Synthesis, Antibacterial Properties and Molecular Docking of Nitrobenzoylthiourea Compounds and their Copper(II) Complex

Nitrobenzoylthiourea Compounds and their Copper(II) Complex

Authors

  • NURINA ASYURA BINTI MOHD YUNUS Chemistry Programme, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • MAYA ASYIKIN MOHAMAD ARIF Chemistry Programme, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • FAZIA MOHAMAD SINANG Resource Biotechnology Programme, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.6690.2024

Abstract

The rise of multidrug-resistant microbial pathogens has increased the demand for highly effective antibiotics. Five nitrobenzoylthiourea ligands (15) with amino acid side chains and their corresponding Cu(II) complexes (610) were synthesised with yields ranging from 43% to 90%. The successful synthesis of ligands 1-5 were confirmed by the absence of the ν(NCS) stretching band and the presence of the ν(NH) band, indicating the complete reaction of all (NCS) with a series of amino acids as well as the appearance of two N-H signals in the 1H NMR spectra of all the synthesised ligands. On the other hand, the shift of the (C=O) carboxylic peaks in the Cu(II) complexes suggested successful coordination of ligands to the metal ion via the carboxylate group. The antibacterial activities of these compounds were tested against six bacteria: Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa using the disc diffusion method. The Cu(II) complexes (6-10) exhibited enhanced antibacterial activity compared to the ligands  (1-5), especially against gram-negative bacteria (E. coli, K. pneumoniae, and P. aeruginosa). For example, compound 4 showed moderate activity against K. pneumoniae with a 14 mm inhibition zone while its Cu(II) complexes, 8 recorded better inhibition  against K. pneumoniae with a 16 mm inhibition zone. Molecular docking studies on all complexes (6-10) also revealed higher binding affinity with targeted proteins with binding energy between -10.4 kcal/mol to -9.0 kcal/mol, in comparison with ligand 2 and 4 with the binding energy of only -7.7 kcal/mol (against S. aureus) and -6.9 kcal/mol (against K. pneumoniae). The enhanced antibacterial activity of all complexes correlates with the higher binding affinity obtained for all complexes. Hence, this study concludes that the nitrobenzoylthiourea derivatives, and particularly their Cu(II) complexes can show potential as antibacterial agent although more thorough investigation are required to develop these compounds into useful drugs.

References

Ambade, V., Ambade, S., Sharma V. & Sanas, P. (2023). Comparison between Amino Acid Profiling of Structural Proteins of earliest and recent omicron strain of SARS-CoV-2 and Nutritional Burden on COVID-19 patients. Human Nutrition & Metabolism, 34: 200220. DOI: https://doi.org/10.1016/j.hnm.2023.200220

Arendsen, L.P., Thakar, R. & Sultan, A. H. (2019). The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clinical Microbiology Reviews, 32(4): 25-18. DOI: 10.1128/CMR.00125-18

Arslan, H., Duran, N., Borekci, G., Ozer, C.K. & Akbay, C. (2009). Antimicrobial activity of some thiourea derivatives and their nickel and copper complexes. Molecules, 14(1): 519–527. DOI: 10.3390/molecules14010519

Azócar, M.I., Gómez, G., Levín, P., Paez, M., Muñoz, H. & Dinamarca, N. (2014). Review: Antibacterial behavior of carboxylate silver(I) complexes. Journal of Coordination Chemistry, 67: 3840–3853. DOI: 10.3390/molecules23071629

Boros, E., Dyson, P.J. & Gasser, G. (2020). Classification of metal-based drugs according to their mechanisms of action. Chemistry, 6(1): 41–60. DOI: 10.1016/j.chempr.2019.10.013

Bush, K., and Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med. 6: 295–306. DOI: 10.1101/cshperspect.a025247

Claudel, M., Schwarte, J.V. & Fromm, K.M. (2020). New antimicrobial strategies based on metal complexes. Chemistry, 2(4): 849–899. DOI: https://doi.org/10.3390/chemistry2040056

Drzewiecka-Antonik, A., Rejmak, P., Klepka, M., Wolska, A., Chrzanowska, A. & Struga, M. (2020). Structure and anticancer activity of Cu(II) complexes with (bromophenyl)thiourea moiety attached to the polycyclic imide. Journal of Inorganic Biochemistry, 212(6): 8-16. DOI: https://doi.org/10.1016/j.jinorgbio.2020.111234

