Computational Analysis of Epstein-Barr Virus BamHI A Rightward Transcript (BART) MicroRNAs (miRNAs) Regulation on Messenger RNAs and Long Non-Coding RNAs in Nasopharyngeal Cancer
Epstein-Barr Virus Regulation on ceRNA Network
DOI:
https://doi.org/10.33736/bjrst.6077.2024Abstract
To date, the regulatory framework mediated by Epstein-Barr virus (EBV) BamHI A rightward transcript (BART) microRNAs (miRNAs) via their interaction with long non-coding RNAs (lncRNAs) in the context of nasopharyngeal cancer (NPC) pathogenesis remains partially understood. To derive a more complete insight into this phenomenon, we embarked on a computational study to identify BART miRNAs, mRNAs, lncRNAs, and all associated factors relevant to NPC tumourigenesis and to characterise their interactions. In silico integration of multi-level RNA expression and construction of regulatory networks were performed. We found six EBV BART miRNAs (ebv-miR-BART21-3p, ebv-miR-BART19-3p, ebv-miR-BART15, ebv-miR-BART2-5p, ebv-miR-BART20-3p and ebv-miR-BART11-5p) that could interact with four mRNAs (EYA4, EYA1, EBF1 and MACROD2) associated with NPC pathogenesis. These mRNAs can interact with six non-EBV miRNAs (hsa-miR-1246, hsa-miR-93-5p, hsa-miR-16-5p, hsa-miR-135b-5p, hsa-miR-211-5p and hsa-miR-1305), which in turn, could interact with three lncRNAs (CASC2, TPTE2P1 and ARHGEF26-AS1). These findings could shed light on the roles of dysregulated competing endogenous RNA (ceRNA) network in NPC oncogenesis. In addition, we have also predicted the oncogenic and tumour suppressive functions of BART miRNAs and lncRNAs, and more precisely, the involvement of BART miRNAs in DNA repair regulation and apoptosis.
References
Amoroso, R., Fitzsimmons, L., Thomas, W.A., Kelly, G.L., Rowe, M. & Bell, A.I. (2011). Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. Journal of Virology, 85(2): 996-1010. DOI: 10.1128/jvi.01528-10
Bader, G., Pavlovic, V. & Lopes, C. (2020). MCODE Documentation Release 2.0.0. [online] Available at: chrome-extension://efaidnbmnnnibpcajpcglcle
findmkaj/https://mcode.readthedocs.io/_/downloads/en/latest/pdf/ [Accessed on 23 March 2021].
Bal, R. & Deshmukh, P. (2022). Management of eustachian tube dysfunction: A Review. Cureus, 14(11). DOI: 10.7759/cureus.31432
Bazan, R., Schröfel, A., Joachimiak, E., Poprzeczko, M., Pigino, G. & Wloga, D. (2021). Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genetics, 17(3): e1009388. DOI: 10.1371/journal.pgen.1009388
Braschi, B., Omran, H., Witman, G.B., Pazour, G.J., Pfister, K.K., Bruford, E.A. & King, S.M. (2022). Consensus nomenclature for dyneins and associated assembly factors. Journal of Cell Biology, 221(2): e202109014. DOI: 10.1083/jcb.202109014
Briffa, R., Um, I., Faratian, D., Zhou, Y., Turnbull, A. K., Langdon, S.P. & Harrison, D.J. (2015). Multi-Scale genomic, transcriptomic and proteomic analysis of colorectal cancer cell lines to identify novel biomarkers. PLoS One, 10(12): e0144708. DOI: 10.1371/journal.pone.0144708
Cai, X., Schäfer, A., Lu, S., Bilello, J.P., Desrosiers, R.C., Edwards, R., Raab-Traub, N. & Cullen, B. R. (2006). Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathogens, 2(3): e23. DOI: 10.1371/journal.ppat.0020023
Cai, Y., Hao, Y., Ren, H., Dang, Z., Xu, H., Xue, X. & Gao, Y. (2019). miR-1305 inhibits the progression of non-small cell lung cancer by regulating MDM2. Cancer Management and Research, 11: 9529. DOI: 10.2147/CMAR.S220568
Casale, J., Shumway, K.R. & Hatcher, J.D. (2023). Physiology, eustachian tube function. [e-book] Treasure Island: StatPearls Publishing. Available through: https://www.ncbi.nlm.nih.gov/books /NBK532284/ [Accessed on 27 May 2023].
