Comparison between Pollution Index and STORET Methods in Determining Post-Mining Lake Water Quality in Lati Petangis Forest Park, Paser, East Kalimantan after Reclamation

Methods in determining post-mining kake water quality

Authors

  • NAUFAL HAFIDH MAHDI SUJARWO PUTRA Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, 50275 Semarang, Indonesia
  • TRI RETNANINGSIH SOEPROBOWATI Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, 50275 Semarang, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo No. 3-5, 50241 Semarang, Indonesia; Cluster for Paleolimnlogy (CPalim), Diponegoro University, 50241 Semarang, Indonesia https://orcid.org/0000-0001-7525-7028
  • JUMARI JUMARI 1Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, 50275 Semarang, Indonesia; Cluster for Paleolimnlogy (CPalim), Diponegoro University, 50241 Semarang, Indonesia. https://orcid.org/0000-0002-3150-5293

DOI:

https://doi.org/10.33736/bjrst.6065.2024

Keywords:

Pollution Index, Post-Mining Lake, STORET

Abstract

Tahura Lati Petangis is post-mining forest park area. Tahura Lati Petangis has been through the stages of reclamation and post-mining lake has been formed. Monitoring activities are needed to determine the success of post-mining management. This research aims to evaluate the post-mining lake of water quality in Tahura Lati Petangis based on the Pollution Index and STORET methods. The research was located at 3 observation stations, which were station 1 (Pit Lake I Saingprupuk Erai), station 2 (Natural Lake Gentung Dayo), and station 3 (Pit Lake II Saingprupuk Duo). At all research stations, in-situ water quality observations were made in the form of dissolved oxygen, pH, and water temperature at 4 points sites. Water sampling was also carried out at 4 sites in each station for ex-situ quality testing. Water quality analysis based on pollution index and STORET method. The determination of water quality status based on Government Regulation No. 22/2021. The results showed that the water quality status between Pollution Index and STORET had differences. The STORET method shows more polluted results. The source of pollution at the three observation stations is generally related to organic compounds through high measurement of chemical oxygen demand, biological oxygen demand, phosphate, and phenol, so the value of dissolved oxygen is also affected. Especially for zinc and iron dissolved in Station 3 which are heavy metals included in the accumulation of STORET scoring. Station 1 and Station 2 are only suitable for agricultural or irrigation activities (class IV), while Station 3 is not suitable for all four use classes. Therefore, Station 3 is more polluted than the other two lakes. Monitoring the water quality of post-mining lakes after reclamation showed decrease in heavy metal concentrations, and on the other side there was increase in the concentration of aquatic organic compounds.

Author Biographies

TRI RETNANINGSIH SOEPROBOWATI, Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, 50275 Semarang, Indonesia; School of Postgraduate Studies, Diponegoro University, Jl. Imam Bardjo No. 3-5, 50241 Semarang, Indonesia; Cluster for Paleolimnlogy (CPalim), Diponegoro University, 50241 Semarang, Indonesia

Biology Department, Science and Mathematics Faculty, Diponegoro University; School of Postgraduate, Diponegoro University

JUMARI JUMARI, 1Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, 50275 Semarang, Indonesia; Cluster for Paleolimnlogy (CPalim), Diponegoro University, 50241 Semarang, Indonesia.

Biology Department, Science and Mathematics Faculty, Diponegoro University

References

Abdullahi, A.B., Siregar, A.R., Pakiding, W. & Mahyuddin. (2021). The analysis of BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand) contents in the water of around laying chicken farm. IOP Conference Series: Earth and Environmental Science, 788(012155). DOI 10.1088/1755-1315/788/1/012155

Anku, W.W., Mamo, M.A., Mamo, M.A., Penny, P.W. & Govender, P.P. (2017). Phenolic Compounds Water: Sources, Reactivity, Toxicity, and Treatment Methods. Natural Sources, Importance and Applications. Intech Open: 419–443. DOI: 10.5772/66927

