Antibiotic Resistance and Virulence Gene Profiles of Vibrio parahaemolyticus, Vibrio cholera, and Vibrio alginolyticus Isolated from Commercial Shrimp Farm in Kuching, Sarawak

Authors

  • ELEXSON NILLIAN Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • EASTERINA EMPINA EDWIN Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • DALENE LESEN Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • MANJU STEPHEN Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
  • MASTURA SANI Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia

Keywords:

Antibiotic resistance, shrimp, virulence genes, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio alginolyticus

Abstract

In the management and treatment of Vibrio spp. infections in aquaculture, antibiotics have traditionally been used. Misuse of antibiotics, however, has led to the emergence of resistance strains. In this study, antibiotic susceptibility testing of 30 (n=30) Vibrio spp. isolates were performed by using 18 antibiotics, revealing resistance to at least two antibiotics. Antibiotics Ceftazidime, Meropenem, Gentamicin, Tetracycline, Nalidixic acid, Norfloxacin, Ciprofloxacin, and Chloramphenicol were 100% effective against all isolates of V. parahaemolyticus, V. cholerae, and V. alginolyticus. Meanwhile, 100% of V. parahaemolyticus and V. alginolyticus isolates were completely resistant to Penicillin G and Bacitracin, whereas 100% of V. cholerae isolates exhibited resistance to Penicillin G. The Multiple Antibiotic Resistance (MAR) indices of all isolates ranged from 0.11 to 0.33. The presence of isolates with MAR indices higher than 0.2 suggests potential contamination from sources with high antibiotic usage, such as wastewater or nearby agricultural and aquaculture activities. The findings highlight widespread antibiotic resistance among Vibrio spp., likely due to excessive antibiotics use in aquaculture settings. Additionally, virulence profile of each Vibrio spp. isolates was performed. While pathogenic potential is exhibited by some isolates, others lack key virulence genes associated with pathogenicity. All V. parahaemolyticus isolates showed the presence of tlh, toxR, and toxS genes, whille all V. cholerae isolates were positive with toxS, toxR, rtxA, and rtxC genes. None of the V. alginolyticus showed the presence of the nine tested virulence genes. However, given the high frequency of horizontal gene transfer among bacterial populations, continuous and comprehensive monitoring is crucial to prevent the spread of virulence genes between pathogenic and non-pathogenic strains. Therefore, continuous efforts to obtain more data on antibiotic resistance and bacterial virulence profiles in Sarawak is crucial for effective disease management and sustainable aquaculture practices.

References

Abd Wahid, M.E., Mohamad, M., Mohamed, N.N. & Afiqah-Aleng, N. (2022). Vibriosis in green mussels. In Aquaculture Pathophysiology, 515-529. DOI:10.1016/b978-0-323-95434-1.00069-3

Abdelaziz Gobarah, D.E., Helmy, S.M., Mahfouz, N.B., Fahmy, H.A., & Abou Zeid, M.A.E.H.M. (2022). Virulence genes and antibiotic resistance profile of Vibrio species isolated from fish in Egypt. Veterinary Research Forum, 13(3): 315-321. DOI:10.30466/vrf.2021.520767.3117

Abdullah Sani, N., Ariyawansa, S., Babji, A.S. & Hashim, J.K. (2013). The risk assessment of Vibrio parahaemolyticus in cooked black tiger shrimps (Penaeus monodon) in Malaysia. Food Control, 31(2): 546-552. DOI:10.1016/j.foodcont.2012.10.018

Abioye, O.E., Nontongana, N., Osunla, C.A. & Okoh, A.I. (2023). Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS ONE, 18(8): e0290356. DOI:10.1371/journal.pone.0290356

Abioye, O.E., Osunla, A.C. & Okoh, A.I. (2021). Molecular detection and distribution of six medically important Vibrio spp. in selected freshwater and brackish water resources in Eastern Cape Province, South Africa. Frontiers in Microbiology, 12: 617703. DOI:10.3389/fmicb.2021.617703