Chang, E.T. & Adami, H.O. (2006). The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiology and Prevention Biomarkers, 15(10): 1765-1777. DOI: 10.1158/1055-9965.EPI-06-0353
Chen, C., Zhao, J., Liu, J.N. & Sun, C. (2021). Mechanism and Role of the Neuropeptide LGI1 Receptor ADAM23 in Regulating Biomarkers of Ferroptosis and Progression of Esophageal Cancer. Disease Markers, 2021: 227897. DOI: 10.1155/2021/9227897
Chen, J., Yang, R., Zhang, W. & Wang, Y. (2015). Candidate pathways and genes for nasopharyngeal carcinoma based on bioinformatics study. International Journal of Clinical and Experimental Pathology, 8(2): 2026-2032.
Cohen, M.S. & Chang, P. (2018). Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nature Chemical Biology, 14: 236-243. DOI: 10.1038/nchembio.2568
Corchete, L.A., Rojas, E.A., Alonso-López, D., De Las Rivas, J., Gutiérrez, N.C. & Burguillo, F.J. (2020). Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Scientific Reports, 10(1): 19737. DOI: 10.1038/s41598-020-76881-x
Cosmopoulos, K., Pegtel, M., Hawkins, J., Moffett, H., Novina, C., Middeldorp, J. & Thorley-Lawson, D.A. (2009). Comprehensive profiling of Epstein-Barr virus microRNAs in nasopharyngeal carcinoma. Journal of Virology, 83(5): 2357-2367. DOI: 10.1128/jvi.02104-08
Christelle, R. & Watson, M. (2015). Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biology, 177: 16. DOI: 10.1186/s13059-015-0734-x
DAVID Bioinformatics Resources. (2021). Functional annotation tool. [online] Available at: https://david.ncifcrf.gov/helps/functional_annotation.html#E3 [Accessed on 25 May 2023].
Depreux, F.F., Darrow, K., Conner, D.A., Eavey, R. D., Liberman, M.C., Seidman, C.E. & Seidman, J.G. (2008). Eya4-deficient mice are a model for heritable otitis media. The Journal of Clinical Investigation, 118(2): 651-658. DOI: 10.1172/JCI32899
Dhanasekaran, D.N. & Reddy, E.P. (2008). JNK signaling in apoptosis. Oncogene, 27(48): 6245-6251. DOI: 10.1038/onc.2008.301
Du, R., Jiang, F., Yin, Y., Xu, J., Li, X., Hu, L. & Wang, X. (2021). Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. International Journal of Immunopathology and Pharmacology, 35. DOI: 10.1177/205873842096608
Dwijayanti, F., Prabawa, A., Besral & Herawati, C. (2020). The five-year survival rate of patients with nasopharyngeal carcinoma based on tumor response after receiving neoadjuvant chemotherapy, followed by chemoradiation, in Indonesia: a retrospective study. Oncology, 98(3): 154-160. DOI: 10.1159/000504449
Fernández-Cortés, M., Delgado-Bellido, D. & Oliver, F. J. (2019). Vasculogenic mimicry: become an endothelial cell “but not so much”. Frontiers in Oncology, 9: 803. DOI: 10.3389/fonc.2019.00803
Gizurarson, S. (2015). The effect of cilia and the mucociliary clearance on successful drug delivery. Biological and Pharmaceutical Bulletin, 38(4): 497-506. DOI: 10.1248/bpb.b14-00398
Global Cancer Observatory. (2022). Malaysia Fact Sheet. [online] Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/458-malaysia-fact-sheet.pdf [Accessed on 25 May 2023].
Golia, B., Moeller, G.K., Jankevicius, G., Schmidt, A., Hegele, A., Preißer, J., Tran, M.L., Imhof, A. & Timinszky, G. (2017). ATM induces MacroD2 nuclear export upon DNA damage. Nucleic Acids Research, 45(1): 244-254.
