babji, A.S. & Hashim, J.K. (2013). The risk assessment of Vibrio parahaemolyticus in cooked black tiger shrimps (Penaeus monodon) in Malaysia. Food Control, 31(2): 546-552. DOI:10.1016/j.foodcont.2012.10.018
Abioye, O.E., Nontongana, N., Osunla, C.A. & Okoh, A.I. (2023). Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS ONE, 18(8): e0290356. DOI:10.1371/journal.pone.0290356
Abioye, O.E., Osunla, A.C. & Okoh, A.I. (2021). Molecular detection and distribution of six medically important Vibrio spp. in selected freshwater and brackish water resources in Eastern Cape Province, South Africa. Frontiers in Microbiology, 12: 617703. DOI:10.3389/fmicb.2021.617703
Al-Othrubi, S.M., Kqueen, C.Y., Mirhosseini, H., Hadi, Y.A. & Radu, S. (2014). Antibiotic resistance of Vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, Malaysia. Clinical Microbiology: Open Access, 03(03): 148-154. DOI:10.4172/2327-5073.1000148
Amalina, N.Z., Santha, S., Zulperi, D., Amal, M.N., Yusof, M.T., Zamri-Saad, M. & Ina-Salwany, M.Y. (2019). Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiology, 19(1): 251. DOI:10.1186/s12866-019-1624-2
Baker‐Austin, C., Trinanes, J. & Martinez‐Urtaza, J. (2020). The new tools revolutionizing Vibrio science. Environmental Microbiology, 22(10): 4096-4100. DOI:10.1111/1462-2920.15083
Beceiro, A., Tomás, M. & Bou, G. (2013). Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?. Clinical Microbiology Reviews, 26(2): 185–230. DOI:10.1128/CMR.00059-12
Bej, A.K., Patterson, D.P., Brasher, C.W., Vickery, M.C.L., Jones, D.D. & Kaysner, C.A. (1999). Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. Journal of Microbiological Methods, 36: 215-225.
Caburlotto, G., Gennari, M., Ghidini, V., Tafi, M. & Lleo, M.M. (2009). Presence of T3SS2 and other virulence-related genes in tdh-negative Vibrio parahaemolyticus environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiology Ecology, 70(3): 506-514. DOI:10.1111/j.1574-6941.2009.00764.x
CDC. (2019a). Glossary of terms related to antibiotic resistance. Retrieved from https://www.cdc.gov/narms/resources/glossary.html#:~:text=Results%20of%20antimicrobial%20susceptibility%20testing,cannot%20be%20treated%20with%20drug
CDC. (2019b). Vibrio species causing vibriosis. Retrieved from https://www.cdc.gov/Vibrio/index.html
Cepas, V. & Soto, S.M. (2020). Relationship between virulence and resistance among gram-negative bacteria. Antibiotics, 9(10): 719. DOI:10.3390/antibiotics9100719
Chen, L., Qiu, Y., Tang, H., Hu, L.F., Yang, W.H., Zhu, X.J., Huang, X.X., Wang, T. & Zhang, Y.Q. (2018). ToxR is required for biofilm formation and motility of Vibrio parahaemolyticus. Biomedical and Environmental Sciences, 31(11): 848-850. DOI:10.3967/bes2018.112
Chow, K.H., Ng, T.K., Yuen, K.Y. & Yam, W.C. (2001). Detection of RTX toxin gene in Vibrio cholerae by PCR. Journal of Clinical Microbiology, 39(7): 2594-2597. DOI:10.1128/jcm.39.7.2594-2597.2001
Clinical and Laboratory Standard Institute. (2015). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: CLSI.
