Review on the Synthesis of Pyrazine and Its Derivatives

Authors

  • KOK TONG ONG
  • ZHI-QIANG LIU
  • MENG GUAN TAY

DOI:

https://doi.org/10.33736/bjrst.591.2017

Abstract

Pyrazine is a kind of natural product which can be found in plants, animals, insects, marine organisms and
microorganisms. The main function of pyrazine in living organisms is used as flavor of the raw foods. Pyrazine and its derivatives were also produced in industries mainly for fragrance, flavor and pharmaceutical applications. This review describes the historical development of pyrazine including the discovery and synthesis, to the recent synthetic approach of pyrazinium. In general, six synthetic approaches namely condensation reaction, ring closure, metal catalysis, green reaction, Maillard reaction and acid catalyst on N-substitution have been reviewed in this paper. The first five approaches are mainly aimed for the substitution at 2, 3, 5 and 6 positions in pyrazine ring, whereas the last approach is specifically for 1 and 4 positions in pyrazine.


Keywords: Diazine, pyrazine, and Maillard reaction

References

Adams, A., Polizzi, V., van Boekel, M. & De Kimpe, N. (2008). Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal. Journal of Agricultural and Food Chemistry, 56(6): 2147-2153.

https://doi.org/10.1021/jf0726785

Alberti, A. & Hudson, A. (1983). Free radicals derived from 1,4-diaza-1,3-butadiene: II. Adducts with metal carbonyls and reactions with derivatives of group VB elements. Journal of Organometallic Chemistry, 248(2): 199-204.

https://doi.org/10.1016/0022-328X(83)85025-6

Allen, M.S. & Lacey, M.J. (1998). Methoxypyrazines of grapes and wines. Chemistry of Wine Flavor, Chapter 3: 31-38.

https://doi.org/10.1021/bk-1998-0714.ch003

Amrani-Hemaimi, M., Cerny, C. & Fay, L.B. (1995). Mechanisms of formation of alkylpyrazines in the Maillard reaction. Journal of Agricultural and Food Chemistry, 43(11): 2818-2822.

https://doi.org/10.1021/jf00059a009

Anderson, A.A., Yurel, S.P. & Shimanskaya, M.V. (1967). Catalytic synthesis of pyrazine, piperazine, and 1,4-diaza [2,2,2]-bicyclooctane. Chemistry of Heterocyclic Compounds, 3(4): 271-286.

https://doi.org/10.1007/BF01172569

Attygalle, A.B. & Morgan, E.D. (1984). Identification of trail pheromone of the ant Tetramorium caespitum L. (Hymenoptera: Myrmicinae). Journal of Chemical Ecology, 10(10): 1453-1468.

https://doi.org/10.1007/BF00990315

Bahner, C.T. & Norton, L.L. (1950). Some quaternary salts of pyrazine. Journal of the American Chemical Society, 72(7): 2881-2882.

https://doi.org/10.1021/ja01163a020

Barlin, G.B. (1982). The Pyrazines, The Chemistry of Heterocyclic Compounds. New York: Interscience.

https://doi.org/10.1002/9780470187173

Begland, R.W., Hartter, D.R., Donald, D.S., Cairncross, A. & Sheppard, W.A. (1974). Hydrogen cyanide chemistry. VII. Diiminosuccinonitrile condensation with diaminomaleonitrile. The Journal of Organic Chemistry, 39(9): 1235-1239.

https://doi.org/10.1021/jo00923a016

Besson, I., Creuly, C., Gros, J.B. & Larroche, C. (1997). Pyrazine production by Bacillus subtilis in solid-state fermentation on soybeans. Applied Microbiology and Biotechnology, 47(5): 489-495.

https://doi.org/10.1007/s002530050961

Blood, A. & Noller, C. (1957). Notes-Some quaternary salts of pyridazine. The Journal of Organic Chemistry, 22(7): 844-845.

https://doi.org/10.1021/jo01358a616

Bormans, B.J.M., De With, G. & Mijlhoff, F.C. (1977). The molecular structure of pyrazine as determined from gas-phase electron diffraction data. Journal of Molecular Structure, 42: 121-128.

https://doi.org/10.1016/0022-2860(77)87035-X

Gallois, A. & Grimont, P.A. (1985). Pyrazines responsible for the potato like odour produced by some Serratia and Cedecea strains. Applied and Environmental Microbiology, 50(4): 1048-1051.

https://doi.org/10.1128/aem.50.4.1048-1051.1985

Bramwell, A.F., Burrell, J.W.K. & Riezebos, G. (1969). Characterisation of pyrazines in galbanum oil. Tetrahedron Letters, 37: 3215-3216.

