Experimental Study on Phytoremediation of Heavy Metal from Mine Wastewater by Rumex nepalensis Spreng.

Phytoremediation of heavy metal from mine wastewater

Authors

  • GERA TECHANE Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia; Ministry of Mines, Federal Democratic Republic of Ethiopia
  • GEREMEW SAHILU GEBRE Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia
  • ELFU AMARE School of Mechanical and Industrial Engineering, Ethiopian Institute of Technology, Mekelle University, Mekelle, Ethiopia

DOI:

https://doi.org/10.33736/bjrst.5958.2024

Abstract

Tailings pond is considered as the main source of heavy metal pollution in gold mining areas. These heavy metals are directly released into fresh water without proper treatment. Phytoremediation process with the selected terrestrial plants may be an alternative solution for the mine wastewater treatment. In the current study, an experimental investigation found that Rumex nepalensis Spreng. has found a good accumulator of multi-metals in 15 days of experimental period. The results revealed that the removal efficiencies for Zn, Cu, Ni and Pb were 100%, 92%, 87%, and 67%, respectively. These indicate the plant showed its maximum accumulation of multi-metals. However, Pb reached saturation at the end of the 10th day, which makes its removal efficiency only in the first 10 days of the experimental period.  The experiment revealed Pb and Ni which were above WHO standard for drinking water in the mine wastewater were made to permissible limit for these metals after the treatment.

References

Abbas, N., Butt, M.T., Ahmad, M.M. & Deeba, F. (2021). Phytoremediation potential of Typha latifolia and water hyacinth for removal of heavy metals from industrial wastewater. Chemistry International, 7(2): 103-111.

Adewumi, A.J. & Laniyan, T.A. (2020). Total environment contamination, sources and risk assessments of metals in media from Anka artisanal gold mining area , Northwest Nigeria. Science of the Total Environment, 718: 137235. DOI: 10.1016/j.scitotenv.2020.137235

Agarwal, A., Upadhyay, U., Sreedhar, I. & Anitha, K.L. (2022). Simulation studies of Cu ( II ) removal from aqueous solution using olive stone. Cleaner Materials, 5(100128): 1-7. DOI: 10.1016/j.clema.2022.100128

Ahmad, I. Gul, S. Irum, M. &. Manzoor A.M. (2022). Accumulation of heavy metals in wild plants collected from the industrial sites - potential for phytoremediation. International Journal of Environmental Science and Technology. 20(5): 5441-5452.

Ahmad, S., Bashir, O., Anam, S., Haq, U., Amin, T., Rafiq, A., Ali, M., Heloisa, J. & Sher, F. (2022). Phytoremediation of heavy metals in soil and water : An eco-friendly , sustainable and multidisciplinary approachre. Chemosphere, 303: 1-10. DOI: 10.1016/j.chemosphere.2022.134788

Al-huqail, A.A., Kumar, P., Eid, E.M., Taher, M.A., Kumar, P., Adelodun, B., Andabaka, Ž., Mioˇ, B. & Kumar, V. (2022). Phytoremediation of Composite Industrial Effluent Using Sacred Lotus ( Nelumbo nucifera Gaertn ): A Lab-Scale Experimental Investigation. Sustainability, 14(15): 9500.

Ali, H., Khan, E. & Sajad, M. A. (2013). Phytoremediation of heavy metals-concepts and applications. Chemosphere, 91(7): 869-881.

Anusuya, N.R., Gomathi, S., Manian, V.S. & Menon, A. (2016). Evaluation of Basella rubra L ., Rumex nepalensis Spreng . and Commelina benghalensis L . for antioxidant activity. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3): 714-720.

Aras, A. (2022). Determination of Trace Elements in Rumex nepalensis , Inula discoidea , Tripleurospermum callosum , and Thymus migricus Plants Using ICP-MS Application. Journal of the Institute of Science and Technology, 12(3): 1703-1710. DOI: 10.21597/jist.1103110

Azeez, N.M. (2021). Bioaccumulation and phytoremediation of some heavy metals (Mn , Cu , Zn and Pb ) by bladderwort and duckweed. Biodiversitas, 22(5): 2993-2998. DOI: 10.13057/biodiv/d220564

Balamoorthy, D., Velusamy, P., Rath, B. & Kabeto, J. (2022). Removal of heavy metals from wastewater. Journal of Civil Engineering, Science and Technology, 13(1): 23-32. DOI: 10.33736/jcest.4473.2022

Bempah, C.K. & Ewusi, A. (2016). Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environmental Monitoring and Assessment, 188(5). DOI: 10.1007/s10661-016-5241-3

Beraldi-campesi, H. (2013). Early life on land and the first terrestrial ecosystems. Beraldi-Campesi Ecological Processes, 2(1): 1-17.