Echeverría, J., Urzúa, A., Sanhueza, L. & Wilkens, M. (2017). Enhanced antibacterial activity of ent-labdane derivatives of salvic acid (7α-hydroxy-8(17)-ent-labden-15-oic acid): effect of lipophilicity and the hydrogen bonding role in bacterial membrane interaction. Molecules, 22(7): 1-19. DOI: 10.3390/molecules22071039

Fair, R. J. & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6: 25–64. DOI: https://doi.org/10.4137/pmc.s14459

Fakhar, I., Hussien, N.J., Sapari, S., Bloh, A.H., Yusoff, S.F.M., Hasbullah, S.A., Yamin, B.M., Mutalib, S.A., Shihab, M.S. & Yousif, E. (2018). Synthesis, x-ray diffraction, theoretical and anti-bacterial studies of bis-thiourea secondary amine. Journal of Molecular Structure, 1159: 96–102. DOI:https://doi.org/10.1016/j.molstruc.2018.01.032

Fatima, T., Haque, R.A., Razali, M.R., Ahmad, A., Asif, M., Khadeer Ahamed, M.B. & Abdul Majid, A.M.S. (2017). Effect of lipophilicity of wingtip groups on the anticancer potential of mono N-heterocyclic carbene silver(I) complexes: Synthesis, crystal structures and in vitro anticancer study. Applied Organometallic Chemistry, 31(10): 1–13. DOI: https://doi.org/10.1002/aoc.3735

Halim, A.A.N. & Ngaini, Z. (2017). Synthesis and characterization of halogenated bis(acylthiourea) derivatives and their antibacterial activities. Phosphorus, Sulfur and Silicon and the Related Elements, 192(9): 1012–1017. DOI: https://doi.org/10.1080/10426507.2017.1315421

Halim, A.N.A. & Ngaini, Z. (2016). Synthesis and bacteriostatic activities of bis(Thiourea) derivatives with variable chain length. Journal of Chemistry, 2016(3): 1-7. DOI: https://doi.org/10.1155/2016/2739832

Hassan, I.N., Yamin, B.M., Daud, W.R.W. & Kassim, M. B. (2011). Synthesis, spectral characterisation and crystal structural of 1-(2-morpholinoethyl)-3-(3- phenylacryloyl)thiourea. International Journal of Physical Sciences, 6(35): 7898–7903. DOI: https://doi.org/10.5897/IJPS11.1458

Idrees, M., Mohammad, A.R., Karodia, N. & Rahman, A. (2020). Multimodal role of amino acids in microbial control and drug development. Antibiotics, 9(6): 1–23. DOI: https://doi.org/10.3390/antibiotics9060330

Ikokoh, P.P.A., Onigbanjo, H.O., Adedirin, O., Akolade, J.O., Uzo, A. & Fagbohun. A. (2015). Synthesis and antimicrobial activities of copper(I) thiourea and silver(I) thiourea. Open Journal of Research, 2(2): 086-091.

Khairul, W.M., Tukimin, N. & Rahamathullah, R. (2016). Synthesis, characterization and electrical properties of N-([4-(aminophenylethynyl) toluene]-N’-(cinnamoyl)thiourea (AECT) as single molecular conductive film. Sains Malaysiana, 45(5): 825–831.

Li, Z., Zhang, Y. & Wang, Y. (2010). Synthesis and characterization of N-benzoyl-N ′ - carboxyalkyl substituted thiourea derivatives. Phosphorus, Sulfur , and Silicon and the Related Elements, 178(2): 293-297. DOI: https://doi.org/10.1080/10426500307952

Liang, X., Luan, S., Yin, Z., He, M., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., Lv, C. & Zhang, W. (2018). Recent advances in the medical use of silver complex. European Journal of Medicinal Chemistry, 157: 62–80. DOI: https://doi.org/10.1016/j.ejmech.2018.07.057