https://doi.org/10.1016/S0040-4039(01)88391-X

Büchi, G. & Galindo, J. (1991). Regioselective synthesis of alkylpyrazines. The Journal of Organic Chemistry, 56(8): 2605-2606.

https://doi.org/10.1021/jo00008a002

Cheeseman, G.T. & Werstiuk, E.S.G. (1972). Recent advances in pyrazine chemistry. Advances in Heterocyclic Chemistry, 14: 99-209.

https://doi.org/10.1016/S0065-2725(08)60953-8

Chia, A.S.C. & Trimble Jr, R.F. (1961). Acid-base properties of some pyrazines 1. The Journal of Physical Chemistry, 65(5): 863-866.

https://doi.org/10.1021/j100823a036

Czerny, M. & Grosch, W. (2000). Potent odorants of raw Arabica coffee. Their changes during roasting. Journal of Agricultural and Food Chemistry, 48(3): 868-872.

https://doi.org/10.1021/jf990609n

Curphey, T.J. (1965). Heterocyclic diquaternary salts. Journal of the American Chemical Society, 87(9): 2063-2064.

https://doi.org/10.1021/ja01087a047

Curphey, T.J. & Prasad, K.S. (1972). Diquaternary salts. I. Preparation and characterization of the diquaternary salts of some diazines and diazoles. The Journal of Organic Chemistry, 37(14): 2259-2266.

https://doi.org/10.1021/jo00979a012

Demain, A.L., Jackson, M. & Trenner, N.R. (1967). Thiamine-dependent accumulation of tetramethylpyrazine accompanying a mutation in the isoleucine-valine pathway. Journal of Bacteriology, 94(2): 323-326.

https://doi.org/10.1128/jb.94.2.323-326.1967

Dickschat, J.S., Reichenbach, H., Wagner‐Döbler, I. & Schulz, S. (2005). Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. European Journal of Organic Chemistry, 2005(19): 4141-4153.

https://doi.org/10.1002/ejoc.200500280

Dolezal, M. & Zitko, J. (2015). Pyrazine derivatives: a patent review (June 2012-present). Expert Opinion on Therapeutic Patents, 25(1): 33-47.

https://doi.org/10.1517/13543776.2014.982533

Duffin, G.F. (1964). The quaternization of heterocyclic compounds. Advances in Heterocyclic Chemistry, 3: 1-56.

https://doi.org/10.1016/S0065-2725(08)60540-1

Eicher, T., Hauptmann, S. & Speicher, A. (2003). The chemistry of heterocycles: Structures, reactions, synthesis, and applications (3rd ed.). Weinheim: John Wiley & Sons.

https://doi.org/10.1002/352760183X

Fukunaga, T. & Begland, R.W. (1984). Hydrogen cyanide chemistry. Cycloaddition reactions and nitrenium ion type reactivity of diiminosuccinonitrile. The Journal of Organic Chemistry, 49(5): 813-821.

https://doi.org/10.1021/jo00179a013

Gao, Y. & Jean'ne, M.S. (2004). Quaternization of pyrazine, pyridazine, and pyrimidine with alkyl and polyfluoroalkyl halides: Formation of low melting salts. Synthesis, 2004(7): 1072-1082.

https://doi.org/10.1055/s-2004-822334

Gilchrist, T.L. (1997). Heterocyclic Chemistry (3rd ed.). London: Longman.

Ghosh, P. & Mandal, A. (2012). Greener approach toward one pot route to pyrazine synthesis. Green Chemistry Letters and Reviews, 5(2): 127-134.

https://doi.org/10.1080/17518253.2011.585182

Hazarika, P., Gogoi, P. & Konwar, D. (2007). Efficient and green method for the synthesis of 1,5‐benzodiazepine and quinoxaline derivatives in water. Synthetic Communications, 37(19): 3447-345

https://doi.org/10.1080/00397910701489388

Higasio, Y.S. & Shoji, T. (2001). Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Applied Catalysis A: General, 221(1): 197-207.

https://doi.org/10.1016/S0926-860X(01)00815-8

Itoh, T., Maeda, K., Wada, T., Tomimoto, K. & Mase, T. (2002). Efficient synthesis of substituted 2-aminopyrazines: FeCl3-promoted condensation of hydroxyiminoketones with aminoacetonitriles. Tetrahedron Letters, 43(51): 9287-9290.

https://doi.org/10.1016/S0040-4039(02)02375-4

Japp, F.R. & Burton, C.I. (1887). XV.-On some azines. Journal of the Chemical Society, Transactions, 51: 98-101.

https://doi.org/10.1039/CT8875100098

Japp, F.R. & Wilson, W.H. (1886). LXXIX.-On ammonia-derivatives of benzoïn. Journal of the Chemical Society, Transactions, 49: 825-831.

https://doi.org/10.1039/CT8864900825

Jones, R.G. (1949). Pyrazines and related compounds. I. A new synthesis of hydroxypyrazines. Journal of the American Chemical Society, 71(1): 78-81.

https://doi.org/10.1021/ja01169a023

Keir, W.F., MacLennan, A.H. & Wood, H.C. (1978). Ethyl amidinoacetates in the synthesis of pyrazines. Journal of the Chemical Society, Perkin Transactions 1, 9: 1002-1006.

https://doi.org/10.1039/p19780001002

Klein, D.A. (2011). Organic Chemistry. Wiley and Sons. New Jersey.