Al-Othrubi, S.M., Kqueen, C.Y., Mirhosseini, H., Hadi, Y.A. & Radu, S. (2014). Antibiotic resistance of Vibrio parahaemolyticus isolated from cockles and shrimp sea food marketed in Selangor, Malaysia. Clinical Microbiology: Open Access, 03(03): 148-154. DOI:10.4172/2327-5073.1000148

Amalina, N.Z., Santha, S., Zulperi, D., Amal, M.N., Yusof, M.T., Zamri-Saad, M. & Ina-Salwany, M.Y. (2019). Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiology, 19(1): 251. DOI:10.1186/s12866-019-1624-2

Baker‐Austin, C., Trinanes, J. & Martinez‐Urtaza, J. (2020). The new tools revolutionizing Vibrio science. Environmental Microbiology, 22(10): 4096-4100. DOI:10.1111/1462-2920.15083

Beceiro, A., Tomás, M. & Bou, G. (2013). Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?. Clinical Microbiology Reviews, 26(2): 185–230. DOI:10.1128/CMR.00059-12

Bej, A.K., Patterson, D.P., Brasher, C.W., Vickery, M.C.L., Jones, D.D. & Kaysner, C.A. (1999). Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. Journal of Microbiological Methods, 36: 215-225.

Caburlotto, G., Gennari, M., Ghidini, V., Tafi, M. & Lleo, M.M. (2009). Presence of T3SS2 and other virulence-related genes in tdh-negative Vibrio parahaemolyticus environmental strains isolated from marine samples in the area of the Venetian Lagoon, Italy. FEMS Microbiology Ecology, 70(3): 506-514. DOI:10.1111/j.1574-6941.2009.00764.x

CDC. (2019a). Glossary of terms related to antibiotic resistance. Retrieved from https://www.cdc.gov/narms/resources/glossary.html#:~:text=Results%20of%20antimicrobial%20susceptibility%20testing,cannot%20be%20treated%20with%20drug

CDC. (2019b). Vibrio species causing vibriosis. Retrieved from https://www.cdc.gov/Vibrio/index.html

Cepas, V. & Soto, S.M. (2020). Relationship between virulence and resistance among gram-negative bacteria. Antibiotics, 9(10): 719. DOI:10.3390/antibiotics9100719

Chen, L., Qiu, Y., Tang, H., Hu, L.F., Yang, W.H., Zhu, X.J., Huang, X.X., Wang, T. & Zhang, Y.Q. (2018). ToxR is required for biofilm formation and motility of Vibrio parahaemolyticus. Biomedical and Environmental Sciences, 31(11): 848-850. DOI:10.3967/bes2018.112

Chow, K.H., Ng, T.K., Yuen, K.Y. & Yam, W.C. (2001). Detection of RTX toxin gene in Vibrio cholerae by PCR. Journal of Clinical Microbiology, 39(7): 2594-2597. DOI:10.1128/jcm.39.7.2594-2597.2001

Clinical and Laboratory Standard Institute. (2015). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: CLSI.

Correia, S., Poeta, P., Hébraud, M., Capelo, J.L. & Igrejas, G. (2017). Mechanisms of quinolone action and resistance: Where do we stand? Journal of Medical Microbiology, 66(5): 551-559. DOI:10.1099/jmm.0.000475

Dhar, A., Piamsomboon, P., Aranguren Caro, L., Kanrar, S., Adami, R. & Juan, Y. (2019). First report of acute hepatopancreatic necrosis disease (AHPND) occurring in the USA. Diseases of Aquatic Organisms, 132(3): 241-247. DOI:10.3354/dao03330

Elmahdi, S., DaSilva, L.V. & Parveen, S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A Review. Food Microbiology, 57: 128-134. DOI:10.1016/j.fm.2016.02.008

Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S. & Donadu, M.G. (2021). No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics (Basel, Switzerland), 10(9): 1134. DOI:10.3390/antibiotics10091134