Maalik, A., Rahim, H., Saleem, M., Fatima, N., Rauf, A., Wadood, A., Malik, M. I., Ahmed, A., Rafique, H., Zafar, M. N., Riaz, M., Rasheed, L. & Mumtaz, A. (2019). Synthesis, antimicrobial, antioxidant, cytotoxic, antiurease and molecular docking studies of N-(3-trifluoromethyl)benzoyl-N′-aryl thiourea derivatives. Bioorganic Chemistry, 88(5): 1-9. DOI: https://doi.org/10.1016/j.bioorg.2019.102946

Madabhushi, S., Mallu, K., Vangipuram, V., Kurva, S., Poornachandra, Y. & Kumar, C. (2014). Synthesis of novel benzimidazole functionalized chiral thioureas and evaluation of their antibacterial and anticancer activities. Bioorganic & Medicinal Chemistry Letters, 24(20): 4822-4825. DOI: https://doi.org/10.1016/j.bmcl.2014.08.064

Mahone C.R. & Goley E.D. Bacterial cell division at a glance. (2020). J Cell Sci. 133(7): jcs237057. DOI: https://doi.org/10.1242/jcs.237057

Malik, M.A., Dar, O.A., Gull, P., Wani, M.Y. & Hashmi, A. A. (2018). Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. Medicinal Chemistry, 9(3): 409–436. DOI: https://doi.org/10.1039/c7md00526a

Mishra, A., Ninama, S., Sharma, P., Soni, N. & Awate, R. (2020). Synthesis, characterization, molecular docking and antimicrobial activity of copper(II) complexes of metronidazole and 1,10-phenanthroline. Inorganica Chimica Acta, 510: 6–11. DOI: https://doi.org/10.1016/j.ica.2020.1197

Mohapatra, S.S., Dwibedy, S.K. & Padhy, I. (2021). Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. Journal of Biosciences, 46(3): 1-18. DOI: https://doi.org/10.1007/s12038-021-00209-8

Möhler, J.S., Kolmar, T., Synnatschke, K., Hergert, M., Wilson, L.A., Ramu, S., Elliott, A.G., Blaskovich, M.A.T., Sidjabat, H.E., Paterson, D. L., Schenk, G., Cooper, M. A. & Ziora, Z. M. (2017). Enhancement of antibiotic-activity through complexation with metal ions - combined ITC, NMR, enzymatic and biological studies. Journal of Inorganic Biochemistry, 167: 134–141. DOI: https://doi.org/10.1016/j.jinorgbio.2016.11.028

Montero, D. A., Arellano, C., Pardo, M., Vera, R., Gálvez, R., Cifuentes, M., Berasain, M. A., Gómez, M., Ramírez, C. & Vidal, R. M. (2019). Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities. Antimicrobial Resistance and Infection Control, 8(2019): 1-10. DOI: https://doi.org/10.1186/s13756-018-0456-4

Mukherjee, I., Ghosh, A., Bhadury, P. & De, P. (2017). Side-chain amino acid-based cationic antibacterial polymers: investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega, 2(4): 1633–1644. DOI: 10.1021/acsomega.7b00181

Ngaini, Z., Mohd Arif, M.A., Hussain, H., Mei, E.S., Tang, D. & Kamaluddin, D. H. A. (2012). Synthesis and antibacterial activity of acetoxybenzoyl thioureas with aryl and amino acid side chains. Phosphorus, Sulfur and Silicon and the Related Elements, 187(1): 1–7. DOI: https://doi.org/10.1080/10426507.2011.562398

Ngaini, Z. & Mortadza, N.A. (2019). Synthesis of halogenated azo-aspirin analogues from natural product derivatives as the potential antibacterial agents. Natural Product Research, 33(24): 3507–3514. DOI: https://doi.org/10.1080/14786419.201

1486310

Ngaini, Z., Rasin, F., Wan Zullkiplee, W.S.H. & Abd Halim, A. N. (2020). Synthesis and molecular design of mono aspirinate thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus, Sulfur and Silicon and the Related Elements, 196(3): 275–282. DOI: https://doi.org/10.1080/10426507.2020.1828885

Ohammad, B. (2018). Synthesis, structure and spectroscopic properties of oxovanadium tris (3, 5-dimethylpyrazolyl) borate aroylthiourea complexes. Sains Malaysiana, 47(8): 1775–1785. DOI: http://dx.doi.org/10.17576/jsm-2018-4708-16

Pingaew, R., Prachayasittikul, V., Anuwongcharoen, N., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2018). Synthesis and molecular docking of N, N’-disubstituted thiourea derivatives as novel aromatase inhibitors. Bioorganic Chemistry, 79: 171-178.

