Essential Oil from Citrus medica Waste and Its Repellent Activity Against Mosquitoes (Diptera: Culicidae)

Authors

  • NUR HISAM ZAMAKSHSHARI Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • NURHAZIQAH MD YAZID Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • SWEN JACK KHO Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • SURISA PHORNVILLAY Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • DIANA KERTINI MONIR Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • NURAINEE SALAEMAE Department of Agricultural and Fishery Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand

Keywords:

Citrus, essential oil, food waste, mosquito repellency, nanoemulsion spray

Abstract

Citrus medica is enriched with beneficial antioxidant agents and has promising potential as a mosquito repellent. Most commercial mosquito repellents contain N,N,-diethyl-3-methybenzamide (DEET), damaging the synthetic fabric and plastic, thus producing toxic reactions. This study was conducted to identify the application of C. medica peels as new mosquito repellents formulated using essential oil of C. medica peels. Methodologically, the essential oil of C. medica peels was extracted via hydro-distillation method and analysed by gas chromatography-mass spectrometry. The insect repellent of C. medical essential oil nanoemulsion (EON) spray was formulated. This EON was further characterized and assessed for its stability as well as mosquito repellency properties. Major chemical constituents were successfully identified in C. medica peels, in which D-Limonene constituted almost 64.57%. The formulated EON was found to be slightly turbid, bluish-white, and isotropic. The pH of EON was 5.45, which was skin-friendly, with 0.8896 ± 0.0016 cP viscosity at 27 °C, which was lower than water (0.8539 cP). The conductivity readings (- 234V) used to establish the oil-in-water nanoemulsion were substantiated by spherical and homogenous shapes with no aggregation seen on a scanning electron microscope. From the repellency test, EON showed good potential with more than 70% mosquito repellency. In conclusion, mosquito repellents formulated from C. medica peel essential oil showed good mosquito repellency that effectively reduces vector-borne diseases, which significantly threaten many lives.

References

Amelia, B., Saepudin, E., Cahyana, A.H., Rahayu, D.U., Sulistyoningrum, A.S. & Haib, J. (2017). GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado. AIP Conference Proceeding, 1862, 030082. DOI: 10.1063/1.4991186

Anuar, A.A. & Yusof, N. (2016). Methods of imparting mosquito repellent agents and the assessing mosquito repellency on textile. Fashion and Textiles, 3(1): 12. DOI:10.1186/s40691-016-0064-y

Azmi, N.A.N., Elgharbawy, A.A.M., Motlagh, S.R., Samsudin, M. & Salleh, H.M. (2019). Nanoemulsion: Factory for food, pharmaceutical and cosmetics. Processes, 7(9): 617. DOI: 10.3390/pr7090617

Badalamenti, N., Bruno, M., Schicchi, R., Geraci, A., Leporini, M., Tundis, R. & Loizzo, M.R. (2022). Reuse of food waste: The chemical composition and health properties of pomelo (Citrus maxima) cultivar essential oils. Molecules, 27(10): 3273. DOI:10.3390/molecules27103273

Bhuiyan, M.N.I., Begum, J., Sardar, P.K. & Rahman, M.S. (2009). Constituents of peel and leaf essential oils of Citrus medica L. Journal of Scientific Research, 1(2): 387-392. DOI:10.3329/jsr.v1i2.1760

Boccia, F., Di Pietro, B. & Covino, D. (2021). Food waste and environmental-sustainable innovation: A scenario for the Italian Citrus market. Quality-Access to Success, 182: 145-153.

Choochote, W., Chaithong, U., Kamsuk, K., Jitpakdi, A., Tippawangkosol, P., Tuetun, B., Champakaew, D. & Pitasawat, B. (2007). Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia, 78(5): 359-364. DOI:10.1016/j.fitote.2007.02.006

Chuesiang, P., Siripatrawan, U., Sanguandeekul, R., McLandsborough, L. & Julian McClements, D. (2018). Optimization of cinnamon oil nanoemulsions using phase inversion temperature method: Impact of oil phase composition and surfactant concentration. Journal of Colloid and Interface Science, 514: 208-216. DOI:10.1016/j.jcis.2017.11.084

da Silva, M.R.M. & Ricci-Júnior, E. (2020). An approach to natural insect repellent formulations: from basic research to technological development. Acta Tropica, 212: 105419. DOI:10.1016/j.actatropica.2020.105419

Dob, T., Dahmane, D., Berramdane, T. & Chelghoum, C. (2005). Chemical composition of the essential oil of Artemisia campestris L. from Algeria. Pharmaceutical Biology, 43(6): 512-514. DOI:10.1080/13880200500220664

Geetanjali, R., Sreejit, V., Sandip, P. & Preetha, R. (2021). Preparation of aloe vera mucilage-ethyl vanillin nano-emulsion and its characterization. Materials Today: Proceedings, 43: 3766-3773. DOI:10.1016/j.matpr.2020.10.990