Correia, S., Poeta, P., Hébraud, M., Capelo, J.L. & Igrejas, G. (2017). Mechanisms of quinolone action and resistance: Where do we stand? Journal of Medical Microbiology, 66(5): 551-559. DOI:10.1099/jmm.0.000475
Dhar, A., Piamsomboon, P., Aranguren Caro, L., Kanrar, S., Adami, R. & Juan, Y. (2019). First report of acute hepatopancreatic necrosis disease (AHPND) occurring in the USA. Diseases of Aquatic Organisms, 132(3): 241-247. DOI:10.3354/dao03330
Elmahdi, S., DaSilva, L.V. & Parveen, S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A Review. Food Microbiology, 57: 128-134. DOI:10.1016/j.fm.2016.02.008
Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S. & Donadu, M.G. (2021). No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel, Switzerland), 10(9): 1134. DOI:10.3390/antibiotics10091134
Gao, L., Ouyang, M., Li, Y., Zhang, H., Zheng, X.-F., Li, H.-X., Rao, S.-Q., Yang, Z.-Q., & Gao, S. (2022). Isolation and characterisation of a lytic vibriophage OY1 and its biocontrol effects against Vibrio spp. Frontiers in Microbiology, 13. DOI:10.3389/fmicb.2022.830692
Gotoh, K., Kodama, T., Hiyoshi, H., Izutsu, K., Park, K.-S., Dryselius, R., Akeda, Y., Honda, T., & Iida, T. (2010). Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE, 5(10). DOI:10.1371/journal.pone.0013365
Gutierrez West, C.K., Klein, S.L. & Lovell, C.R. (2013). High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Applied and Environmental Microbiology, 79(7): 2247-2252. DOI:10.1128/aem.03792-12
Haifa-Haryani, W.O., Amatul-Samahah, Md.A., Azzam-Sayuti, M., Chin, Y.K., Zamri-Saad, M., Natrah, I., Amal, M.N., Satyantini, W.H. & Ina-Salwany, M.Y. (2022). Prevalence, antibiotics resistance and plasmid profiling of Vibrio spp. isolated from cultured shrimp in Peninsular Malaysia. Microorganisms, 10(9): 1851. DOI:10.3390/microorganisms10091851
Hanna, N., Tamhankar, A.J. & Stålsby Lundborg, C. (2023). Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: A systematic review and probabilistic environmental hazard assessment. The Lancet Planetary Health, 7(1): e45-e54. DOI:10.1016/s2542-5196(22)00254-6
Hooper, D.C. & Jacoby, G.A. (2016). Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(9): a025320. DOI:10.1101/cshperspect.a025320
Hossain, Md.M., Uddin, Md.I., Islam, H., Fardoush, J., Rupom, Md.A., Hossain, Md.M., Farjana, N., Afroz, R., Hasan-Uj-Jaman, Roy, H.S., Shehab, Md.A. & Rahman, Md.A. (2020). Diagnosis, genetic variations, virulence, and toxicity of AHPND-positive Vibrio parahaemolyticus in Penaeus monodon. Aquaculture International, 28(6): 2531-2546. DOI:10.1007/s10499-020-00607-z
Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. Retrieved from https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf
Ibrahim, A.B., Khan, M.A., Ayob, M.Y. & Norrakiah, A.S. (2010). Pesticide and antibiotic residues in freshwater aquaculture fish: Chemical risk assessment from farm to table. Asian Journal of Agro-Industry, 3(3): 328-334.
Kapoor, G., Saigal, S. & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3): 300. DOI:10.4103/joacp.joacp_349_15
Kathleen, M.M., Samuel, L., Felecia, C., Reagan, E. L., Kasing, A., Lesley, M. & Toh, S.C. (2016). Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo. International Journal of Microbiology, 2016: 2164761. DOI:10.1155/2016/2164761
Kaysner, C.A., Abeyta, C., Stott, R.F., Krane, M.H. & Wekell, M.M. (1990). Enumeration of Vibrio species, including V. cholerae, from samples of an oyster growing area, Grays Harbor, Washington. Journal of Food Protection, 53(4): 300-302. DOI:10.4315/0362-028x-53.4.300.