Raheel, A., Imtiaz-Ud-Din, Badshah, A., Rauf, M.K., Tahir, M.N., Khan, K.M., Hameed, A. & Andleeb, S. (2016). Amino acid linked bromobenzoyl thiourea derivatives: Syntheses, characterization and antimicrobial activities. Journal of the Chemical Society of Pakistan, 38(5): 959–964.

Roche Allred, Z. D., Tai, H., Bretz, S. L. & Page, R. C. (2017). Using PyMOL to explore the effects of ph on noncovalent interactions between immunoglobulin g and protein a: a guided-inquiry biochemistry activity. Biochemistry and Molecular Biology Education, 45(6): 528–536. DOI: https://doi.org/10.1002/bmb.21066

Ramesh, P., Revathi, M., H,A.A., Mohammeda, N. A. A., Siddappa, S., Reddy, P.M. & Pasha, C. (2016). Copper(II) complexes of new carboxyamide ligands: synthesis, spectroscopic and antibacterial study. International Journal of Advanced Research in Chemical Science, 3(8): 1–8. DOI: http://dx.doi.org/10.20431/2349-0403.0308001

Ronchetti, R., Moroni, G., Carotti, A., Gioiello, A. & Camaioni, E. (2021). Recent advances in urea and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Medicinal Chemistry, 12(7): 1046–1064.

Saeed, S., Rashid, N., Jones, P.G., Ali, M. & Hussain, R. (2010). Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. European Journal of Medicinal Chemistry, 45(4): 1323–1331.

Schrödinger (2016). The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.

Smith, M. (2017). Antibiotic Resistance Mechanisms. Journeys in Medicine and Research on Three Continents Over 50 Years, 2017: 95–99.

Souza, R.A.C., Costa, W.R.P., de F. Faria, E., Bessa, M. A.d.S., Menezes, R.de P., Martins, C.H.G., Maia, P.I.S., Deflon, V.M. & Oliveira, C.G. (2021). Copper(II) complexes based on thiosemicarbazone ligand: Preparation, crystal structure, Hirshfeld surface, energy framework, anti mycobacterium activity, in silico and molecular docking studies. Journal of Inorganic Biochemistry, 223(4): 1-13.

Sumrra, S.H., Ibrahim, M., Ambreen, S., Imran, M., Danish, M. & Rehmani, F.S. (2014). Synthesis, spectral characterization, and biological evaluation of transition metal complexes of bidentate N, O donor schiff bases. Bioinorganic Chemistry and Applications, 2014: 1-11.

Trott, O. & Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2): 455–461. DOI: https://doi.org/10.1002/jcc.21334

Wakshlak, R.B. K., Pedahzur, R. & Avnir, D. (2015). Antibacterial activity of silver-killed bacteria: the “zombies” effect. Scientific Reports, 5: 1–5.

Welch, E.F., Rush, K.W., Arias, R.J. & Blackburn, N.J. (2022). Copper monooxygenase reactivity: Do consensus mechanisms accurately reflect experimental observations? Journal of Inorganic Biochemistry, 231(12): 1-12. DOI: https://doi.org/10.1016/j.jinorgbio.2022.111780

Zeng, X. & Lin, J. (2013). Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Frontiers in microbiology, 4: 128. DOI: https://doi.org/10.3389/fmicb.2013.00128

Downloads

Additional Files

Published

2024-12-23

How to Cite

MOHD YUNUS, N. A. B., MOHAMAD ARIF, M. A., & MOHAMAD SINANG, F. (2024). Synthesis, Antibacterial Properties and Molecular Docking of Nitrobenzoylthiourea Compounds and their Copper(II) Complex: Nitrobenzoylthiourea Compounds and their Copper(II) Complex. Borneo Journal of Resource Science and Technology, 14(2), 135–155. https://doi.org/10.33736/bjrst.6690.2024