Gao, L., Ouyang, M., Li, Y., Zhang, H., Zheng, X.-F., Li, H.-X., Rao, S.-Q., Yang, Z.-Q., & Gao, S. (2022). Isolation and characterisation of a lytic vibriophage OY1 and its biocontrol effects against Vibrio spp. Frontiers in Microbiology, 13. DOI:10.3389/fmicb.2022.830692

Gotoh, K., Kodama, T., Hiyoshi, H., Izutsu, K., Park, K.-S., Dryselius, R., Akeda, Y., Honda, T., & Iida, T. (2010). Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE, 5(10). DOI:10.1371/journal.pone.0013365

Gutierrez West, C.K., Klein, S.L. & Lovell, C.R. (2013). High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Applied and Environmental Microbiology, 79(7): 2247-2252. DOI:10.1128/aem.03792-12

Haifa-Haryani, W.O., Amatul-Samahah, Md.A., Azzam-Sayuti, M., Chin, Y.K., Zamri-Saad, M., Natrah, I., Amal, M.N., Satyantini, W.H. & Ina-Salwany, M.Y. (2022). Prevalence, antibiotics resistance and plasmid profiling of Vibrio spp. isolated from cultured shrimp in Peninsular Malaysia. Microorganisms, 10(9): 1851. DOI:10.3390/microorganisms10091851

Hanna, N., Tamhankar, A.J. & Stålsby Lundborg, C. (2023). Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: A systematic review and probabilistic environmental hazard assessment. The Lancet Planetary Health, 7(1): e45-e54. DOI:10.1016/s2542-5196(22)00254-6

Hooper, D.C. & Jacoby, G.A. (2016). Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harbor Perspectives in Medicine, 6(9): a025320. DOI:10.1101/cshperspect.a025320

Hossain, Md.M., Uddin, Md.I., Islam, H., Fardoush, J., Rupom, Md.A., Hossain, Md.M., Farjana, N., Afroz, R., Hasan-Uj-Jaman, Roy, H.S., Shehab, Md.A. & Rahman, Md.A. (2020). Diagnosis, genetic variations, virulence, and toxicity of AHPND-positive Vibrio parahaemolyticus in Penaeus monodon. Aquaculture International, 28(6): 2531-2546. DOI:10.1007/s10499-020-00607-z

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. Retrieved from https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf

Ibrahim, A.B., Khan, M.A., Ayob, M.Y. & Norrakiah, A.S. (2010). Pesticide and antibiotic residues in freshwater aquaculture fish: Chemical risk assessment from farm to table. Asian Journal of Agro-Industry, 3(3): 328-334.

Kapoor, G., Saigal, S. & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33(3): 300. DOI:10.4103/joacp.joacp_349_15

Kathleen, M.M., Samuel, L., Felecia, C., Reagan, E. L., Kasing, A., Lesley, M. & Toh, S.C. (2016). Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo. International Journal of Microbiology, 2016: 2164761. DOI:10.1155/2016/2164761

Kaysner, C.A., Abeyta, C., Stott, R.F., Krane, M.H. & Wekell, M.M. (1990). Enumeration of Vibrio species, including V. cholerae, from samples of an oyster growing area, Grays Harbor, Washington. Journal of Food Protection, 53(4): 300-302. DOI:10.4315/0362-028x-53.4.300.

Kim, H.-J., Ryu, J.-O., Lee, S.-Y., Kim, E.-S. & Kim, H.-Y. (2015). Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiology, 15(1): 239. DOI:10.1186/s12866-015-0577-3

Kim, Y.R., Lee, S.E., Kang, I.-C., Nam, K.I., Choy, H.E. & Rhee, J.H. (2012). A bacterial RTX toxin causes programmed necrotic cell death through calcium-mediated mitochondrial dysfunction. The Journal of Infectious Diseases, 207(9): 1406-1415. DOI:10.1093/infdis/jis746

Larsson, D.G. (2014). Antibiotics in the environment. Upsala Journal of Medical Sciences, 119(2): 108-112. DOI:10.3109/03009734.2014.896438