Kim, H.-J., Ryu, J.-O., Lee, S.-Y., Kim, E.-S. & Kim, H.-Y. (2015). Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiology, 15(1): 239. DOI:10.1186/s12866-015-0577-3
Kim, Y.R., Lee, S.E., Kang, I.-C., Nam, K.I., Choy, H.E. & Rhee, J.H. (2012). A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. The Journal of Infectious Diseases, 207(9): 1406-1415. DOI:10.1093/infdis/jis746
Larsson, D.G. (2014). Antibiotics in the environment. Upsala Journal of Medical Sciences, 119(2): 108-112. DOI:10.3109/03009734.2014.896438
Lembke, M., Höfler, T., Walter, A., Tutz, S., Fengler, V., Schild, S. & Reidl, J. (2020). Host stimuli and operator binding sites controlling protein interactions between virulence master regulator ToxR and ToxS in Vibrio cholerae. Molecular Microbiology, 114(2): 262-278. DOI:10.1111/mmi.14510
Lesen, D., Nillian, E., Awang Baki, D.N. & Robin, T. (2024). Prevalence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio alginolyticus in a white-leg shrimp (Litopenaeus vannamei) farm in Sarawak. Pertanika Journal of Science and Technology, 32(5): 2233–2257. DOI:10.47836/pjst.32.5.17
Liang, J., Liu, J., Wang, X., Sun, H., Zhang, Y., Ju, F., Thompson, F. & Zhang, X.H. (2022). Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Applied and Environmental Microbiology, 88(16): e0057522. DOI:10.1128/aem.00575-22
Lin, Z., Kumagai, K., Baba, K., Mekalanos, J.J. & Nishibuchi, M. (1993). Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. Journal of Bacteriology, 175(12): 3844-3855. DOI:10.1128/jb.175.12.3844-3855.1993
Liu, H. (2003). Analysis of collective food poisoning events in Shanghai from 1990 to 2000. Chinese Journal of Natural Medicines, 5: 17-20.
Lundborg, C.S. & Tamhankar, A.J. (2017). Antibiotic residues in the environment of South East Asia. BMJ, 2017(358): j2440. DOI:10.1136/bmj.j2440
Luu, Q.H., Nguyen, T.B., Nguyen, T.L., Do, T.T., Dao, T.H. & Padungtod, P. (2021). Antibiotics use in fish and shrimp farms in Vietnam. Aquaculture Reports, 20: 100711. DOI:10.1016/j.aqrep.2021.100711
Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.Y. & Schoolnik, G.K. (2005). Chitin induces natural competence in Vibrio cholerae. Science (New York, N.Y.), 310(5755): 1824–1827. DOI:10.1126/science.1120096
Muteeb, G., Rehman, M.T., Shahwan, M. & Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development:A narrative review. Pharmaceuticals (Basel, Switzerland), 16(11): 1615. DOI: 10.3390/ph16111615
Nillian, E., Zakaria, N.D., Lesen, D., Yusoff, N.H., Ismail, N.S., Tung, T.S. & Bilung, L. (2022). Comparison distribution of Vibrio species in stocking to harvesting process of shrimp at commercialize shrimp farm. International Journal of Biology and Biomedical Engineering, 16: 168-174. DOI:10.46300/91011.2022.16.22
Oh, E.-G., Son, K.-T., Yu, H., Lee, T.-S., Lee, H.-J., Shin, S., Kwon, J.-Y., Park, K., & Kim, J. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in Korea from 2005 through 2007. Journal of Food Protection, 74(3): 380-386. DOI:10.4315/0362-028x.jfp-10-307
Okuda, J., Nakai, T., Chang, P.S., Oh, T., Nishino, T., Koitabashi, T. & Nishibuchi, M. (2001). The toxR gene of Vibrio (listonella) anguillarum controls expression of the major outer membrane proteins but not virulence in a natural host model. Infection and Immunity, 69(10): 6091-6101. DOI:10.1128/iai.69.10.6091-6101.2001