Hagman, J., Ramírez, J. & Lukin, K. (2011). B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1. Epigenetic Regulation of Lymphocyte Development, 356: 17-38. DOI: 10.1007/82_2011_139
Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A. J.M., Cusick, M.E., Roth, F.P. & Vidal, M. (2004). Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 430(6995): 88-93. DOI: 10.1038/nature02555
He, B., Li, W., Wu, Y., Wei, F., Gong, Z., Bo, H., Wang, Y., Li, X., Xiang, B., Guo, C., Liao, Q., Chen, P., Zu, X., Zhou, M., Ma, J., Li, X., Li, Y., Li, G., Xiong, W. & Zeng, Z. (2016). Epstein-Barr virus-encoded miR-BART6-3p inhibits cancer cell metastasis and invasion by targeting long non-coding RNA LOC553103. Cell Death and Disease, 7(9): e2353-e235. DOI: 10.1038/cddis.2016.253
He, R., Hu, Z., Wang, Q., Luo, W., Li, J., Duan, L., Zhu, Y.S. & Luo, D.X. (2017). The role of long non-coding RNAs in nasopharyngeal carcinoma: As systemic review. Oncotarget, 8(9): 16075-16083. DOI: 10.18632/oncotarget.14211
Ho, K.Y., Lee, K.W., Chai, C.Y., Kuo, W.R., Wang, H.M. & Chien, C.Y. (2008). Early recognition of nasopharyngeal cancer in adults with only otitis media with effusion. Journal of Otolaryngology--Head & Neck Surgery, 37(3): 362-365. DOI: 10.2310/7070.2008.0071
Hu, N., Kadota, M., Liu, H., Abnet, C.C., Su, H., Wu, H., Freedman, N.D., Yang, H.H., Wang, C., Yan, C., Wang, L., Gere, S., Hutchinson, A., Song, G., Wang, Y., Ding, T., Qiao, Y.L., Koshiol, J., Dawsey, S.M., Giffen, C., Goldstein, A.M., Taylor, P.R. & Lee, M.P. (2016). Genomic landscape of somatic alterations in esophageal squamous cell carcinoma and gastric cancer. Cancer Research, 76: 1714-1723. DOI: 10.1158/0008-5472.CAN-15-0338
Hu, W., Xie, Q., Xu, Y., Tang, X. & Zhao, H. (2020). Integrated bioinformatics analysis reveals function and regulatory network of miR-200b-3p in endometriosis. BioMed Research International, 2020: 962953. DOI: 10.1155/2020/3962953
Huang, H.Y., Lin, Y.C.D., Li, J., Huang, K.Y., Shrestha, S., Hong, H.C., Tang, Y., Chen, Y.G., Jin, C.N., Yu, Y., Xu, J.T., Li, Y.M., Cai, X.X., Zhou, Z.Y., Chen, X.H., Pei, Y.Y., Hu, L., Su, J. J., Cui, S.D., Wang, F. Xie, Y.Y., Ding, S.Y., Luo, M.F., Chou, C.H., Chang, N.W., Chen, K.W., Cheng, Y.H., Wan, X.H., Hsu, W.L., Lee, T.Y., We, F.X. & Huang, H.D. (2020). miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Research, 48(D1): D148-D154. DOI: 10.1093/nar/gkz896
Huang, W.Y., Lin, C.C., Jen, Y.M., Lin, K.T., Yang, M.H., Chen, C.M., Chang, Y.N., Sung, F.C. & Kao, C.H. (2012). Association between adult otitis media and nasopharyngeal cancer: a nationwide population-based cohort study. Radiotherapy and Oncology, 104(3): 338-342. DOI: 10.1016/j.radonc.2012.08.015
Jiang, C., Li, L., Xiang, Y.Q., Lung, M.L., Zeng, T., Lu, J., Tsao, S.W., Zeng, M.S., Yun, J.P., Kwong, D.L.W. & Guan, X. Y. (2020). Epstein–Barr Virus miRNA BART2-5p Promotes Metastasis of Nasopharyngeal Carcinoma by Suppressing RND3BART2-5p Promotes Metastasis of Nasopharyngeal Carcinoma. Cancer Research, 80(10): 1957-1969. DOI: 10.1158/0008-5472.CAN-19-0334
Jing, J.J., Wang, Z.Y., Li, H., Sun, L.P. & Yuan, Y. (2018). Key elements involved in Epstein–Barr virus-associated gastric cancer and their network regulation. Cancer Cell International, 18(1): 1-12. DOI: 10.1186/s12935-018-0637-5
Johnson, J.A., Watson, J.K., Nikolić, M.Z. & Rawlins, E.L. (2018). Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium. Biology Open, 7(4): bio033944. DOI: 10.1242/bio.033944
Kamiya, Y., Fujisawa, T., Katsumata, M., Yasui, H., Suzuki, Y., Karayama, M., Hozumi, H., Furuhashi, K., Enomoto, N., Nakamura, Y., Inui, N., Setou, M., Itom M., Suzuki, T., Koji, I. & Suda, T. (2020). Influenza A virus enhances ciliary activity and mucociliary clearance via TLR3 in airway epithelium. Respiratory Research, 21(1): 1-13. DOI: 10.1186/s12931-020-01555-1
Kang, D., Skalsky, R.L. & Cullen, B.R. (2015). EBV BART microRNAs target multiple pro-apoptotic cellular genes to promote epithelial cell survival. PLoS Pathogens, 11(6): e1004979. DOI: 10.1371/journal.ppat.1004979
Karagkouni, D., Paraskevopoulou, M.D., Tastsoglou, S., Skoufos, G., Karavangeli, A., Pierros, V., Zacharopoulou, E. & Hatzigeorgiou, A.G. (2020). DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Research, 48(D1): D101-D110. DOI: 10.1093/nar/gkz1036
Kassab, M.A., Yu, L.L. & Yu, X. (2020). Targeting dePARylation for cancer therapy. Cell and Bioscience, 10(1): 1-9. DOI: 10.1186/s13578-020-0375-y
Kong, D., Ma, W., Zhang, D., Cui, Q., Wang, K., Tang, J., Liu, Z. & Wu, G. (2019). EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma. American Journal of Translational Research, 11(4), 2328-2338.
