Volatile Components, Antibacterial and Antioxidant Activities of Komburongoh (Acorus calamus L.) Essential Oils as Potential Medicinal Herbs from Sabah, Malaysia

Authors

  • MOHAMMAD AMIL ZULHILMI BENJAMIN Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0001-6483-1362
  • JACQUELINE VINCENT Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • HAJA NURSADAH BINSALI Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • AHMAD ASNAWI MUS Faculty of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0003-0573-5543
  • MOHD AZRIE AWANG Innovative Food Processing and Ingredients Research Group, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0002-5976-2427
  • NOR AZIZUN RUSDI Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

Keywords:

Acorus calamus, Volatile components, Antibacterial, Antioxidant, Essential oil

Abstract

Acorus calamus L., known for diverse therapeutic applications, was studied for its volatile components, antibacterial and antioxidant potential in essential oils from Sabah, Malaysia. Employing hydrodistillation with a Clevenger apparatus, the oils were analysed through gas chromatography-mass spectrometry. Antibacterial activity was assessed via disc diffusion against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli. Antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Both leaf and rhizome oils were rich in phenylpropanoids, oxygenated sesquiterpenes, and sesquiterpenes including α-asarone, γ-asarone, methyl isoeugenol, 6-epi-shyobunone, and (E)-β-farnesene. They demonstrated significant antibacterial activity at 400 µg/mL, while displaying lower DPPH (IC50 = 28.20 ± 4.99 µg/mL) and excelling in the FRAP (150.12 ± 0.10 mg TE/g). This ongoing phytochemical analysis of A. calamus holds promise for enhancing quality control, ensuring safety, and validating its traditional applications.

References

Adams, R.P. (2000). Systematics of Juniperus section Juniperus based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology. 28(6): 515–528. DOI: 10.1016/S0305-1978(99)00089-7

Ahmad, F.B. & Holdsworth, D.K. (2003). Medicinal plants of Sabah, East Malaysia – Part I. Pharmaceutical Biology. 41(5): 340–346. DOI: 10.1076/phbi.41.5.340.15940

Alqadeeri, F., Rukayadi, Y., Abbas, F. & Shaari, K. (2019). Antibacterial and antispore activities of isolated compounds from Piper cubeba L. Molecules. 24(17): 3095. DOI: 10.3390/molecules24173095

Asha, D.S. & Ganjewala, D. (2009). Antimicrobial activity of Acorus calamus (L.) rhizome and leaf extract. Acta Biologica Szegediensis. 53(1): 45–49

Atalar, M.N. & Türkan, F. (2018). Identification of chemical components from the rhizomes of Acorus calamus L. with gas chromatography-tandem mass spectrometry (GC-MSMS). Journal of the Institute of Science and Technology. 8(4): 181–187. DOI: 10.21597/jist.433743

Benjamin, M.A.Z., Ng, S.Y., Saikim, F.H. & Rusdi, N.A. (2022). The effects of drying techniques on phytochemical contents and biological activities on selected bamboo leaves. Molecules. 27(19): 6458. DOI: 10.3390/molecules27196458

Berg, K., Bischoff, R., Stegmüller, S., Cartus, A. & Schrenk, D. (2016). Comparative investigation of the mutagenicity of propenylic and allylic asarone isomers in the Ames fluctuation assay. Mutagenesis. 31(4): 443–451. DOI: 10.1093/mutage/gew007

Chaubey, P., Parki, A., Prakash, O., Kumar, R. & Pant, A.K. (2018). Comparative study of chemical composition and antioxidant activity of essential oil extracted from Acorus calamus L. leaves. Journal of Herbal Drugs. 8(4): 203–211. DOI: 10.14196/jhd.2018.203

Chellian, R., Pandy, V. & Mohamed, Z. (2016). Biphasic effects of α-asarone on immobility in the tail suspension test: Evidence for the involvement of the noradrenergic and serotonergic systems in its antidepressant-like activity. Frontiers in Pharmacology. 7: 72. DOI: 10.3389/fphar.2016.00072

Cheng, S.S., Lin, H.Y. & Chang, S.T. (2005). Chemical composition and antifungal activity of essential oils from different tissues of Japanese cedar (Cryptomeria japonica). Journal of Agricultural and Food Chemistry. 53(3): 614–619. DOI: 10.1021/jf0484529

Číž, M., Čížová, H., Denev, P., Kratchanova, M., Slavov, A. & Lojek, A. (2010). Different methods for control and comparison of the antioxidant properties of vegetables. Food Control. 21(4): 518–523. DOI: 10.1016/j.foodcont.2009.07.017

Das, B.K., Choukimath, S.M. & Gadad, P.C. (2019a). Asarone and metformin delays experimentally induced hepatocellular carcinoma in diabetic milieu. Life Sciences. 230: 10–18. DOI: 10.1016/j.lfs.2019.05.046

Das, B.K., Swamy, A.V., Koti, B.C. & Gadad, P.C. (2019b). Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon. 5(5): e01585. DOI: 10.1016/j.heliyon.2019.e01585

Devi, S.A. & Ganjewala, D. (2011). Antioxidant activities of methanolic extracts of sweet-flag (Acorus calamus) leaves and rhizomes. Journal of Herbs, Spices and Medicinal Plants. 17(1): 1–11. DOI: 10.1080/10496475.2010.509659.