Austigard, Å.D., Svendsen, K. & Heldal, K.K. (2018). Hydrogen sulphide exposure in waste water treatment. Journal of Occupational Medicine and Toxicology, 13: 1–10. DOI: https://doi.org/10.1186/s12995-018-0191-z

Bappenas RI (Badan Perencanaan Pembangunan Nasional Republik Indonesia). (2021). Air Bersih dan Sanitasi Layak (Tujuan Pembangunan Berkelanjutan SDGs). Accessed in https://sdgs.bappenas.go.id/tujuan-6/ on 07 May 2023.

BPS Kab. Paser (Badan Pusat Statistik Kabupaten Paser). (2022). Paser Regency in Numbers 2022 (Kabupaten Paser Dalam Angka 2022) pp. 341-347. Tanah Grogot. CV Suvi Sejahtera.

Baker, J.A., Gilron, G., Chalmers, B.A. & Elphick, J.R. (2017). Evaluation of the effect of water type on the toxicity of nitrate to aquatic organisms. Chemosphere, 168: 435–440. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.059

Barokah, G.R., Ariyani, F. & Siregar, T.H. (2017). Comparison Of Storet And Pollution Index Method To Assess The Environmental Pollution Status: A Case Study From Lampung Bay, Indonesia. SQUALEN Bulletin of Marine and Fisheries Postharvest and Biotechnology, 12(2): 67-74. DOI: https://doi.org/10.15578/squalen.287

Blanchette, M.L. & Lund, M.A. (2016). Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Current Opinion in Environmental Sustainability, 23: 28–34. DOI: https://doi.org/10.1016/j.cosust.2016.11.012

Blanchette, M.L. & Lund, M.A. (2021). Aquatic ecosystems of the Anthropocene: Limnology and microbial ecology of mine pit lakes. Microorganisms, 9(6): 1207. DOI: https://doi.org/10.3390/microorganisms9061207

Carey, C.C. & Woelmer, W.M. (2020). Water Quality Assessment Procedures For Virginia: Dissolved Oxygen Assessment Of Lakes And Reservoirs. 2020 Report of the Academic Advisory Committee for Virginia Department of Environmental Quality, pp. 1-19. Virginia Water Resources Research Center. Virginia.

Dan-Badjo, A.T., Ibrahim, O.Z., Guéro, Y., Morel, J.L., Feidt, C. & Echevarria, G. (2019). Impacts of artisanal gold mining on soil, water and plant contamination by trace elements at Komabangou, Western Niger. Journal of Geochemical Exploration, 205: 106328. DOI: https://doi.org/10.1016/j.gexplo.2019.06.010

Decree of the Minisiter of Environment of Republic Indonesia No.115/2003. (2003). Keputusan Menteri Lingkungan Hidup Nomor 115 Tahun 2003 tentang Pedoman Penentuan Status Mutu Air. Jakarta.

DLH Kab. Paser & FPIK UNMUL (Dinas Lingkungan Hidup Kabupaten Paser & Fakultas Perikanan dan Ilmu Kelautan Universitas Mulawarman). (2020). Paser Regency Lati Petangis Forest Park Lake Fauna Study Report (Laporan Kajian Fauna Danau Taman Hutan Raya Lati Petangis Kabupaten Paser) pp. 1-21. Tanah Grogot.

DLH Kab. Paser (Dinas Lingkungan Hidup Kabupaten Paser). (2017). Potential Inventory of Lati Petangis Area (Inventarisasi Potensi Kawasan Tahura Lati Petangis) pp. 1-32. Tanah Grogot.

