Analysis of Seven Human Respiratory Coronavirus (CoV) S Proteins from a Bioinformatics Approach

Antigenic epitope, COVID-19, SARS-CoV, S protein

Authors

  • LEONARD WHYE KIT LIM Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • HUNG HUI CHUNG Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.5853.2023

Keywords:

Antigenic epitope, COVID-19, SARS-CoV, S protein

Abstract

The coronavirus disease 2019 (COVID-19) has caused a huge pandemic repercussion across the globe and it is mainly contributed by the human severe acute respiratory syndrome coronavirus (SARS-CoV-2). There are seven human respiratory coronaviruses identified to date, namely HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. A recently published bioinformatic human CoV comparison only covered four human CoV. Therefore, in this study, a bioinformatics approach-based analyses route was taken to dissect the S proteins of all the available (seven) human respiratory coronaviruses publicly available in the GenBank database. The antigenic epitope amount is postulated to be the most accurate bioindicator among all in determining the severity of a particular human respiratory coronavirus. Other powerful bioinformatic indicators are global similarity index, maximum likelihood phylogenetic analysis as well as domain analysis. The data generated in this study can be channelled to the vaccine and antiviral drug development to combat the current and future spread of the human respiratory coronaviruses.

References

Chou, K.C. & Shen, H.B. (2010). A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS ONE, 5: e9931. DOI: 10.1371/journal.pone.0009931

Cicaloni, V., Costanti, F., Pasqui, A., Bianchini, M., Niccolai, N. & Bongini, P. (2022). A bioinformatics approach to investigate structural and non-structural proteins in human coronavirus. Frontiers in Genetics, 13: 891418. DOI: 10.3389/fgene.2022.891418

Chatterjee, B. & Thakur, S.S. (2022). SARS-CoV-2 infection triggers phosphorylation: Potential target for anti-COVID-19 therapeutics. Frontiers in Immunology, 13: 829474. DOI: 10.3389/fimmu.2022.829474

Fung, T.S., & Liu, D.X. (2018). Post-translational modifications of coronavirus proteins: Roles and function. Future Virology, 13(6): 405-430. DOI: 10.2217/fvl-2018-0008

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In Walker, J.M. (Ed.), The Proteomics Protocols Handbook. Humana Press, New Jersey, pp. 571-607.

Guruprasad, K., Reddy, B.V.B. & Pandit, M.W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2): 155-161. DOI: 10.1093/protein/4.2.155.

Huang, Y., Yang, C., Xu, X.F., Xu, W. & Liu, S. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41: 1141-1149. DOI: 0.1038/s41401-020-0485-4

Jaiswal, V.J. & Lee, H.J. (2022). Conservation and evolution of antigenic determinants of SARS-CoV-2: An insight for immune escape and vaccine design. Frontiers in Immunology, 13: 832106. DOI: 10.3389/fimmu.2022.832106.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N. & Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modelling, prediction and analysis. Nature Protocols, 10(6): 845-858. DOI: 10.1038/nprot.2015.053

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549. DOI: 10.1093/molbev/msy096.

Lim, L.W.K. (2023). Blended learning in animal biotechnology during pre-COVID-19, COVID-19 and post COVID-19 recovery phase periods across the globe: A step forward or backward. International Journal of Zoology and Animal Biology, 6(2): 1-5. DOI: 10.23880/izab-16000451

Lim, L.W.K. (2022). Comparative genomic analysis reveals the origin and global distribution of melon necrotic virus isolates. Gene Reports, 29: 101685. DOI: 10.1016/j.genrep.2022.101685

Lim, L.W.K., Hung, I.M. & Chung, H.H. (2022a). Cucumber mosaic virus: Global genome comparison and beyond. Malaysian Journal of Microbiology, 18(1): 79-92. DOI: 10.21161/mjm.211276

Lim, L.W.K., Liew, J.X. & Chung, H.H. (2022b). Piper yellow mottle virus: A deep dive into the genome. Gene Reports, 29: 101680. DOI: 10.1016/j.genrep.2022.101680

Matyášek, R., Řehůřková, K., Marošiová, K.B. & Kovařík, A. (2021). Mutational asymmetries in the SARS-CoV-2 genome may lead to increased hydrophobicity of virus proteins. Genes, 12(6): 826. DOI: 10.3390/genes12060826

Niu, Z., Xu, S., Zhang, J., Zou, Z., Ren, L., Liu, X., Zhang, S., Zou, H., Hu, X., Wang, J., Zhang, L. & Zhou, Y. (2023). Bioinformatic analysis of the S protein of human respiratory coronavirus. Molecular Phylogenetics and Evolution, 181: 107704. DOI: 10.1016/j.ympev.2023.107704

Pawlowski, P.H. (2021). Charged amino acids may promote coronavirus SARS-CoV-2 fusion with the host cell. AIMS Biophysics, 8(1): 111-120. DOI: 10.3934/biophy.2021008

Reis, C.A., Tauber, R. & Blanchard, V. (2021). Glycosylation is a key in SARS-CoV-2 infection. Journal of Molecular Medicine, 99(8): 1023-1031. DOI: 10.1007/s00109-021-02092-0

Xia, S., Zhu, Y., Liu, M., Lan, Q., Xu, W., Wu, Y., Ying, T., Liu, S., Shi, Z., Jiang, S. & Lu, L. (2020). Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 17: 765-767. DOI: 10.1038/s41423-020-0374-2

Xia, X. (2021). Domains and functions of spike protein in SARS-CoV-2 in the context of vaccine design. Viruses, 13(1): 109. DOI: 10.3390/v13010109.

Published

2023-12-25

How to Cite

LEONARD WHYE KIT LIM, & HUNG HUI CHUNG. (2023). Analysis of Seven Human Respiratory Coronavirus (CoV) S Proteins from a Bioinformatics Approach: Antigenic epitope, COVID-19, SARS-CoV, S protein . Borneo Journal of Resource Science and Technology, 13(2), 103–110. https://doi.org/10.33736/bjrst.5853.2023