Dinev, T., Tzanova, M., Velichkova, K., Dermendzhieva, D. & Beev, G. (2021). Antifungal and antioxidant potential of methanolic extracts from Acorus calamus L., Chlorella vulgaris Beijerinck, Lemna minuta Kunth and Scenedesmus dimorphus (Turpin) Kützing. Applied Sciences. 11(11): 4745. DOI: 10.3390/app11114745

Fafal, T., Sümer Tüzün, B. & Kıvçak, B. (2022). Fatty acid compositions and antioxidant activities of Ranunculus isthmicus subsp. tenuifolius and Ranunculus rumelicus. International Journal of Nature and Life Sciences. 6(2): 151–159. DOI: 10.47947/ijnls.1173088

Ganesan, R.M. & Gurumallesh Prabu, H. (2019). Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arabian Journal of Chemistry. 12(8): 2166–2174. DOI: 10.1016/j.arabjc.2014.12.017

Ganjewala, D. & Srivastava, A.K. (2011). An update on chemical composition and bioactivities of Acorus species. Asian Journal of Plant Sciences. 10(3): 182–189. DOI: 10.3923/ajps.2011.182.189

Grayum, M.H. (1987). A summary of evidence and arguments supporting the removal of Acorus from the Araceae. Taxon. 36(4): 723–729. DOI: 10.2307/1221123

Heng, L., Guanghua, Z. & Bogner, J. (2010). Acoraceae. In Wu, Z.Y., Raven, P.H. and Hong, D.Y. (eds.). Flora of China, vol. 23. St. Louis, MO, USA, Missouri Botanical Garden Press. pp. 1–2

Hong, Y., Liu, X., Wang, H., Zhang, M. & Tian, M. (2021). Chemical composition, antibacterial, enzyme-inhibitory, and anti-inflammatory activities of essential oil from Hedychium puerense rhizome. Agronomy. 11(12): 2506. DOI: 10.3390/agronomy11122506

Ilijeva, R. & Buchbauer, G. (2016). Biological properties of some volatile phenylpropanoids. Natural Product Communications. 11(10): 1619–1629. DOI: 10.1177/1934578x1601101041

Jinoni, D.A., Benjamin, M.A.Z., Mus, A.A., Goh, L.P.W., Rusdi, N.A. & Awang, M.A. (2024). Phaleria macrocarpa (Scheff.) Boerl. (mahkota dewa) seed essential oils: Extraction yield, volatile components, antibacterial, and antioxidant activities based on different solvents using Soxhlet extraction. Kuwait Journal of Science. 51: 100173. DOI: 10.1016/j.kjs.2023.100173

Jo, M.-J., Kumar, H., Joshi, H.P., Choi, H., Ko, W.-K., Kim, J.M., Hwang, S.S.S., Park, S.Y., Sohn, S., Bello, A.B., Kim, K.-T., Lee, S.-H., Zeng, X. & Han, I. (2018). Oral administration of α-asarone promotes functional recovery in rats with spinal cord injury. Frontiers in Pharmacology. 9: 445. DOI: 10.3389/fphar.2018.00445.

Khatun, S., Chatterjee, N.C. & Cakilcioglu, U. (2011). Antioxidant activity of the medicinal plant Coleus forskohlii Briq. African Journal of Biotechnology. 10(13): 2530–2535. DOI: 10.5897/AJB10.2526

Kulip, J. (1997). A preliminary survey of traditional medicinal plants in the West Coast and Interior of Sabah. Journal of Tropical Forest Science. 10(2): 271–274.