Lee, L. & Ostrowski, L.E. (2021). Motile cilia genetics and cell biology: Big results from little mice. Cellular and Molecular Life Sciences, 78(3): 769-797. DOI: 10.1007/s00018-020-03633-510.1016/j.yexcr.2018.02.028
Lee, T.I. & Young, R.A. (2013). Transcriptional regulation and its misregulation in disease. Cell, 152(6): 1237-1251. DOI: 10.1016/j.cell.2013.02.014
Liang, W. & Sun, F. (2019). Identification of pivotal lncRNAs in papillary thyroid cancer using lncRNA–mRNA–miRNA ceRNA network analysis. PeerJ, 7: e7441. DOI: 10.7717/peerj.7441
Linnebacher, M., Ostwald, C., Koczan, D., Salem, T., Schneider, B., Krohn, M., Ernst, M. & Prall, F. (2013). Single nucleotide polymorphism array analysis of microsatellite-stable, diploid/near-diploid colorectal carcinomas without the CpG island methylator phenotype. Oncology Letters, 5: 173-178. DOI: 10.3892/ol.2012.1006
Liu, K., Kang, M., Zhou, Z., Qin, W. & Wang, R. (2019). Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma. Oncology letters, 18(4): 3637-3645. DOI: 10.3892/ol.2019.10707
Lung, R.W.M., Hau, P.M., Yu, K.H.O., Yip, K.Y., Tong, J.H.M., Chak, W.P., Chan, A.W., Lam, K.H., Lo, A.K., Tin, E.K., Chau, S.L., Pang, J.C., Kwan, J.S., Busson, P., Young, L.S., Yap, L.F., Tsao, S.W., To, K.F. & Lo, K.W. (2018). EBV‐encoded miRNAs target ATM‐mediated response in nasopharyngeal carcinoma. The Journal of Pathology, 244(4): 394-407. DOI: 10.1002/path.5018
Luo, Y., Wang, J., Wang, F., Liu, X., Lu, J., Yu, X., Ma, X., Peng, X. & Li, X. (2021). Foxq1 promotes metastasis of nasopharyngeal carcinoma by inducing vasculogenic mimicry via the EGFR signaling pathway. Cell Death & Disease, 12(5): 411. DOI: 10.1038/s41419-021-03674-z
Marttin, E., Schipper, N.G., Verhoef, J.C. & Merkus, F.W. (1998). Nasal mucociliary clearance as a factor in nasal drug delivery. Advanced Drug Delivery Reviews, 29(1-2): 13-38. DOI: 10.1016/S0169-409X(97)00059-8
Matsune, S., Sando, I. & Takahashi, H. (1992). Distributions of eustachian tube goblet cells and glands in children with and without otitis media. Annals of Otology, Rhinology & Laryngology, 101(9): 750-754. DOI: 10.1177/000348949210100
Mayo Clinic. (2022). Tinnitus. [online] Available at: https://www.mayoclinic.org/diseases-conditions/tinnitus/symptoms_causes/syc_20350156#:~:text=Your%20ear%20canals%20can%20become,brain%20function%20linked%20to%20hearing. [Accessed on 27 May 2023].