Febiyanto, F. (2020). Effects of Temperature and Aeration on The Dissolved Oxygen (DO) Values in Freshwater Using Simple Water Bath Reactor: A Brief Report. Walisongo Journal of Chemistry, 3(1): 25. DOI: https://doi.org/10.21580/wjc.v3i1.6108

Gąsiorowski, M., Stienss, J., Sienkiewicz, E. & Sekudewicz, I. (2021). Geochemical Variability of Surface Sediment in Post-Mining Lakes Located in the Muskau Arch (Poland) and Its Relation to Water Chemistry. Water, Air, & Soil Pollution, 232: 108. DOI: https://doi.org/10.1007/s11270-021-05057-8

Gebrehiwot, S.G., Bewket, W., Mengistu, T., Nuredin, H., Ferrari, C.A. & Bishop, K. (2021). Monitoring and assessment of environmental resources in the changing landscape of Ethiopia: a focus on forests and water. Environmental Monitoring and Assessment, 193: 1–13. DOI: https://doi.org/10.1007/s10661-021-09421-3

Government Regulation of the Republic Indonesia No. 22/2021. (2021). Peraturan Pemerintah (PP) Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup. Jakarta.

Handoko, M. & Sutrisno, A.J. (2021). Spatial and Temporal Analysis of Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD) Concentrations in Rawa Pening Lake, Semarang Regency. Jurnal Geografi Gea, 21: 58–71. DOI: https://doi.org/10.17509/gea.v21i1.32330

Heramza, K., Barour, C., Djabourabi, A., Khati, W. & Bouallag, C. (2021). Environmental parameters and diversity of diatoms in the Aïn Dalia dam, Northeast of Algeria. Biodiversitas 22(9), 3633–3644. DOI: https://doi.org/10.13057/biodiv/d220901

Idrus, F. A., Chong, M. D., Abd Rahim, N. S., Mohd Basri, M. & & Musel, J. (2017). Physicochemical parameters of surface seawater in Malaysia exclusive economic zones off the Coast of Sarawak. Borneo Journal of Resource Science and Technology, 7(1): 1-10. DOI: https://doi.org/10.33736/bjrst.388.2017

Kołodyńska, D., Gęca, M., Skwarek, E. & Goncharuk, O. (2018). Titania-Coated Silica Alone and Modified by Sodium Alginate as Sorbents for Heavy Metal Ions. Nanoscale Research Letters, 13: 96. DOI: https://doi.org/10.1186/s11671-018-2512-7

Kousa, A., Komulainen, H., Hatakka, T., Backman, B. & Hartikainen, S. (2021). Variation in groundwater manganese in Finland. Environmental Geochemistry and Health, 43: 1193–1211. DOI: https://doi.org/10.1007/s10653-020-00643-x

Kumar, V., Bharti, P.K., Talwar, M., Tyagi, A.K. & Kumar, P. (2017). Studies on high iron content in water resources of Moradabad district (UP), India. Water Science, 31(1): 44–51. DOI: https://doi.org/10.1016/j.wsj.2017.02.003

Li, J. & Zuo, Q. (2020). Forms of nitrogen and phosphorus in suspended solids: A case study of Lihu Lake, China. Sustainability, 12(12): 5026. DOI: https://doi.org/10.3390/su12125026

Li, L., Sun, F., Liu, Q., Zhao, X. & Song, K. (2021). Development of regional water quality criteria of lead for protecting aquatic organism in Taihu Lake, China. Ecotoxicology and Environmental Safety, 222: 112479. DOI: https://doi.org/10.1016/j.ecoenv.2021.112479

Li, X.F., Wang, P.F., Feng, C.L., Liu, D.Q., Chen, J.K. & Wu, F.C. (2019). Acute Toxicity and Hazardous Concentrations of Zinc to Native Freshwater Organisms Under Different pH Values in China. Bulletin of Environmental Contamination and Toxicology, 103: 120–126. DOI: https://doi.org/10.1007/s00128-018-2441-2