Gillij, Y.G., Gleiser, R.M. & Zygadlo, J.A. (2008). Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresource Technology, 99(7): 2507-2515. DOI:10.1016/j.biortech.2007.04.066

Langgut, D. (2015). Prestigious fruit trees in ancient Israel: first palynological evidence for growing Juglans regia and Citrus medica. Israel Journal of Plant Sciences, 62(1-2): 98-110. DOI:10.1080/07929978.2014.950067

Leite, N. R., Krogh, R., Xu, W., Ishida, Y., Iulek, J., Leal, W. S., & Oliva, G. (2009). Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “lid.” PLoS ONE, 4(11): e8006. DOI:10.1371/journal.pone.0008006

Li, Z., Cai, M., Liu, Y. & Sun, P. (2018). Development of finger citron (Citrus medica L. var. sarcodactylis) essential oil loaded nanoemulsion and its antimicrobial activity. Food Control, 94: 317-323. DOI:10.1016/j.foodcont.2018.07.009

Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L. and Luo, S.L., 2019. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules, 24(8): p.1577. DOI:10.3390/molecules24081577

Liu, W., Li, Z., Yang, K., Sun, P. & Cai, M. (2021). Effect of nanoemulsion loading finger citron (Citrus medica L. var. Sarcodactylis) essential oil on human gut microbiota. Journal of Functional Foods, 77: 104336. DOI:10.1016/j.jff.2020.104336

Lou, Z., Chen, J., Yu, F., Wang, H., Kou, X., Ma, C. & Zhu, S. (2017). The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT, 80: 371-377. DOI:10.1016/j.lwt.2017.02.037

Lukić, M., Pantelić, I. & Savić, S.D. (2021). Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics, 8(3): 69. DOI:10.3390/cosmetics8030069

Mahdi, A.A., Al-Ansi, W., Ahmed, M.I., Xiaoyun, C., Mohammed, J.K., Sulieman, A.A., Mushtaq, B.S., Harimana, Y. & Wang, H. (2020). Microwave assisted extraction of the bioactive compounds from peel/pulp of Citrus medica L. var. sarcodactylis swingle along with its nutritional profiling. Journal of Food Measurement and Characterization, 14(1): 283-292. DOI:10.1007/s11694-019-00290-6

Mohammadi, R., Khoobdel, M., Negahban, M., & Khani, S. (2019). Nanoemulsified Mentha piperita and Eucalyptus globulus oils exhibit enhanced repellent activities against Anopheles stephensi. Asian Pacific Journal of Tropical Medicine, 12(11): 520. DOI:10.4103/1995-7645.271292

Mohammed, H.H., Laftah, W.A., Noel Ibrahim, A. & Che Yunus, M.A. (2022). Extraction of essential oil from Zingiber officinale and statistical optimization of process parameters. RSC Advances, 12(8): 4843-4851. DOI:10.1039/D1RA06711G

Muhd Rodhi, M.N., Saifuddin, P.N.S. & Veny, H. (2020). Characterisation of used cooking oil (UCO) and orange peels as the medium of insect repellent. Malaysian Journal of Chemical Engineering and Technology, 3(2): 67-75. DOI:10.24191/mjcet.v3i2.10947

Muturi, E.J., Doll, K., Ramirez, J.L. & Rooney, A. P. (2019). Bioactivity of wild carrot (Daucus carota, Apiaceae) essential oil against mosquito larvae. Journal of Medical Entomology, 56(3): 784-789. DOI:10.1093/jme/tjy226

Nararak, J., Sathantripop, S., Kongmee, M., Mahiou-Leddet, V., Olliver, E., Manguin, S. & Chareonviriyaphap, T. (2019). Excito-repellent activity of β-caryophyllene oxide against Aedes aegypti and Anopheles minimus. Acta Tropica, 197: 105030. DOI:10.1016/j.actatropica.2019.05.021

Nascimento, A.M.D., Maia, T.D.S., Soares, T.E.S., Menezes, L.R.A., Scher, R., Costa, E.V., Cavalcanti, S.C.H. & La Corte, R. (2017). Repellency and larvicidal activity of essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and their individual compounds against Aedes aegypti Linnaeus. Neotropical Entomology, 46(2): 223-230. DOI:10.1007/s13744-016-0457-z

Navayan, A., Moghimipour, E., Khodayar, M.J., Vazirianzadeh, B., Siahpoosh, A., Valizadeh, M. & Mansourzadeh, Z. (2017). Evaluation of the mosquito repellent activity of nano-sized microemulsion of Eucalyptus globulus essential oil against Culicinae. Jundishapur Journal of Natural Pharmaceutical Products, 12(4): e55626. DOI:10.5812/jjnpp.55626