Paria, P., Behera, B.K., Mohapatra, P.K. & Parida, P.K. (2021). Virulence factor genes and comparative pathogenicity study of TDH, TRH and TLH positive Vibrio parahaemolyticus strains isolated from whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. Infection, Genetics and Evolution, 95: 105083. DOI:10.1016/j.meegid.2021.105083
Pfau, J.D. & Taylor, R.K. (1998). Mutations in toxR and toxS that separate transcriptional activation from DNA binding at the cholera toxin gene promoter. Journal of Bacteriology, 180(17): 4724-4733. DOI:10.1128/jb.180.17.4724-4733.1998
Queipo-Ortuño Maria Isabel, De Dios Colmenero, J., Macias, M., Bravo, M.J. & Morata, P. (2008). Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology, 15(2): 293-296. DOI:10.1128/cvi.00270-07
Raghunath P. (2015). Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Frontiers in Microbiology, 5: 805. DOI:10.3389/fmicb.2014.00805
Rodgers, C.J., Mohan, C.V. & Peeler, E.J. (2011). The spread of pathogens through trade in aquatic animals and their products. Revue Scientifique et Technique de l’OIE, 30(1): 241-256. DOI:10.20506/rst.30.1.2034
Sahilah, A.M., Laila, R.A., Sallehuddin, H. Mohd., Osman, H., Aminah, A. & Ahmad Azuhairi, A. (2014). Antibiotic resistance and molecular typing among cockle (Anadara granosa) strains of Vibrio parahaemolyticus by polymerase chain reaction (PCR)-based analysis. World Journal of Microbiology and Biotechnology, 30(2): 649–659. DOI:10.1007/s11274-013-1494-y
Salgueiro, H.S., Ferreira, A. C., Duarte, A.S. & Botelho, A. (2024). Source attribution of antibiotic resistance genes in estuarine aquaculture: A machine learning approach. Antibiotics, 13(1): 107. DOI:10.3390/antibiotics13010107
Sampaio, A., Silva, V., Poeta, P. & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2): 97. DOI:10.3390/d14020097
Sechi, L.A., Duprè, I., Deriu, A., Fadda, G. & Zanetti, S. (2000). Distribution of Vibrio cholerae virulence genes among different Vibrio species isolated in Sardinia, Italy. Journal of Applied Microbiology, 88: 475-481.
Sharma, L., Nagpal, R., Jackson, C.R., Patel, D. & Singh, P. (2021). Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. Scientific Reports, 11(1): 3356. DOI:10.1038/s41598-021-82823-y
Shinoda, S., Matsuoka, H., Tsuchie, T., Miyoshi, S.-I., Yamamoto, S., Taniguchi, H. & Mizuguchi, Y. (1991). Purification and characterisation of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene. Journal of General Microbiology, 137(12): 2705-2711. DOI:10.1099/00221287-137-12-2705
Sirikharin, R., Taengchaiyaphum, S., Sanguanrut, P., Chi, T.D., Mavichak, R., Proespraiwong, P., Nuangsaeng, B., Thitamadee, S., Flegel, T.W. & Sritunyalucksana, K. (2015). Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE, 10(5). DOI:10.1371/journal.pone.0126987
Song, X., Zang, J., Yu, W., Shi, X. & Wu, Y. (2020). Occurrence and identification of pathogenic Vibrio contaminants in common seafood available in a Chinese traditional market in Qingdao, Shandong Province. Frontiers in Microbiology, 11: 1488. DOI:10.3389/fmicb.2020.01488