Lembke, M., Höfler, T., Walter, A., Tutz, S., Fengler, V., Schild, S. & Reidl, J. (2020). Host stimuli and operator binding sites controlling protein interactions between virulence master regulator ToxR and ToxS in Vibrio cholerae. Molecular Microbiology, 114(2): 262-278. DOI:10.1111/mmi.14510

Lesen, D., Nillian, E., Awang Baki, D.N. & Robin, T. (2024). Prevalence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio alginolyticus in a white-leg shrimp (Litopenaeus vannamei) farm in Sarawak. Pertanika Journal of Science and Technology, 32(5): 2233–2257. DOI:10.47836/pjst.32.5.17

Liang, J., Liu, J., Wang, X., Sun, H., Zhang, Y., Ju, F., Thompson, F. & Zhang, X.H. (2022). Genomic Analysis Reveals Adaptation of Vibrio campbellii to the Hadal Ocean. Applied and Environmental Microbiology, 88(16): e0057522. DOI:10.1128/aem.00575-22

Lin, Z., Kumagai, K., Baba, K., Mekalanos, J.J. & Nishibuchi, M. (1993). Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. Journal of Bacteriology, 175(12): 3844-3855. DOI:10.1128/jb.175.12.3844-3855.1993

Liu, H. (2003). Analysis of collective food poisoning events in Shanghai from 1990 to 2000. Chinese Journal of Natural Medicines, 5: 17-20.

Lundborg, C.S. & Tamhankar, A.J. (2017). Antibiotic residues in the environment of South East Asia. BMJ, 2017(358): j2440. DOI:10.1136/bmj.j2440

Luu, Q.H., Nguyen, T.B., Nguyen, T.L., Do, T.T., Dao, T.H. & Padungtod, P. (2021). Antibiotics use in fish and shrimp farms in Vietnam. Aquaculture Reports, 20: 100711. DOI:10.1016/j.aqrep.2021.100711

Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.Y. & Schoolnik, G.K. (2005). Chitin induces natural competence in Vibrio cholerae. Science (New York, N.Y.), 310(5755): 1824–1827. DOI:10.1126/science.1120096

Muteeb, G., Rehman, M.T., Shahwan, M. & Aatif, M. (2023). Origin of antibiotics and antibiotic resistance, and their impacts on drug development:A narrative review. Pharmaceuticals (Basel, Switzerland), 16(11): 1615. DOI: 10.3390/ph16111615

Nillian, E., Zakaria, N.D., Lesen, D., Yusoff, N.H., Ismail, N.S., Tung, T.S. & Bilung, L. (2022). Comparison distribution of Vibrio species in stocking to harvesting process of shrimp at commercialize shrimp farm. International Journal of Biology and Biomedical Engineering, 16: 168-174. DOI:10.46300/91011.2022.16.22

Oh, E.-G., Son, K.-T., Yu, H., Lee, T.-S., Lee, H.-J., Shin, S., Kwon, J.-Y., Park, K., & Kim, J. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in Korea from 2005 through 2007. Journal of Food Protection, 74(3): 380-386. DOI:10.4315/0362-028x.jfp-10-307

Okuda, J., Nakai, T., Chang, P.S., Oh, T., Nishino, T., Koitabashi, T. & Nishibuchi, M. (2001). The toxR gene of Vibrio (listonella) anguillarum controls expression of the major outer membrane proteins but not virulence in a natural host model. Infection and Immunity, 69(10): 6091-6101. DOI:10.1128/iai.69.10.6091-6101.2001

Paria, P., Behera, B.K., Mohapatra, P.K. & Parida, P.K. (2021). Virulence factor genes and comparative pathogenicity study of TDH, TRH and TLH positive Vibrio parahaemolyticus strains isolated from whiteleg shrimp, Litopenaeus vannamei (Boone, 1931) in India. Infection, Genetics and Evolution, 95: 105083. DOI:10.1016/j.meegid.2021.105083

Pfau, J.D. & Taylor, R.K. (1998). Mutations in toxR and toxS that separate transcriptional activation from DNA binding at the cholera toxin gene promoter. Journal of Bacteriology, 180(17): 4724-4733. DOI:10.1128/jb.180.17.4724-4733.1998