Miao, W.J., Yuan, D.J., Zhang, G.Z., Liu, Q., Ma, H.M. & Jin, Q.Q. (2019). lncRNA CASC2/miR 18a 5p axis regulates the malignant potential of nasopharyngeal carcinoma by targeting RBBP8. Oncology Reports, 41(3): 1797-1806. DOI: 10.3892/or.2018.6941
Mohseni, M., Cidado, J., Croessmann, S., Cravero, K., Cimino-Mathews, A., Wong, H.Y., Scharpf, R., Zabransky, D.J., Abukhdeir, A.M., Garay, J.P., Wang, G.M., Beaver, J.A., Cochran, R.L., Blair, B.G., Rosen, D.M., Erlanger, B., Argani, P., Hurley, P.J., Lauring, J. & Park, B.H. (2014). MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. Proceedings of the National Academy of Science U.S.A, 111: 17606-17611. DOI: 10.1073/pnas.1408650111
Moore, A.C., Winkjer, J.S. & Tseng, T.T. (2015). Bioinformatics resources for microRNA discovery. Biomarker Insights, 10(Suppl 4): 53-58. DOI: 10.4137/BMI.S29513
Nakanishi, Y., Wakisaka, N., Kondo, S., Endo, K., Sugimoto, H., Hatano, M., Ueno, T., Ishikawa, K. & Yoshizaki, T. (2017). Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Review, 36(3): 435–447. DOI: 10.1007/s10555-017-9693-x
National Center for Biotechnology Information. (2024). About GEO2R. [online] Available at: https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html#:~:text=Summary%20statistics,-RNA%2Dseq%3A&text=GEO2R%20uses%20the%20Wald%20test,or%20more%20groups%20of%20Samples.&text=P%2Dvalue%20after%20adjustment%20for,by%20which%20to%20interpret%20results. [Accessed on 25 May 2023].
Nikpour, P., Emadi-Baygi, M., Emadi-Andani, E. & Rahmati, S. (2014). EYA1 expression in gastric carcinoma and its association with clinicopathological characteristics: a pilot study. Medical Oncology, 31(5): 1-5. DOI: 10.1007/s12032-014-0955-y
Nowsheen, S., Aziz, K., Luo, K., Deng, M., Qin, B., Yuan, J., Jeganathan, K.B., Yu, J., Zhang, H., Ding, W., van Deursen, J.M. & Lou, Z. (2018). ZNF506-dependent positive feedback loop regulates H2AX signaling after DNA damage. Nature Communications, 9(1): 1-11. DOI: 10.1038/s41467-018-05161-0
Permyakov, E.A. (2021). Metal binding proteins. Encyclopedia, 1(1): 261-292. DOI: 10.3390/encyclopedia1010024
Png, Y.T., Yang, A.Z.Y., Lee, M.Y., Chua, M.J.M. & Lim, C.M. (2021). The role of NK cells in EBV infection and EBV-associated NPC. Viruses, 13(2): 300. DOI: 10.3390/v13020300
Plieskatt, J.L., Rinaldi, G., Feng, Y., Levine, P.H., Easley, S., Martinez, E., Hashmi, S., Sadeghi, N., Brindley, P.J., Bethony, J.M. & Mulvenna, J.P. (2014). Methods and matrices: approaches to identifying miRNAs for Nasopharyngeal carcinoma. Journal of Translational Medicine, 12(1): 1-20. DOI: 10.1186/1479-5876-12-3
Poh, S.S., Chua, M.L.K. & Wee, J.T. (2016). Carcinogenesis of nasopharyngeal carcinoma: an alternate hypothetical mechanism. Chinese Journal of Cancer, 35(1): 1-9. DOI: 10.1186/s40880-015-0068-9
Qin, X., Zhang, J., Lin, Y., Sun, X.M., Zhang, J.N. & Cheng, Z.Q. (2020). Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma. Journal of Translational Medicine, 18: 1-13. DOI: 10.1186/s12967-020-02494-7
Rao, M.S., Van Vleet, T.R., Ciurlionis, R. & Blomme, E.A. (2019). Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Frontiers in Genetics, 9: 425202. DOI: 10.3389/fgene.2018.00636
Rashid, S., Breckle, R., Hupe, M., Geisler, S., Doerwald, N. & Neesen, J. (2006). The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Molecular Reproduction and Development: Incorporating Gamete Research, 73(6): 784-794. DOI: 10.1002/mrd.20475
Ringers, C., Olstad, E.W. & Jurisch-Yaksi, N. (2020). The role of motile cilia in the development and physiology of the nervous system. Philosophical Transactions of the Royal Society B, 375(1792): 20190156. DOI: 10.1098/rstb.2019.0156
Ross, N., Gandhi, M.K. & Nourse, J.P. (2013). The Epstein-Barr virus microRNA BART11-5p targets the early B-cell transcription factor EBF1. American Journal of Blood Research, 3(3): 210-224.