Bouzekri, S., El Hachimi, M.L., Kara, K., El Mahi, M. & Lotfi, E.M. (2020). Metal pollution assessment of surface water from the abandoned Pb mine Zaida, high Moulouya-Morocco. Geosystem Engineering, 23(4): 226-233. DOI: 10.1080/12269328.2020.1772125

Buta, E., Török, A., Csog, Á., Zongo, B., Cantor, M., Buta, M. & Majdik, C. (2014). Comparative Studies of the Phytoextraction Capacity of Five Aquatic Plants in Heavy Metal Contaminated Water. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(1): 173-179.

Butcher, D.J. and Sneddon, J.A. (1998) Practical Guide to Graphite Furnace Atomic Absorption Spectrometry. John Wiley and Sons, New York, pp. 34-149.

Chaudhary, E. & Sharma, P. (2019). Chromium and cadmium removal from wastewater using duckweed - Lemna gibba L . and ultrastructural deformation due to metal toxicity. International Journal of Phytoremediation, 21(3): 279-286. DOI: 10.1080/15226514.2018.1522614.

Chen, X., Feng, J., Mou, H., Liang, Z., Ding, T., Chen, S. & Li, F. (2023). Utilization of indole acetic acid with Leucadendron rubrum and Rhododendron pulchrum for the phytoremediation of heavy metals in the artificial soil made of municipal sewage sludge. Toxics, 11(1): 43.

Chen,Y., Jiang, X., Wang,Y. & Zhuang, D. (2018). Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Safety and Environmental Protection 113: 204-219.

Dabe, N.E., Kefale, A.T. & Dadi, T.L. (2020). Evaluation of Abortifacient Effect of Rumex nepalensis Spreng Among Pregnant Swiss Albino Rats : Laboratory-Based Study. Journal of Experimental Pharmacology. pp. 255-265

Dayal, S., Pratap, V., & Singh, M.K. (2020). Mathematical Approach to Describe Metal Concentration and Toxicity Growth by Laplace Transform. IOSR Journal of Mathematics, 12(3): 01–06. DOI: 10.9790/5728-1203060106.

Demková, L., Jezný, T. & Bobuľská, L. (2017). Assessment of soil heavy metal pollution in a former mining area–before and after the end of mining activities. Soil and water Research, 12(4): 229-236.

EPA. (2007). Microwavemicrowave assisted acid digestion of sediments, sludges, soils, and oils:method 3051A. pp. 1-30.

Fritioff, Å., Greger, M., Fritioff, A. & Greger, M. (2010). Aquatic and Terrestrial Plant Species with Potential to Remove Heavy Metals from Stormwater. International Journal of Phytoremediation, 5(3): 211-224. DOI: 10.1080/713779221

George, G.T., Gabriel, J.J., Nadu, T. & George, G.T. (2017). Phytoremediation of Heavy Metals from Municipal Waste Water by Salvinia molesta Mitchell. Haya: The Saudi Journal of Life Sciences, 2(3): 108-115. DOI:10.21276/haya

Getaneh, W. & Alemayehu, T. (2006). Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia. Environmental Geology, 50(3): 339-352. DOI: 10.1007/s00254-006-0213-5

Gupta, G. K. & Shukla, P. (2020). Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresource Technology, 297(9):122496

Kothari, R., Pandey, A., Ahmad, S., Mohan, H., Vinayak, S. & Tyagi, V.P. (2022). Utilization of Chlorella pyrenoidosa for Remediation of Common Effluent Treatment Plant Wastewater in Coupling with Co-relational Study : An Experimental Approach. Bulletin of Environmental Contamination and Toxicology, 108(3): 507-517. DOI: 10.1007/s00128-021-03292-7

Kumar, V. & Chopra, A.K. (2018). Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environmental technology, 39(1): 12-23.

Kumar, S. & Singh, P.K. (2020). Phytochemical investigation and antioxidant characterization of essential oil from roots of Rumex nepalensis Spreng high altitude of North India. Materials Today: Proceedings, 26: 3442-3448. DOI: 10.1016/j.matpr.2019.12.227

Li, R., Dong, F., Yang, G., Zhang, W., Zong, M., Nie, X., Zhou, L., Babar, A., Liu, J., Ram, B. K., Fan, C. & Zeng, Y. (2019). Characterization of Arsenic and Uranium Pollution Surrounding a Uranium Mine in Southwestern China and Phytoremediation Potential. Polish Journal of Environmental Studies, 28(6): 173-185. DOI: 10.15244/pjoes/103446

Liang, Y., Yi, X., Dang, Z., Wang, Q., Luo, H. & Tang, J. (2017). Heavy metal contamination and health risk assessment in the vicinity of a tailing pond in Guangdong, China. International Journal of Environmental Research and Public Health, 14(12): 1557.

Manyuchi, M.M., Sukdeo, N. & Stinner, W. (2022). Potential to remove heavy metals and cyanide from gold mining wastewater using biochar. Physics and Chemistry of the Earth, 126:103110. DOI: 10.1016/j.pce.2022.103110

Mengistu, G. T., Sahilu, G., Mulat, W. & Amare, E. (2023). Assessment of native plants for their potential to remove trace metals around Legadembi tailings dam, Southern Ethiopia. Environmental science and pollution research, 30(19): 55615-55624.