Queipo-Ortuño Maria Isabel, De Dios Colmenero, J., Macias, M., Bravo, M.J. & Morata, P. (2008). Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. Clinical and Vaccine Immunology, 15(2): 293-296. DOI:10.1128/cvi.00270-07

Raghunath P. (2015). Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Frontiers in Microbiology, 5: 805. DOI:10.3389/fmicb.2014.00805

Rodgers, C.J., Mohan, C.V. & Peeler, E.J. (2011). The spread of pathogens through trade in aquatic animals and their products. Revue Scientifique et Technique de l’OIE, 30(1): 241-256. DOI:10.20506/rst.30.1.2034

Sahilah, A.M., Laila, R.A., Sallehuddin, H. Mohd., Osman, H., Aminah, A. & Ahmad Azuhairi, A. (2014). Antibiotic resistance and molecular typing among cockle (Anadara granosa) strains of Vibrio parahaemolyticus by polymerase chain reaction (PCR)-based analysis. World Journal of Microbiology and Biotechnology, 30(2): 649–659. DOI:10.1007/s11274-013-1494-y

Salgueiro, H.S., Ferreira, A. C., Duarte, A.S. & Botelho, A. (2024). Source attribution of antibiotic resistance genes in estuarine aquaculture: A machine learning approach. Antibiotics, 13(1): 107. DOI:10.3390/antibiotics13010107

Sampaio, A., Silva, V., Poeta, P. & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14(2): 97. DOI:10.3390/d14020097

Sechi, L.A., Duprè, I., Deriu, A., Fadda, G. & Zanetti, S. (2000). Distribution of Vibrio cholerae virulence genes among different Vibrio species isolated in Sardinia, Italy. Journal of Applied Microbiology, 88: 475-481.

Sharma, L., Nagpal, R., Jackson, C.R., Patel, D. & Singh, P. (2021). Antibiotic-resistant bacteria and gut microbiome communities associated with wild-caught shrimp from the United States versus imported farm-raised retail shrimp. Scientific Reports, 11(1): 3356. DOI:10.1038/s41598-021-82823-y

Shinoda, S., Matsuoka, H., Tsuchie, T., Miyoshi, S.-I., Yamamoto, S., Taniguchi, H. & Mizuguchi, Y. (1991). Purification and characterisation of a lecithin-dependent haemolysin from Escherichia coli transformed by a Vibrio parahaemolyticus gene. Journal of General Microbiology, 137(12): 2705-2711. DOI:10.1099/00221287-137-12-2705

Sirikharin, R., Taengchaiyaphum, S., Sanguanrut, P., Chi, T.D., Mavichak, R., Proespraiwong, P., Nuangsaeng, B., Thitamadee, S., Flegel, T.W. & Sritunyalucksana, K. (2015). Characterization and PCR detection of binary, Pir-like toxins from Vibrio parahaemolyticus isolates that cause acute hepatopancreatic necrosis disease (AHPND) in shrimp. PLoS ONE, 10(5). DOI:10.1371/journal.pone.0126987

Song, X., Zang, J., Yu, W., Shi, X. & Wu, Y. (2020). Occurrence and identification of pathogenic Vibrio contaminants in common seafood available in a Chinese traditional market in Qingdao, Shandong Province. Frontiers in Microbiology, 11: 1488. DOI:10.3389/fmicb.2020.01488

Takahashi, E., Ochi, S., Mizuno, T., Morita, D., Morita, M., Ohnishi, M., Koley, H., Dutta, M., Chowdhury, G., Mukhopadhyay, A.K., Dutta, S., Miyoshi, S.-I. & Okamoto, K. (2021). Virulence of cholera toxin gene-positive Vibrio cholerae Non-O1/non-o139 strains isolated from environmental water in Kolkata, India. Frontiers in Microbiology, 12: 726273. DOI:10.3389/fmicb.2021.726273

Tendencia, E.A. & de la Peña, L.D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3-4): 193-204. DOI:10.1016/s0044-8486(00)00570-6