Kumar, S.N., Aravind, S.R., Sreelekha, T.T., Jacob, J. & Kumar, B.S.D. (2015). Asarones from Acorus calamus in combination with azoles and amphotericin B: A novel synergistic combination to compete against human pathogenic Candida species in vitro. Applied Biochemistry and Biotechnology. 175(8): 3683–3695. DOI: 10.1007/s12010-015-1537-y

Liu, X.C., Zhou, L.G., Liu, Z.L. & Du, S.S. (2013). Identification of insecticidal constituents of the essential oil of Acorus calamus rhizomes against Liposcelis bostrychophila Badonnel. Molecules. 18(5): 5684–5696. DOI: 10.3390/molecules18055684

Loying, R., Gogoi, R., Sarma, N., Borah, A., Munda, S., Pandey, S.K. & Lal, M. (2019). Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. Journal of Essential Oil-Bearing Plants. 22(5): 1299–1312. DOI: 10.1080/0972060X.2019.1696236

Manikandan, S. & Devi, R.S. (2005). Antioxidant property of α-asarone against noise-stress-induced changes in different regions of rat brain. Pharmacological Research. 52(6): 467–474. DOI: 10.1016/j.phrs.2005.07.007

Manjarrez-Quintero, J.P., Valdez-Baro, O., García-Estrada, R.S., Contreras-Angulo, L.A., Bastidas-Bastidas, P.de.J., Heredia, J.B., Cabanillas-Bojórquez, L.A. & Gutiérrez-Grijalva, E.P. (2024) Optimized ultrasonic extraction of essential oil from the biomass of Lippia graveolens Kunth using deep eutectic solvents and their effect on Colletotrichum asianum. Processes. 12(7): 1525, DOI: 10.3390/pr12071525

Marotti, M., Piccaglia, R., Giovanelli, E., Deans, S.G. & Eaglesham, E. (1994). Effects of planting time and mineral fertilization on peppermint (Mentha x piperita L.) essential oil composition and its biological activity. Flavour and Fragrance Journal. 9(3): 125–129. DOI: 10.1002/ffj.2730090307

Martins, R.M.G., Xavier-Júnior, F.H., Barros, M.R., Menezes, T.M., de Assis, C.R.D., de Melo, A.C.G.R., Veras, B.O., Ferraz, V.P., Filho, A.A.M., Yogui, G.T., Bezerra, R.S., Seabra, G.M., Neves, J.L. & Tadei, W.P. (2021). Impact on cholinesterase-inhibition and in silico investigations of sesquiterpenoids from Amazonian Siparuna guianensis Aubl. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 252: 119511. DOI: 10.1016/j.saa.2021.119511

Mazza, G. (1985). Gas chromatographic and mass spectrometric studies of the constituents of the rhizome of calamus. I. The volatile constituents of the essential oil. Journal of Chromatography A. 328: 179–194. DOI: 10.1016/S0021-9673(01)87390-8

Mittal, N., Ginwal, H.S. & Varshney, V.K. (2009). Pharmaceutical and biotechnological potential of Acorus calamus Linn.: An indigenous highly valued medicinal plant species. Pharmacognosy Reviews. 3(5): 83–93

Mukherjee, P.K., Kumar, V., Mal, M. & Houghton, P.J. (2007). Acorus calamus: Scientific validation of Ayurvedic tradition from natural resources. Pharmaceutical Biology. 45(8): 651–666. DOI: 10.1080/13880200701538724

Mus, A.A., Gansau, J.A., Kumar, V.S. & Rusdi N.A. (2020) The variation of volatile compounds emitted from aromatic orchid (Phalaenopsis bellina) at different timing and flowering stages. Plant OMICS. 13(2): 78–85, DOI: 10.21475/POJ.13.02.20.2271

Ogra, R.K., Mohanpuria, P., Sharma, U.K., Sharma, M., Sinha, A.K. & Ahuja, P.S. (2009). Indian calamus (Acorus calamus L.): Not a tetraploid. Current Science. 97(11): 1644–1647

Park, Y.-S., Kim, I., Dhungana, S.K., Park, E.-J., Park, J.-J., Kim, J.-H. & Shin, D.-H. (2021). Quality characteristics and antioxidant potential of lemon (Citrus limon Burm. f.) seed oil extracted by different methods. Frontiers in Nutrition. 8: 644406. DOI: 10.3389/fnut.2021.644406

Parki, A., Chaubey, P., Prakash, O., Kumar, R. & Pant, A.K. (2017). Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. accessions. Medicines. 4(4): 81. DOI: 10.3390/medicines4040081

Pintatum, A., Laphookhieo, S., Logie, E., Berghe, W. Vanden & Maneerat, W. (2020). Chemical composition of essential oils from different parts of Zingiber kerrii Craib and their antibacterial, antioxidant, and tyrosinase inhibitory activities. Biomolecules. 10(2): 228. DOI: 10.3390/biom10020228

Raal, A., Orav, A. & Gretchushnikova, T. (2016). β-Asarone content and essential oil composition of Acorus calamus L. rhizomes from Estonia. Journal of Essential Oil Research. 28(4): 299–304. DOI: 10.1080/10412905.2016.1147391