Sadatomi, D., Tanimura, S., Ozaki, K.I. & Takeda, K. (2013). Atypical protein phosphatases: emerging players in cellular signaling. International Journal of Molecular Sciences, 14(3): 4596-4612. DOI: 10.3390/ijms14034596
Sakthianandeswaren, A., Parsons, M.J., Mouradov, D., Mackinnon, R.N., Catimel, B., Liu, S., Palmieri, M., Love, C., Jorissen, R.N., Li, S., Whitehead, L., Putoczki, T.L., Preaudet, A., Tsui, C., Nowell, C.J., Ward, R.L., Hawkins, N.J., Desai, J., Gibbs, P., Ernst, M., Street, I., Buchert, M. & Sieber, O. M. (2018). Macrod2 haploin sufficiency impairs catalytic activity of PARP1 and Promotes chromosome instability and growth of intestinal tumors. Cancer Discovery, 8: 988-1005. DOI: 10.1158/2159-8290.CD-17-0909
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P.P.A (2011). ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, 146(3): 353-358. DOI: 10.1016/j.cell.2011.07.014
Sarwari, N.M., Khoury, J.D. & Hernandez, C.M.R. (2016). Chronic Epstein Barr virus infection leading to classical Hodgkin lymphoma. BMC Hematology, 16(1): 1-6. DOI: 10.1186/s12878-016-0059-3
Searight, F.T., Singh, R. & Peterson, D.C. (2022). Otitis Media with Effusion. [e-book] Treasure Island: StatPearls Publishing. Available through: https://www.ncbi.nlm.nih.gov/books/NBK538293/ [Accessed on 27 May 2023].
Skalsky, R.L. & Cullen, B.R. (2010). Viruses, microRNAs, and host interactions. Annual Review Microbiology, 64: 123-141. DOI: 10.1146/annurev.micro.112408.134243
Song, M.H., Kwon, T.J., Kim, H.R., Jeon, J.H., Baek, J.I., Lee, W.S., Kim, U.K. & Choi, J. Y. (2013). Mutational analysis of EYA1, SIX1 and SIX5 genes and strategies for management of hearing loss in patients with BOR/BO syndrome. PLoS One, 8(6): e67236. DOI: 10.1371/journal.pone.0067236
Song, Y., Li, X., Zeng, Z., Li, Q., Gong, Z., Liao, Q., Li, X., Chen, P., Xiang, B., Zhang, W., Xiong, F., Zhou, Y., Zhou, M., Ma, J., Li, Y., Chen, X., Li, G. & Xiong, W. (2016). Epstein-Barr virus encoded miR-BART11 promotes inflammation-induced carcinogenesis by targeting FOXP1. Oncotarget, 7(24): 36783. DOI: 10.18632/oncotarget.9170
Su, Z.Y., Siak, P.Y., Leong, C.O. & Cheah, S.C. (2023). The role of Epstein–Barr virus in nasopharyngeal carcinoma. Frontiers in Microbiology, 14: 1116143. DOI: 10.3389/fmicb.2023.1116143
Tan, Y., Jiang, C., Jia, Q., Wang, J., Huang, G. & Tang, F. (2022). A novel oncogenic seRNA promotes nasopharyngeal carcinoma metastasis. Cell Death & Disease, 13(4): 401. DOI: 10.1038/s41419-022-04846-1
Tabuchi, K., Nakayama, M., Nishimura, B., Hayashi, K. & Hara, A. (2011). Early detection of nasopharyngeal carcinoma. International Journal of Otolaryngology, 2011: 638058. DOI: 10.1155/2011/638058
Tadjuidje, E., Wang, T.S., Pandey, R.N., Sumanas, S., Lang, R.A. & Hegde, R.S. (2012). The EYA tyrosine phosphatase activity is pro-angiogenic and is inhibited by benzbromarone. PLoS One, 7(4): e34806. DOI: 10.1371/journal.pone.0034806
Tang, J., Kong, D., Cui, Q., Wang, K., Zhang, D., Yuan, Q., Liao, X., Gong, Y. & Wu, G. (2018). Bioinformatic analysis and identification of potential prognostic microRNAs and mRNAs in thyroid cancer. PeerJ, 6: e4674. DOI: 10.7717/peerj.4674
Tang, J.F., Yu, Z.H., Liu, T., Lin, Z.Y., Wang, Y.H., Yang, L.W., He, H.J., Huang, H.L. & Liu, G. (2014). Five miRNAs as novel diagnostic biomarker candidates for primary nasopharyngeal carcinoma. Asian Pacific Journal of Cancer Prevention, 15(18): 7575-7581. DOI: 10.7314/apjcp.2014.15.18.7575
Teleanu, R.I., Chircov, C., Grumezescu, A.M. & Teleanu, D.M. (2019). Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. Journal of Clinical Medicine, 9(1): 84. DOI:doi.org/10.3390/jcm9010084