Vila, J., Simon, K., Ruiz, J., Horcajada, J.P., Velasco, M., Barranco, M., Moreno, A. & Mensa, J. (2002). Are quinolone‐resistant uropathogenic Escherichia coli less virulent? The Journal of Infectious Diseases, 186(7): 1039–1042. DOI:10.1086/342955

Wang, R.Z., Fang, S., Wu, D.L., Wu, D., Lian, J., Fan, J., Zhang, Y., Wang, S. and Lin, W. (2012). Screening of a ScFv antibody that can neutralize effectively the cytotoxicity of Vibrio parahaemolyticus TLH. Applied and Environmental Microbiology, 78: 4967-4975. DOI:10.1128/AEM.00435-12

Wang, R., Zhong, Y., Gu, X., Yuan, J., Saeed, A.F. & Wang, S. (2015). The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Frontiers in Microbiology, 6: 144. DOI:10.3389/fmicb.2015.00144

Wang, S.X., Zhang, X.H., Zhong, Y.B., Sun, B.G. & Chen, J.X. (2007). Genes encoding the Vibrio harveyi haemolysin (VHH)/thermolabile haemolysin (TLH) are widespread in vibrios. Acta Microbiologica Sinica, 47(2007): 874-881.

WHO. (2023). Antimicrobial resistance. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Xu, Y., Wang, C., Zhang, G., Tian, J., Liu, Y., Shen, X. & Feng, J. (2017). ISCR2 is associated with the dissemination of multiple resistance genes among Vibrio spp. and Pseudoalteromonas spp. isolated from farmed fish. Archives of Microbiology, 199(6): 891-896. DOI:10.1007/s00203-017-1365-2

Xue, M., Huang, X., Xue, J., He, R., Liang, G., Liang, H., Liu, J. & Wen, C. (2022). Comparative genomic analysis of seven Vibrio alginolyticus strains isolated from shrimp larviculture water with emphasis on chitin utilisation. Frontiers in Microbiology, 13: 925747. DOI:10.3389/fmicb.2022.925747

Yáñez, R., Bastías, R., Higuera, G., Salgado, O., Katharios, P., Romero, J., Espejo, R. & García, K. (2015). Amplification of TLH gene in other Vibrionaceae specie by specie-specific multiplex PCR of Vibrio parahaemolyticus. Electronic Journal of Biotechnology, 18(6): 459-463. DOI:10.1016/j.ejbt.2015.09.007

Zhang, Y., Hu, L., Osei-Adjei, G., Zhang, Y., Yang, W., Yin, Z., Lu, R., Sheng, X., Yang, R., Huang, X. & Zhou, D. (2018). Autoregulation of toxR and its regulatory actions on major virulence gene loci in Vibrio parahaemolyticus. Frontiers in Cellular and Infection Microbiology, 8: 291. DOI:10.3389/fcimb.2018.00291

Zhang, Y., Qiu, Y., Xue, X., Zhang, M., Sun, J., Li, X., Hu, L., Yin, Z., Yang, W., Lu, R. & Zhou, D. (2021). Transcriptional regulation of the virulence genes and the biofilm formation associated operons in Vibrio parahaemolyticus. Gut Pathogens, 13(1): 15. DOI:10.1186/s13099-021-00410-y

Zoqratt, M.Z.H.M., Eng, W.W.H., Thai, B.T., Austin, C.M. & Gan, H.M. (2018). Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: Implications for aquaculture research and management. PeerJ, 6: e5826. DOI:10.7717/peerj.5826

Downloads

Published

2025-06-26

How to Cite

NILLIAN, E. ., EDWIN, E. E. ., LESEN, D. ., STEPHEN, M. ., & SANI, M. . (2025). Antibiotic Resistance and Virulence Gene Profiles of Vibrio parahaemolyticus, Vibrio cholera, and Vibrio alginolyticus Isolated from Commercial Shrimp Farm in Kuching, Sarawak. Borneo Journal of Resource Science and Technology, 15(1), 32–54. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/7238