Takahashi, E., Ochi, S., Mizuno, T., Morita, D., Morita, M., Ohnishi, M., Koley, H., Dutta, M., Chowdhury, G., Mukhopadhyay, A.K., Dutta, S., Miyoshi, S.-I. & Okamoto, K. (2021). Virulence of cholera toxin gene-positive Vibrio cholerae Non-O1/non-o139 strains isolated from environmental water in Kolkata, India. Frontiers in Microbiology, 12: 726273. DOI:10.3389/fmicb.2021.726273
Tendencia, E.A. & de la Peña, L.D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3-4): 193-204. DOI:10.1016/s0044-8486(00)00570-6
Vila, J., Simon, K., Ruiz, J., Horcajada, J.P., Velasco, M., Barranco, M., Moreno, A. & Mensa, J. (2002). Are quinolone‐resistant uropathogenic Escherichia coli less virulent? The Journal of Infectious Diseases, 186(7): 1039–1042. DOI:10.1086/342955
Wang, R.Z., Fang, S., Wu, D.L., Wu, D., Lian, J., Fan, J., Zhang, Y., Wang, S. and Lin, W. (2012). Screening of a ScFv antibody that can neutralize effectively the cytotoxicity of Vibrio parahaemolyticus TLH. Applied and Environmental Microbiology, 78: 4967-4975. DOI:10.1128/AEM.00435-12
Wang, R., Zhong, Y., Gu, X., Yuan, J., Saeed, A.F. & Wang, S. (2015). The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Frontiers in Microbiology, 6: 144. DOI:10.3389/fmicb.2015.00144
Wang, S.X., Zhang, X.H., Zhong, Y.B., Sun, B.G. & Chen, J.X. (2007). Genes encoding the Vibrio harveyi haemolysin (VHH)/thermolabile haemolysin (TLH) are widespread in vibrios. Acta Microbiologica Sinica, 47(2007): 874-881.
WHO. (2023). Antimicrobial resistance. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Xu, Y., Wang, C., Zhang, G., Tian, J., Liu, Y., Shen, X. & Feng, J. (2017). ISCR2 is associated with the dissemination of multiple resistance genes among Vibrio spp. and Pseudoalteromonas spp. isolated from farmed fish. Archives of Microbiology, 199(6): 891-896. DOI:10.1007/s00203-017-1365-2
Xue, M., Huang, X., Xue, J., He, R., Liang, G., Liang, H., Liu, J. & Wen, C. (2022). Comparative genomic analysis of seven Vibrio alginolyticus strains isolated from shrimp larviculture water with emphasis on chitin utilisation. Frontiers in Microbiology, 13: 925747. DOI:10.3389/fmicb.2022.925747
Yáñez, R., Bastías, R., Higuera, G., Salgado, O., Katharios, P., Romero, J., Espejo, R. & García, K. (2015). Amplification of TLH gene in other Vibrionaceae specie by specie-specific multiplex PCR of Vibrio parahaemolyticus. Electronic Journal of Biotechnology, 18(6): 459-463. DOI:10.1016/j.ejbt.2015.09.007
Zhang, Y., Hu, L., Osei-Adjei, G., Zhang, Y., Yang, W., Yin, Z., Lu, R., Sheng, X., Yang, R., Huang, X. & Zhou, D. (2018). Autoregulation of toxR and its regulatory actions on major virulence gene loci in Vibrio parahaemolyticus. Frontiers in Cellular and Infection Microbiology, 8: 291. DOI:10.3389/fcimb.2018.00291
Zhang, Y., Qiu, Y., Xue, X., Zhang, M., Sun, J., Li, X., Hu, L., Yin, Z., Yang, W., Lu, R. & Zhou, D. (2021). Transcriptional regulation of the virulence genes and the biofilm formation associated operons in Vibrio parahaemolyticus. Gut Pathogens, 13(1): 15. DOI:10.1186/s13099-021-00410-y
Zoqratt, M.Z.H.M., Eng, W.W.H., Thai, B.T., Austin, C.M. & Gan, H.M. (2018). Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: Implications for aquaculture research and management. PeerJ, 6: e5826. DOI:10.7717/peerj.5826
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Borneo Journal of Resource Science and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.