Krems, I.J. & Spoerri, P.E. (1947). The pyrazines. Chemical Reviews, 40(2): 279-358.

https://doi.org/10.1021/cr60126a004

Kim, K.H. & Lee, H.J. (1991). Optimum conditions for the formation of acetoin as a precursor of tetramethylpyrazine during the citrate fermentation by Lactococcus lactis subsp. lactis biovar. diacetilactis FC1. Journal of Microbiology and Biotechnology, 1(3): 202-206.

Kong, L.W., Ma, M.L., Wu, L.C., Zhao, X.L., Guo, F., Jiang, B. & Wen, K. (2012). Carboxylic acid functionalized ortho-linked oxacalix-[2]-benzene-[2]-pyrazine: Synthesis, structure, hydrogen bond and metal directed self-assembly, Dalton Transaction, 41: 5625-5633.

https://doi.org/10.1039/c2dt11283c

Kosuge, T. & Kamiya, H. (1962). Discovery of a pyrazine in a natural product: tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature, 193: 776.

https://doi.org/10.1038/193776a0

Kosuge, T., Adachi, T. & Kamiya, H. (1962). Isolation of tetramethylpyrazine from culture of Bacillus natto, and biosynthetic pathways of tetramethylpyrazine. Nature, 195: 1103-1103.

https://doi.org/10.1038/1951103a0

Latha, B.M., Sadasivam, V. & Sivasankar, B. (2007). A highly selective synthesis of pyrazine from ethylenediamine on copper oxide/copper chromite catalysts. Catalysis Communications, 8(7): 1070-1073.

https://doi.org/10.1016/j.catcom.2006.06.007

Lee, Y.K., Park, S.E. & Kwon, Y.S. (1990). U.S. Patent No. 4,966,970. Washington, DC: U.S. Patent and Trademark Office.

Maga, J. A. (1992). Pyrazine update. Food Reviews International, 8(4): 479-558.

https://doi.org/10.1080/87559129209540951

Mahadik, P., Jagwani, D. & Joshi, R. (2014). A greener chemistry approach for synthesis of 2,3-diphenyl quinoxaline. International Journal of Innovative Science, Engineering & Technology, 1(6): 482-490.

Mason, A.T. (1889). XIV-Contributions from the Laboratory of the University of Zurich. II. Piazine-derivatives. Journal of Chemical Society, Transaction, 55: 97-107.

https://doi.org/10.1039/CT8895500097

Mason, A.T. (1893). XCII.-Piazine (pyrazine) derivatives. II. Journal of the Chemical Society, Transactions, 63: 1284-1293.

https://doi.org/10.1039/CT8936301284

Mason, A.T., & Dryfoos, L.A. (1893). XCIII.-Piazine derivatives. III. Journal of the Chemical Society, Transactions, 63: 1293-1309.

https://doi.org/10.1039/CT8936301293

Mason, A.T., & Winder, G.R. (1893). XCIX.-Syntheses of piazine derivatives. Interaction of benzylamine and phenacyl bromide. Journal of the Chemical Society, Transactions, 63: 1355-1375.

https://doi.org/10.1039/CT8936301355

Müller, R. & Rappert, S. (2010). Pyrazines: occurrence, formation and biodegradation. Applied microbiology and biotechnology, 85(5): 1315-1320.

https://doi.org/10.1007/s00253-009-2362-4

Murray, K.E., Shipton, J. & Whitfield, F.B. (1970). 2-Methoxypyrazines and the flavour of green peas (Pisum sativum). Chemistry and Industry, 27: 897-898.

Nursten, H.E. (2005). The Maillard reaction: chemistry, biochemistry, and implications. London, UK: Royal Society of Chemistry.