Tian, X., Liu, Y., Wang, Z. & Wu, S. (2021). miR-144 delivered by nasopharyngeal carcinoma-derived EVs stimulates angiogenesis through the FBXW7/HIF-1α/VEGF-A axis. Molecular Therapy-Nucleic Acids, 24: 1000-1011. DOI: 10.1016/j.omtn.2021.03.016
Tsao, S.W., Tsang, C.M. & Lo, K.W. (2017). Epstein-Barr virus infection and nasopharyngeal carcinoma. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1732): 20160270. DOI: 10.1098/rstb.2016.0270
Tsunoda, A., Suzuki, M., Kishimoto, S., Anzai, T., Matsumoto, F., Ikeda, K. & Terasaki, O. (2021). Otitis media with effusion caused by a parapharyngeal tumor showing normal nasopharyngeal findings. Ear, Nose & Throat Journal, 100(7): 543-545. DOI: 10.1177/0145561319881513
Utama, D.S., Ralahayu, P. & Bahar, E. (2022). Relationship between primary tumors of nasopharyngeal carcinoma with the degree of conductive hearing loss in Dr. Mohammad Hoesin Hospital Palembang. Bioscientia Medicina: Journal of Biomedicine and Translational Research, 6(3): 1423-1434. DOI: 10.37275/bsm.v6i3.453
Wang, K.H., Austin, S.A., Chen, S.H., Sonne, D.C. & Gurushanthaiah, D. (2017). Nasopharyngeal carcinoma diagnostic challenge in a nonendemic setting: Our experience with 101 patients. Permanente Journal, 21(3): 16-180. DOI: 10.7812/TPP/16-180
Wang, Y., Zhang, Y. & Ma, S. (2013). Racial differences in nasopharyngeal carcinoma in the United States. Cancer Epidemiology, 37(6): 793-802. DOI: 10.1016/j.canep.2013.08.008
Wong, T.S., Chen, S., Zhang, M.J., Chan, J.Y.W. & Gao, W. (2018). Epstein-Barr virus-encoded microRNA BART7 downregulates major histocompatibility complex class I chain-related peptide A and reduces the cytotoxicity of natural killer cells to nasopharyngeal carcinoma. Oncology Letters, 16(3): 2887-2892. DOI: 10.3892/ol.2018.9041
van den Broek, E., Dijkstra, M.J., Krijgsman, O., Sie, D., Haan, J.C., Traets, J.J., van de Wiel, M.A., Nagtegaal, I.D., Punt, C.J., Carvalho, B., Ylstra, B., Abeln, S., Meijer, G.A. & Fijneman, R.J. (2015). High prevalence and clinical relevance of genes affected by chromosomal breaks in colorectal cancer. PLoS One, 10(9): e0138141. DOI: 10.1371/journal.pone.0138141
Vig, A., Poulter, J.A., Ottaviani, D., Tavares, E., Toropova, K., Tracewska, A.M., Mollica, A., Kang, J., Kehelwathugoda, O., Paton, T., Maynes, J.T., Wheway, G., Arno, G., Khan, K.N., McKibbin, M., Toomes, C., Ali, M., Scipio, M.D., Li, S., Ellingford, J., Black, G., Webster, A., Rydzanicz, M., Stawiński, P., Ploski, R., Vincent, A., Cheetham, M.E., Inglehearn, C.F., Roberts, A. & Heon, E. (2020). DYNC2H1 hypomorphic or retina-predominant variants cause nonsyndromic retinal degeneration. Genetics in Medicine, 22(12), 2041-2051. DOI: 10.1038/s41436-020-0915-1
Vilagos, B., Hoffmann, M., Souabni, A., Sun, Q., Werner, B., Medvedovic, J., Bilic, I., Minnich, M., Axelsson, E., Jaritz, M. & Busslinger, M. (2012). Essential role of EBF1 in the generation and function of distinct mature B cell types. Journal of Experimental Medicine, 209(4): 775-792. DOI: 10.1084/jem.20112422
Xing, B., Qiao, X.F., Qiu, Y.H. & Li, X. (2021). TMPO-AS1 regulates the aggressiveness-associated traits of nasopharyngeal carcinoma cells through sponging miR-320a. Cancer Management and Research, 13: 415-425. DOI: 10.2147/CMAR.S285113
Xu, Y. & Fisher, G.J. (2012). Receptor type protein tyrosine phosphatases (RPTPs)–roles in signal transduction and human disease. Journal of Cell Communication and Signaling, 6(3): 125-138. DOI: 10.1007/s12079-012-0171-5
Xu, Y., Huang, X., Ye, W., Zhang, Y., Li, C., Bai, P., Lin, Z. & Chen, C. (2020). Comprehensive analysis of key genes associated with ceRNA networks in nasopharyngeal carcinoma based on bioinformatics analysis. Cancer Cell International, 20: 408. DOI: 10.1186/s12935-020-01507-1