Lund, M., van Etten, E., Polifka, J., Vasquez, M.Q., Ramessur, R., Yangzom, D. & Blanchette, M.L. (2020). The Importance of Catchments to Mine-pit Lakes: Implications for Closure. Mine Water and the Environment, 39: 572–588. DOI: https://doi.org/10.1007/s10230-020-00704-8

Mafuyai, G.M., Ayuba, M.S. & Zang, C.U. (2020). Physico-Chemical Characteristics of Tin Mining Pond Water Used for Irrigation in Plateau State, Central Nigeria. Open Journal of Environmental Research, 1(2): 9-35. DOI: https://doi.org/10.52417/ojer.v1i2.164

McJannet, D., Hawdon, A., Baker, B., Ahwang, K., Gallant, J., Henderson, S. & Hocking, A. (2019). Evaporation from coal mine pit lakes: Measurements and modelling. In AB Fourie & M Tibbet (eds). Mine Closure 2019: Proceedings of the 13th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 1391-1404.

Monson, P. (2022). Aquatic Life Water Quality Standards Draft Technical Support Document for Nitrate, pp. 1-19. Minnesota Pollution Control Agency. Minnesota.

Mutshekwa, T., Cuthbert, R.N., Wasserman, R.J., Murungweni, F.M. & Dalu, T. (2020). Nutrient Release Dynamics Associated with Native and Invasive Leaf Litter Decomposition: A Mesocosm Experiment. Water, 12(9): 2350. DOI: https://doi.org/10.3390/w12092350

Neculita, C.M. & Rosa, E. (2019). A review of the implications and challenges of manganese removal from mine drainage. Chemosphere, 214: 491–510. DOI: https://doi.org/10.1016/j.chemos

phere.2018.09.106

Nizzoli, D., Welsh, D.T. & Viaroli, P. (2020). Denitrification and benthic metabolism in lowland pit lakes: The role of trophic conditions. Science of The Total Environment, 703: 134804. DOI:https://doi.org/10.1016/j.scitotenv.2019.134804

Nkele, K., Mpenyana-Monyatsi, L. & Masindi, V. (2022). Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review. Journal of Cleaner Production, 377: 134152. DOI: https://doi.org/10.1016/j.jclepro.2022.134152

Noulas, C., Tziouvalekas, M. & Karyotis, T. (2018). Zinc In Soils, Water and Food Crops. Journal of Trace Elements in Medicine and Biology, 49: 252–260. DOI: https://doi.org/10.1016/j.jtemb.2018.02.009

Nyirenda, T.M., Zhou, J., Mapoma, H.W.T., Xie, L. & Li, Y. (2016). Hydrogeochemical Characteristics of Groundwater at the Xikuangshan Antimony Mine in South China. Mine Water and the Environment, 35: 86–93 DOI: https://doi.org/10.1007/s10230-015-0341-9

Oszkinis-Golon, M., Frankowski, M., Jerzak, L. & Pukacz, A. (2020). Physicochemical differentiation of the Muskau Arch pit lakes in the light of long-term changes. Water, 12(9): 2368. DOI: https://doi.org/10.3390/w12092368

Park, J.H., Edraki, M. & Baumgartl, T. (2017). A practical testing approach to predict the geochemical hazards of in-pit coal mine tailings and rejects. Catena, 148: 3–10. DOI: https://doi.org/10.1016/j.catena.2015.10.027

Peng, Z., Yang, K., Shang, C., Duan, H., Tang, L., Zhang, Y., Cao, Y. & Luo, Y. (2022). Attribution analysis of lake surface water temperature changing —taking China’s six main lakes as example. Ecological Indicators, 145: 109651. DOI:https://doi.org/10.1016/j.ecolind.2022.109651

Pratiwi, Narendra, B.H., Siregar, C.A., Turjaman, M., Hidayat, A., Rachmat, H.H., Mulyanto, B., Suwardi, Iskandar, Maharani, R., Rayadin, Y., Prayudyaningsih, R., Yuwati, T.W., Prematuri, R. & Susilowati, A. (2021). Managing and reforesting degraded post-mining landscape in Indonesia: A review. Land, 10(6): 658. DOI: https://doi.org/10.3390/land10060658