Ohta, A, Akita, Y. & Hara, M. (1979). Syntheses and reactions of some 2,5-disubstituted pyrazine monoxides. Chemical and Pharmaceutical Bulletin, 27(9): 2027-2041.

https://doi.org/10.1248/cpb.27.2027

Ohtsuka, Y., Tohma, E., Kojima, S. & Tomita, N. (1979). Chemistry of diaminomaleonitrile. Dihydropyrazine synthesis. The Journal of Organic Chemistry, 44(26): 4871-4876.

https://doi.org/10.1021/jo00394a027

Park, I., Lee, J., Rhee, Y., Han, Y. & Kim, H. (2003). CuO/ZnO/SiO2 catalysts for cyclization of propyleneglycol with ethylenediamine to 2-methylpyrazine. Applied Catalysis A: General, 253(1): 249-255.

https://doi.org/10.1016/S0926-860X(03)00527-1

Richard, J.K. (2003). Preparation of quinoxalines, dihydropyrazines, pyrazines and piperazines using tandem oxidation processes. Chemical Communications, 18: 2286-2287.

https://doi.org/10.1039/b307177b

Sato, K. (1978). U.S. Patent No. 4,097,478. Washington, DC: U.S. Patent and Trademark Office.

Sato, N. (2014). Six-membered hetarenes with two identical heteroatome. Product class 14: Pyrazine. In Jeffrey, R.B. & Drayton, C.J. (Eds.), Index Volume Category 2, Vol. 16, Stuttgart, Germany: Georg Thieme Verlag. Pp. 751-844.

Scalone, G.L.L., Cucu, T., De Kimpe, N. & De Meulenaer, B. (2015). Influence of free amino acids, oligopeptides, and polypeptides on the formation of pyrazines in Maillard model systems. Journal of Agricultural and Food Chemistry, 63(22): 5364-5372.

https://doi.org/10.1021/acs.jafc.5b01129

Schomaker, V.T. & Pauling, L. (1939). The electron diffraction investigation of the structure of benzene, pyridine, pyrazine, butadiene-1,3-cyclopentadiene, furan, pyrrole and thiophene. Journal of the American Chemical Society, 61(7): 1769-1780.

https://doi.org/10.1021/ja01876a038

Shchepina, N., Avrorin, V., Badun, G., Vasyanin, A., Shurov, S. & Agafonova, I. (2015). Investigation of ion-molecular reactions of nucleogenic phenyl cations with 1,4-diazine derivatives. Chemistry of Heterocyclic Compounds, 50(11): 1595-1601.

https://doi.org/10.1007/s10593-014-1629-6

Showalter, D.N., Troyer, E.J., Aklu, M., Jang, E.B. & Siderhurst, M.S. (2010). Alkylpyrazines: alarm pheromone components of the little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera, Formicidae). Insectes Sociaux, 57(2): 223-232.

https://doi.org/10.1007/s00040-010-0075-4

Snape, H.L. & Brooke, A. (1897). LII.-Laurent's amarone. Journal of the Chemical Society, Transactions, 71: 528-532.

https://doi.org/10.1039/CT8977100528

Taylor, E.C. & Dumas, D.J. (1981). Pteridines. 48. Utilization of 3,3-dimethoxy-2-pyrrolidinopropene for the synthesis of folic acid, N2'-acetyl-7-folic acid, and 5-deaza-7-folicacid. The Journal of Organic Chemistry, 46(7): 1394-1402.

https://doi.org/10.1021/jo00320a034

Tazaki, S., Yagihara, T., Matsui, N., Yanagisawa, A. & Kojima, T. (1994). U.S. Patent No. 5,317,102. Washington, DC: U.S. Patent and Trademark Office.

Vogl, O. & Taylor, E.C. (1959). Pteridines. XVIII. A direct synthesis of 2-aminopyrazine-3-carboxamides1,2. Journal of the American Chemical Society, 81(10): 2472-2474.

https://doi.org/10.1021/ja01519a047

Wheatley, P.J. (1957). The crystal and molecular structure of pyrazine. Acta Crystallographica, 10(3): 182-187.

https://doi.org/10.1107/S0365110X57000596

Woolfson, A. & Rothschild, M. (1990). Speculating about pyrazines. Proceedings of the Royal Society of London B: Biological Sciences, 242(1304): 113-119.

https://doi.org/10.1098/rspb.1990.0113

Zhang, W., Haight, A.R., Ford, K.L. & Parekh, S.I. (2001). A regioselective synthesis of methyl-7-amino-3-phenylthieno-[2,3-b]pyrazine-6-carboxylate. Synthetic Communications, 31(5): 725-730.

https://doi.org/10.1081/SCC-100103262

Downloads

Published

2017-12-27

How to Cite

ONG, K. T., LIU, Z.-Q., & TAY, M. G. (2017). Review on the Synthesis of Pyrazine and Its Derivatives. Borneo Journal of Resource Science and Technology, 7(2), 60–75. https://doi.org/10.33736/bjrst.591.2017

Issue

Section

General