Ojewumi, M.E., Obanla, O.R. & Atauba, D.M. (2021). A review on the efficacy of Ocimum gratissimum, Mentha spicata, and Moringa oleifera leaf extracts in repelling mosquito. Beni-Suef University Journal of Basic and Applied Sciences, 10(1): 87. DOI:10.1186/s43088-021-00176-x

Okpalaku, O., Uronnachi, E., Okoye, E., Umeyor, C., Nwakile, C., Okeke, T. & Attama, A. (2022). Evaluating some essential oils-based and coconut oil nanoemulgels for the management of rheumatoid arthritis. Letters in Applied NanoBioScience, 12(3): 75. DOI:10.33263/LIANBS123.075

Onyeyirichi, I., Ogechi, N., Oche, O., Jerry, U. & Gero, M. (2014). Evaluation of chemical constituent of Citrus medica Limonium leaf essential oil. Journal of Pharmaceutical and Scientific Innovation, 3(4): 306-309. DOI:10.7897/2277-4572.034161

Ostertag, F., Weiss, J. & McClements, D.J. (2012). Low-energy formation of edible nanoemulsions: Factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, 388(1): 95-102. DOI:10.1016/j.jcis.2012.07.089

Pang, X., Feng, Y., Qi, X., Xi, C. & Du, S. (2021). Acute toxicity and repellent activity of essential oil from Atalantia guillauminii Swingle fruits and its main monoterpenes against two stored product insects. International Journal of Food Properties, 24: 304-315. DOI:10.1080/10942912.2021.1876088

Saberi, A.H., Fang, Y. & McClements, D.J. (2013). Effects of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of Colloid and Interface Science, 411: 105-113. DOI: 10.1016./j.jcis.2013.08.041

Sales, A., Felipe, L. de O. & Bicas, J.L. (2020). Production, properties, and applications of α-terpineol. Food and Bioprocess Technology, 13(8): 1261-1279. DOI:10.1007/s11947-020-02461-6

Santiago, B., Moreira, M.T., Feijoo, G. & González-García, S. (2020). Identification of environmental aspects of citrus waste valorization into D-limonene from a biorefinery approach. Biomass and Bioenergy, 143: 105844. DOI:10.1016/j.biombioe.2020.105844

Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R.K. & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 66(2): 227-243. DOI:10.1016/j.ejpb.2006.10.014

Shafiq-un-Nabi, S., Shakeel, F., Talegaonkar, S., Ali, J., Baboota, S., Ahuja, A., Khar, R.K. & Ali, M. (2007). Formulation development and optimization using nanoemulsion technique: A technical note. AAPS pharmscitech, 8(2): E12-E17. DOI:10.1208/pt0802028

Tan, K., Faierstein, G.B., Xu, P., Barbosa, R.M.R., Buss, G.K. & Leal, W.S. (2019). A popular Indian clove-based mosquito repellent is less effective against Culex quinquefasciatus and Aedes aegypti than DEET. PLOS ONE, 14(11): e0224810. DOI:10.1371/journal.pone.0224810

Upadhyay, H., Juneja, A., Turabieh, H., Malik, S., Gupta, A., Bitsue, Z.K. & Upadhyay, C. (2022). Exploration of crucial factors involved in plants development using the fuzzy AHP method. Mathematical Problems in Engineering, 2022: 1-9. DOI:10.1155/2022/4279694

Venturini, N., Barboni, T., Curk, F., Costa, J. & Paolini, J. (2014). Volatile and flavonoid composition of the peel of Citrus medica L. var. corsican fruit for quality assessment of its liqueur. Food Technology and Biotechnology, 52(4): 403-410. DOI:10.17113/ftb.52.04.14.3717

WHO (World Health Organization). (2020, March). Vector-borne diseases.

Yen, P.-S. & Failloux, A.-B. (2020). A Review: Wolbachia-based population replacement for mosquito control shares common points with genetically modified control approaches. Pathogens, 9(5): 404. DOI: 10.3390/pathogens9050404

Zamakshshari, N.H., Ahmed, I.A., Didik, N.A.M., Nasharuddin, M.N.A., Hashim, N.M., & Abdullah, R. (2023). Chemical profile and antimicrobial activity of essential oil and methanol extract from peels of four Durio zibethinus L. varieties. Biomass Conversion and Biorefinery, 13(15): 13995-14003. DOI:10.1007/s13399-021-02134-0

Downloads

Published

2025-06-26

How to Cite

ZAMAKSHSHARI, N. H. ., MD YAZID, N. ., KHO , S. J., PHORNVILLAY, S. ., MONIR, D. K. ., & SALAEMAE, N. (2025). Essential Oil from Citrus medica Waste and Its Repellent Activity Against Mosquitoes (Diptera: Culicidae). Borneo Journal of Resource Science and Technology, 15(1), 146–155. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/6982