Pukacz, A., Oszkinis-Golon, M. & Frankowski, M. (2020). The physico-chemical diversity of pit lakes of the Muskau Arch (Western Poland) in the context of their evolution and genesis. Limnological Review, 18(3): 115–126. DOI: https://doi.org/10.2478/limre-2018-0013

Punia, A., Bharti, R. & Kumar, P. (2021). Impact of mine pit lake on metal mobility in groundwater. Environmental Earth Sciences, 80(7): 245. DOI: https://doi.org/10.1007/s12665-021-09559-w

Qi, M., Han, Y., Zhao, Z. & Li, Y. (2021). Integrated determination of chemical oxygen demand and biochemical oxygen demand. Polish Journal of Environmental Studies, 30(2): 1785–1794. DOI: https://doi.org/10.15244/pjoes/122439

Qian, J., Jin, W., Hu, J., Wang, P., Wang, C., Lu, B., Li, K., He, X. & Tang, S. (2021). Stable isotope analyses of nitrogen source and preference for ammonium versus nitrate of riparian plants during the plant growing season in Taihu Lake Basin. Science Total Environment, 763: 143029. DOI:https://doi.org/10.1016/j.scitotenv.2020.143029

Rader, K.J., Carbonaro, R.F., van Hullebusch, E.D., Baken, S. & Delbeke, K. (2019). The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environmental Toxicology and Chemistry, 38(7): 1386–1399. DOI: https://doi.org/10.1002/etc.4440

Redondo-Vega, J.M., Melón-Nava, A., Peña-Pérez, S.A., Santos-González, J., Gómez-Villar, A. & González-Gutiérrez, R.B. (2021). Coal pit lakes in abandoned mining areas in León (NW Spain): characteristics and geoecological significance. Environmental Earth Sciences, 80: 1–14. DOI: https://doi.org/10.1007/s12665-021-10037-6

Risacher, F.F., Morris, P.K., Arriaga, D., Goad, C., Nelson, T.C., Slater, G.F. & Warren, L.A. (2018). The interplay of methane and ammonia as key oxygen consuming constituents in early stage development of Base Mine Lake, the first demonstration oil sands pit lake. Applied Geochemistry Journal, 93: 49–59. DOI: https://doi.org/10.1016/j.apgeochem.2018.03.013

Rogozin, A.G. & Gavrilkina, S. V. (2008). Causes for high concentration of copper and zinc in the water of some lakes in the Southern Urals. Water Resources, 35: 701–707. DOI: https://doi.org/10.1134/S0097807808060092

Roland, F.A.E., Darchambeau, F., Borges, A. V., Morana, C., De Brabandere, L., Thamdrup, B. & Crowe, S.A. (2018). Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu). Limnology and Oceanography, 63(2): 687–701. DOI: https://doi.org/10.1002/lno.10660

Rustiah, W., Noor, A., Maming, Lukman, M., Baharuddin, A. & Fitriyah, T. (2019). Distribution Analysis of Nitrate and Phosphate in Coastal Area: Evidence from Pangkep River, South Sulawesi. International Journal of Agriculture System, 7(1): 9–17. DOI: 10.20956/ijas.v7i1.1835.