Yan, X., Liu, X.P., Guo, Z.X., Liu, T.Z. & Li, S. (2019). Identification of hub genes associated with progression and prognosis in patients with bladder cancer. Frontiers in Genetics, 10: 408. DOI: 10.3389/fgene.2019.00408
Yang, J.H., Li, J.H., Shao, P., Zhou, H., Chen, Y.Q. & Qu, L.H. (2011). starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Research, 39(suppl_1): D202-D209. DOI: 10.1093/nar/gkq105
Yang, Y., Liu, W., Zhang, Y., Wu, S. & Luo, B. (2019). Integrated analysis of the miRNA-mRNA network associated with LMP1 gene in nasopharyngeal carcinoma. bioRxiv, 615237. DOI: 10.1101/615237
Yao, J., Chen, X., Liu, X., Li, R., Zhou, X., & Qu, Y. (2021). Characterization of a ferroptosis and iron-metabolism related lncRNA signature in lung adenocarcinoma. Cancer Cell International, 21(1): 1-14. DOI: 10.1186/s12935-021-02027-2
Ye, Z., Wang, F., Yan, F., Wang, L., Li, B., Liu, T., Hu, F., Jiang, M., Li, W. & Fu, Z. (2019). Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma. World Journal of Surgical Oncology, 17(1): 1-10. DOI: 10.1186/s12957-019-1605-9
Žaja, R., Aydin, G., Lippok, B.E., Feederle, R., Lüscher, B. & Feijs, K.L.H. (2020). Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome. Scientific Reports, 10(1): 8286. DOI: 10.1038/s41598-020-64623-y
Zhang, T., Chen, Z., Deng, J., Xu, K., Che, D., Lin, J., Jiang, P., Gu, X. & Xu, B. (2022). Epstein–Barr virus-encoded microRNA BART22 serves as novel biomarkers and drives malignant transformation of nasopharyngeal carcinoma. Cell Death & Disease, 13(7): 1-14. DOI: 10.1038/s41419-022-05107-x
Zhang, Q., Luo, D., Xie, Z., He, H. & Duan, Z. (2020). The oncogenic role of miR-BART19-3p in Epstein-Barr virus-associated Diseases. BioMed Research International, 2020: 5217039. DOI: 10.1155/2020/5217039
Zhang, S., Yue, W., Xie, Y., Liu, L., Li, S., Dang, W., Xin, S., Yang, L., Zhai, X., Cao, P. & Lu, J. (2019). The four microRNA signature identified by bioinformatics analysis predicts the prognosis of nasopharyngeal carcinoma patients. Oncology Reports, 42(5): 1767-1780. DOI: 10.3892/or.2019.7316
Zhong, Y., Zhu, Y., Dong, J., Zhou, W., Xiong, C., Xue, M., Shi, M. & Chen, H. (2019). Identification of key transcription factors AP-1 and AP-1-Dependent miRNAs forming a co-regulatory network controlling PTEN in liver ischemia/reperfusion injury. BioMed Research International, 2019: 962682. DOI: 10.1155/2019/8962682
Zhou, R.S., Zhang, E.X., Sun, Q.F., Ye, Z.J., Liu, J.W., Zhou, D.H. & Tang, Y. (2019). Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer, 19(1): 1-10. DOI: 10.1186/s12885-019-5983-8
Zhou, J., Zhang, B., Zhang, X., Wang, C. & Xu, Y. (2022). Identification of a 3-miRNA signature associated with the prediction of prognosis in nasopharyngeal carcinoma. Frontiers in Oncology, 11: 5969. DOI: 10.3389/fonc.2021.823603
Zhu, X., Jiang, L., Yang, H., Chen, T., Wu, X. & Lv, K. (2020). Analyzing the lncRNA, miRNA, and mRNA-associated ceRNA networks to reveal potential prognostic biomarkers for glioblastoma multiforme. Cancer Cell International, 20(1): 1-12. DOI: 10.1186/s12935-020-01488-1
Zhu, J.Y., Pfuhl, T., Motsch, N., Barth, S., Nicholls, J., Grässer, F. & Meister, G. (2009). Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. Journal of Virology, 83(7): 3333-3341. DOI: 10.1128/JVI.01689-08
Zingoni, A., Molfetta, R., Fionda, C., Soriani, A., Paolini, R., Cippitelli, M., Cerboni, C. & Santoni, A. (2018). NKG2D and its ligands: “One for all, all for one”. Frontiers in Immunology, 9: 476. DOI: 10.3389/fimmu.2018.00476
Zuazo-Gaztelu, I. & Casanovas, O. (2018). Unraveling the role of angiogenesis in cancer ecosystems. Frontiers in Oncology, 8: 248. DOI: 10.3389/fonc.2018.00248
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Borneo Journal of Resource Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.