Meyer, A., Grotefend, S., Gross, A., Wätzig, H. & Ott, I. (2012). Total reflection X-ray fluorescence spectrometry as a tool for the quantification of gold and platinum metallodrugs: determination of recovery rates and precision in the ppb concentration range. Journal of pharmaceutical and biomedical analysis, 70: 713-717.

Mustafa, H.M. & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater : A review article. Ain Shams Engineering Journal, 12(1): 355-365. DOI: 10.1016/j.asej.2020.05.009

Ratna, K.D.W & Slamet, I. (2020). The Effectiveness of Pistia stratiotes as Phytoremediation Agents in Reducing Lead ( Pb ) Levels in Batik Household Industrial Wastewater in Bakaran Village , Central Java-Indon. Asian Journal of Biology, 10(4): 68-73. DOI: 10.9734/ajob/2020/v10i430126

Pal, M. & Saha, B.P. (2003). Antibacterial Efficacy of Rumex nepalensis Spreng roots, Phytotherapy research, 17: 558-559. DOI: 10.1002/ptr.1162

Panneerselvam, B. & Priya, S. (2021). Phytoremediation potential of water hyacinth in heavy metal removal in chromium and lead contaminated water. International Journal of Environmental Analytical Chemistry, 1-16. DOI: 10.1080/03067319.2021.1901896

Priya, A. K., Muruganandam, M., Ali, S. S. & Kornaros, M. (2023). Clean-Up of Heavy Metals from Contaminated Soil by Phytoremediation: A Multidisciplinary and Eco-Friendly Approach. Toxics, 11(5): 422.

Razzak, S.A., Faruque, M.O., Alsheikh, Z., Alsheikhmohamad, L., Alkuroud, D., Alfayez, A., Hossain, S. M. Z. & Hossain, M. M. (2022). A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances, 7:100168. DOI: 10.1016/j.envadv.2022.100168

Sey, E. & Belford, E.J. (2019). Levels of heavy metals and contamination status of a decommissioned tailings dam in Ghana. EQA-International Journal of Environmental Quality, 35: 33-50.

Singh, J., Kumar, V., Kumar, P., Kumar, P., Yadav, K.K., Cabral, M.S., Kamyab, H. & Chelliapan, S. (2021). An experimental investigation on phytoremediation performance of water lettuce ( Pistia stratiotes L.) for pollutants removal from paper mill effluent. Water Environment Research, 1543-1553. DOI: 10.1002/wer.1536

Techane, G., Yadav, O. P. & Yadav, L. (2019). Atomic absorption spectroscopic determination of some heavy metal contents in tomato (Lycopersicon esculentum Mill) fruit and water used for irrigation. Net Journal of Agricultural Science, 7(1): 23-29.

Tong, L., Liang, T., Tian, Y., Zhang, Q. & Pan, Y. (2022). Research progress on treatment of mine wastewater by bentonite composite. Arabian Journal of Geosciences, 15:681. DOI: 10.1007/s12517-022-09981-9

Waris, M., Baig J.A., Talpur, F.N., Kazi, T.G. &. Afridi, H.I. (2022). An environmental field assessment of soil quality and phytoremediation of toxic metals from saline soil by selected halophytes. Journal of Environmental Health Science & Engineering, 20(1): 535-544.

WHO. (2006). A compendium of standards for wastewater reuse in the Eastern Mediterranean Region (No. WHO-EM/CEH/142/E). pp. 1-19.

WHO. (2011). Guideline for drinking water 4th Edition Geneva, Switzerland World Health Organization. pp. 1-541.

Wu, A., Zhang, Y., Zhao, X., Li, J., Zhang, G., Shi, H. & Guo, L. (2022). Experimental Study on the Hydroponics of Wetland Plants for the Treatment of Acid Mine Drainage. Sustainability, 14, 2148: 1-13. DOI: 10.3390/su14042148

Yadav, S., Kumar, S., Jain, P., Pundir, R. K., Jadon, S. & Sharma, A. (2011). Antimicrobial activity of different extracts of roots of Rumex nepalensis Spreng . Indian Journal of Natural Products and Resources, 2(1): 65-69.

Zhang, W., Long, J., Zhang, X., Shen, W. & Wei, Z. (2020). Pollution and ecological risk evaluation of heavy metals in the soil and sediment around the HTM tailings pond, northeastern China. International Journal of Environmental Research and Public Health, 17(19): 1-10. DOI: 10.3390/ijerph17197072.

Published

2024-06-28

How to Cite

TECHANE, G., GEBRE, G. S., & AMARE, E. . (2024). Experimental Study on Phytoremediation of Heavy Metal from Mine Wastewater by Rumex nepalensis Spreng.: Phytoremediation of heavy metal from mine wastewater. Borneo Journal of Resource Science and Technology, 14(1), 88–97. https://doi.org/10.33736/bjrst.5958.2024