Sakellari, C., Roumpos, C., Louloudis, G. & Vasileiou, E. (2021). A Review about the Sustainability of Pit Lakes as a Rehabilitation Factor after Mine Closure. Materials Proceedings, 5(1): 52. DOI: https://doi.org/10.3390/materproc2021005052

Saraswati, S.P., Sunyoto, S., Kironoto, B.A. & Hadisusanto, S. (2014). Assessment of the Forms and Sensitivity of the Index Formula PI, STORET, CCME for the Determination of Water Quality Status. Jurnal Manusia dan Lingkungan, 21(2), 129-142. DOI: https://doi.org/10.22146/jml.18536

Schullehner, J., Stayner, L. & Hansen, B. (2017). Nitrate, nitrite, and ammonium variability in drinking water distribution systems. International Journal of Environmental Research and Public Health, 14(3): 276. DOI: https://doi.org/10.3390/ijerph14030276

Siang, H.Y., Tahir, N.M., Malek, A. & Isa, M.A.M. (2017). Breakdown Of Hydrogen Sulfide In Seawater Under Different Ratio Of Dissolved Oxygen / Hydrogen Sulfide. Malaysian Journal of Analytical Sciences, 21(5): 1016–1027. DOI: https://doi.org/10.17576/mjas-2017-2105-03

Soeprobowati, T.R., Addadiyah, N.L., Hariyati, R. & Jumari, J. (2021). Physico-chemical and biological water quality of Warna and Pengilon Lakes, Dieng, Central Java. Journal Of Water And Land Development, 51(10-12): 38–49. DOI: 10.24425/jwld.2021.139013

Soetignya, W.P., Marniati, P., Adijaya, M. & Anzani, Y.M. (2021). The diversity of plankton as bioindicators in Kakap River Estuary, West Kalimantan. Depik Jurnal Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 10(2): 174-179. DOI:https://doi.org/10.13170/depik.10.2.21303

Soni, A., Mishra, B. & Singh, S. (2014). Pit lakes as an end use of mining: A review. Journal of Mining and Environment, 5(2): 99–111. DOI: https://doi.org/10.22044/jme.2014.326

Spiridon, C., Teodorof, L., Burada, A., Despina, C., Seceleanu-Odor, D., Tudor, I.M., Ibram, O., Georgescu, L.P., Țopa, C.M., Negrea, B.M. & Tudor, M. (2018). Seasonal variations of nutrients concentration in aquatic ecosystems from danube delta biosphere reserve. AACL Bioflux, 11(6): 1882–1891.

Sumargo. (2017). Water Quality Analysis of Lake Former Coal Mine Excavation in Lati Petangis Forest Park, Batu Engau District, Paser Regency (Analisis Kualitas Air Danau Bekas Galian Tambang Batu Bara di Tahura Lati Petangis Kecamatan Batu Engau Kabupaten Paser). Thesis Master. Mulawarman University, Samarinda.

Suriadikusumah, A., Mulyani, O., Sudirja, R., Sofyan, E.T., Maulana, M.H.R. & Mulyono, A. (2021). Analysis of the water quality at Cipeusing river, Indonesia using the pollution index method. Acta Ecologica Sinica, 41(3): 177–182. DOI: https://doi.org/10.1016/j.chnaes.2020.08.001

Thakur, T.K., Dutta, J., Upadhyay, P., Patel, D.K., Thakur, A., Kumar, M. & Kumar, A. (2022). Assessment of land degradation and restoration in coal mines of central India: A time series analysis. Ecological Engineering, 175: 106493. DOI: https://doi.org/10.1016/j.ecoleng.2021.106493

Tyas, D.S., Soeprobowati, T.R. & Jumari, J. (2021). Water Quality of Gatal Lake, Kotawaringin Lama, Central Kalimantan. Journal of Ecological Engineering, 22(3): 99–110. DOI: https://doi.org/10.12911/22998993/132427

UNDP (United Nations Development Programme). (2015). Sustainable Development Goals. Accessed in https://www.undp.org/sustainable-development-goals on 07 May 2023.