Radušiene, J., Judžentiene, A., Pečiulyte, D. & Janulis, V. (2007). Essential oil composition and antimicrobial assay of Acorus calamus leaves from different wild populations. Plant Genetic Resources: Characterisation and Utilisation. 5(1): 37–44. DOI: 10.1017/S1479262107390928

Raina, V.K., Srivastava, S.K. & Syamasunder, K. V. (2003). Essential oil composition of Acorus calamus L. from the lower region of the Himalayas. Flavour and Fragrance Journal. 18(1): 18–20. DOI: 10.1002/ffj.1136

Rajput, S.B., Tonge, M.B. & Karuppayil, S.M. (2014). An overview on traditional uses and pharmacological profile of Acorus calamus Linn. (sweet flag) and other Acorus species. Phytomedicine. 21(3): 268–276. DOI: 10.1016/j.phymed.2013.09.020

Satyal, P., Paudel, P., Poudel, A., Dosoky, N.S., Moriarity, D.M., Vogler, B. & Setzer, W.N. (2013). Chemical compositions, phytotoxicity, and biological activities of Acorus calamus essential oils from Nepal. Natural Product Communications. 8(8): 1179–1181. DOI: 10.1177/1934578x1300800839

Sharma, V., Singh, I. & Chaudhary, P. (2014). Acorus calamus (the healing plant): A review on its medicinal potential, micropropagation and conservation. Natural Product Research. 28(18): 1454–1466. DOI: 10.1080/14786419.2014.915827

Sharma, V., Sharma, R., Gautam, D.N.S., Kuca, K., Nepovimova, E. & Martins, N. (2020). Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. Journal of Clinical Medicine. 9(4): 1176. DOI: 10.3390/jcm9041176

Sundaramahalingam, M., Ramasundaram, S., Rathinasamy, S.D., Natarajan, R.P. & Somasundaram, T. (2013). Role of Acorus calamus and α-asarone on hippocampal dependent memory in noise stress exposed rats. Pakistan Journal of Biological Sciences. 16(16): 770–778. DOI: 10.3923/pjbs.2013.770.778

Tan, K.H. & Nishida, R. (2012). Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. Journal of Insect Science. 12: 56. DOI: 10.1673/031.012.5601

Uebel, T., Hermes, L., Haupenthal, S., Müller, L. & Esselen, M. (2021). α-Asarone, β-asarone, and γ-asarone: Current status of toxicological evaluation. Journal of Applied Toxicology. 41(8): 1166–1179. DOI: 10.1002/jat.4112

Vakayil, R., Nazeer, T.A. & Mathanmohun, M. (2021). Evaluation of the antimicrobial activity of extracts from Acorus calamus rhizome against multidrug-resistant nosocomial pathogens. Research Journal of Agricultural Sciences. 12(5): 1613–1617.

Vargas, R.I., Shelly, T.E., Leblanc, L. & Piñero, J.C. (2010). Recent advances in methyl eugenol and cue-lure technologies for fruit fly detection, monitoring, and control in Hawaii. In Litwack, G. (ed.). Vitamins and Hormones, vol. 83, Cambridge, MA, USA, Academic Press. pp. 575–595. DOI: 10.1016/S0083-6729(10)83023-7

Varma, J., Tripathi, M., Ram, V.J., Pandey, V.B. & Dubey, N.K. (2002). γ-Asarone – The fungitoxic principle of the essential oil of Caesulia axillaris. World Journal of Microbiology and Biotechnology. 18(3): 277–279. DOI: 10.1023/A:1014905111973

Venskutonis, P.R. & Dagilyte, A. (2003). Composition of essential oil of sweet flag (Acorus calamus L.) leaves at different growing phases. Journal of Essential Oil Research. 15(5): 313–318. DOI: 10.1080/10412905.2003.9698598

Wang, Z.-J., Levinson, S.R., Sun, L. & Heinbockel, T. (2014). Identification of both GABAA receptors and voltage-activated Na+ channels as molecular targets of anticonvulsant α-asarone. Frontiers in Pharmacology. 5: 40. DOI: 10.3389/fphar.2014.00040

Downloads

Published

2025-06-26

How to Cite

BENJAMIN, M. A. Z. ., VINCENT, J. ., BINSALI, H. N., MUS, A. A. ., AWANG, M. A. ., & RUSDI, N. A. . (2025). Volatile Components, Antibacterial and Antioxidant Activities of Komburongoh (Acorus calamus L.) Essential Oils as Potential Medicinal Herbs from Sabah, Malaysia. Borneo Journal of Resource Science and Technology, 15(1), 116–129. Retrieved from https://publisher.unimas.my/ojs/index.php/BJRST/article/view/6872