Verma, S., Mukherjee, A., Mahanta, C., Choudhury, R., Badoni, R.P. & Joshi, G. (2019). Arsenic fate in the Brahmaputra river basin aquifers: Controls of geogenic processes, provenance and water-rock interactions. Applied Geochemistry, 107: 171-186. DOI: https://doi.org/10.1016/j.apgeochem.2019.06.004

Wang, H. & Zhang, Q. (2019). Research advances in identifying sulfate contamination sources of water environment by using stable isotopes. International Journal of Environmental Research and Public Health, 16(11): 1914. DOI: https://doi.org/10.3390/ijerph16111914

Wang, R., Cai, C., Zhang, J., Sun, S. & Zhang, H. (2022). Study on phosphorus loss and influencing factors in the water source area. International Soil and Water Conservation Research, 10(2): 324–334. DOI: https://doi.org/10.1016/j.iswcr.2021.07.002

Wilson, P.C. (2010). Water Quality Notes: Dissolved Oxygen, pp. 1-9. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Florida. http://edis.ifas.ufl.edu.

Xiao, X., Han, G., Zeng, J., Liu, M. & Li, X. (2022). Geochemical and Seasonal Characteristics of Dissolved Iron Isotopes in the Mun River, Northeast Thailand. Water, 14(13): 2038. DOI: https://doi.org/10.3390/w14132038

Yusni, E. & Ifanda, D. (2020). Analysis of heavy metal of copper (Cu) and lead (Pb) at Siombak Lake North Sumatera Province. IOP Conference Series: Earth and Environmental Science 454(012129). DOI: 10.1088/1755-1315/454/1/012129

Yusuf, Z.H. (2020). Phytoplankton as bioindicators of water quality in nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia, 32(4): 1-11. DOI: 10.1590/s2179-975x3319

Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S.M., Petersen, R.J., Liu, H. & Goldhammer, T. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 212: 103446. DOI: https://doi.org/10.1016/j.earscirev.2020.103446

Zhang, D., Li, M., Yang, Y., Yu, H., Xiao, F., Mao, C., Huang, J., Yu, Y., Wang, Y., Wu, B., Wang, C., Shu, L., He, Z. & Yan, Q. (2022). Nitrite and nitrate reduction drive sediment microbial nitrogen cycling in a eutrophic lake. Water Research, 220: 118637. DOI: https://doi.org/10.1016/j.watres.2022.118637

Zhao, S., Zhang, B., Sun, X. & Yang, L. (2021). Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Science of The Total Environment, 762: 144168. DOI: https://doi.org/10.1016/j.scitotenv.2020.144168

Zheng, L., Liu, Z., Yan, Z., Zhang, Y., Yi, X., Zhang, J., Zheng, X., Zhou, J. & Zhu, Y. (2017). pH-dependent ecological risk assessment of pentachlorophenol in Taihu Lake and Liaohe River. Ecotoxicology and Environmental Safety, 135: 216–224. DOI: https://doi.org/10.1016/j.ecoenv.2016.09.023

Zhou, M., Li, X., Zhang, M., Liu, B., Zhang, Y., Gao, Y., Ullah, H., Peng, L., He, A. & Yu, H. (2020). Water quality in a worldwide coal mining city: A scenario in water chemistry and health risks exploration. Journal of Geochemical Exploration, 213: 106513. DOI: https://doi.org/10.1016/j.gexplo.2020.106513

Zhu, G., Wu, X., Ge, J., Liu, F., Zhao, W. & Wu, C. (2020). Influence of mining activities on groundwater hydrochemistry and heavy metal migration using a self-organizing map (SOM). Journal of Cleaner Production, 257: 120664. DOI:https://doi.org/10.1016/j.jclepro.2020.120664

Published

2024-06-28

How to Cite

PUTRA, N. H. M. S., SOEPROBOWATI, T. R., & JUMARI, J. (2024). Comparison between Pollution Index and STORET Methods in Determining Post-Mining Lake Water Quality in Lati Petangis Forest Park, Paser, East Kalimantan after Reclamation: Methods in determining post-mining kake water quality. Borneo Journal of Resource Science and Technology, 14(1), 1–17. https://doi.org/10.33736/bjrst.6065.2024