Production and Decomposition of Mangrove Species Rhizophora apiculata Blume in Surabaya East Coast Indonesia
Production and decomposition of Rhizophora apiculata Blume
DOI:
https://doi.org/10.33736/bjrst.5557.2023Keywords:
Aquatic nutrition, ecosystem, mangrove litter, nutrient valueAbstract
The mangrove ecosystem is supported by the production and decomposition of leaf litter, as well as the release of nutrients into the environment and the neighbouring coastal seas. The release of phosphorus and nitrogen contributes significantly to the improvement of the nutritional values, which benefits marine species and the neighbourhood. In the current study, nutrient release, leaf decomposition rate, litter generation, and mangrove habitat at Surabaya East Coast, Java, Indonesia were all examined. Three transects and three plots in each transect were established. The percentage of initial dry mass remaining in the litter bags were determined by using two sample t-test in Statistica 6.0 software. The decomposition of Rhizophora apiculata leaves was studied by using litter bag technique. They were made of synthetic nylon with the dimension of 15×15×25 cm and mesh size of 1×1.25 mm2. Senescent leaves were used because they present major leaves on the forest floor. According to the findings, daily mangrove litter production (dry weight) varied between 2.15 and 3.28 g/m2. Branch litter (9.43 – 13.27%), reproductive parts (8.20 – 14, 31%), and leaf litter (76.26 – 78.53%) were the other major contributors. The 345.6 ha of mangrove forests along the east coast of Surabaya are the results of reforestation, which has the potential to produce nitrogen and phosphorus at the rates of 109.43 to 173.549 kg/ha/year and 5.467 to 8.12 kg/h/year, respectively. These results imply that decomposition breakdown rates differ across the research area due to the variation in the nutrients availability. Changes in the breakdown of detritus point to variations in nutrient intake, which is crucial for mangrove ecosystems.
References
Affandi, M. (1996). Produksi dan laju penghancuran serasah mangrove di hutan alami dan binaan cilacap, Jawa Tengah. Tesis Pascasarjana (Magister). ITB, Bandung.
Alongi, D.M. (2018). Impact of global change on nutrient dynamics in mangrove forests. Forest, 9(256): 1-13. DOI: 10.3390/f9100596
Amaliyah, S., Hariyanto, S. & Purnobasuki, H. (2017). Roots morphology of Rhizophora apiculata Blume as an adaptation strategy of waterlogging and sediment. Journal of Biological Sciences, 17(3): 118-126. DOI: 10.3923/jbs.2017.118.126
Ananda, K., Sridhar, K.R., Raviraja, N.S. & Baerlocher, F. (2007). Breakdown of fresh and dried Rhizophora mucronata leaves in a mangrove of Southwest India. Wetlands Ecology and Management, 112: 73-81. DOI: 10.1007/s11273-007-9041-y
Arief, A. (2003). Hutan Mangrove Fungsi dan Manfaat. Yogyakarta: Kanisius Publisher.
Ashton, E.C., Hogarth, P.J. & Ormond, R. (1999). Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiology, 413: 77-88.
Averill, C. & Waring, B. (2017). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24(4): 1417-1427. DOI: 10.1111/gcb.13980
Basyuni, M. & Simanjuntak, E.O. (2021). Species composition and carbon stock estimation in Pulau Sembilan secondary mangrove forests, North Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 713: 012014. DOI: 10.1088/1755-1315/713/1/012014
Benbow, M.E., Barton, P.S., Ulyshen, M.D., Beasley, J.C., Devault, T.I., Strickland, M.S., Tomberlin, J.K., Jordan, H.R. & Pechal, J.I. (2019). Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs, 89(1): e01331. DOI: 10.1002/ecm.1331
Bosire, J.O., Guebas, F.D., Kairo, J.G., Kazungu, J., Dehairs, F. & Koedam, N. (2005). Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay Kenya. Biological Conservation, 126: 287-295. DOI: 10.1016/j.biocon.2005.06.007
Calderon, J.H.M., Pineda, J.E.M., Moya, C.M. & Monroy, V.H.R. (2021). Hydroperiod and salinity interactions control mangrove root dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7: 598132. DOI: 10.3389/fmars.2020.598132
Chapman, S. & Koch, G. (2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil, 299(1): 153-162. DOI: 10.1007/s11104-007-9372-8
Davis, S., Coronado, C., Childers, D.L. & Day, J.W. (2003). Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75(3): 199-215. DOI: 10.1016/S0304-3770(02)00176-6
De Marco, A., Fioretto, A., Maria Giordano, M., Innangi, M., Menta, C., Papa, S. & De Santo, A.V. (2016). C stocks in forest floor and mineral soil of two Mediterranean beech forests. Forests, 7: 181. DOI: 10.3390/f7080181
de Willigen, P., Janssen, B.H., Heesmans, H.I.M., Conijn, J.G., Velthof & Chardon, W.J. (2008). Decomposition and accumulation of organic matter in soil; comparison of some models. Retrieved February 20, 2023, from https://edepot.wur.nl/15401
Dewiyanti, I. (2010). Litter decomposition of Rhizophora stylosa in Sabang-Weh Island, Aceh, Indonesia; evidence from mass loss and nutrients. Biodiversitas, 11(3): 139-144. DOI: 10.13057/biodiv/d110307
Dewiyanti, I., Nurfadillah, N., Setiawati, T., Yanti, F. & Elrahimi, S.A. (2019). Litter production and decomposition of mangrove in the Northern Coast of Aceh Besar district, Aceh province. IOP Conference Series: Materials Science and Engineering, 567: 012025: 1-8. DOI: 10.1088/1757-899X/567/1/012025
Ellis, W.L. & Bell, S.S. (2004). Canopy gaps formed by mangrove trimming: an experimental test of impact on litter fall and standing litter stock in southwest Florida (USA). Journal of Experimental Marine Biology and Ecology, 311: 201-222. DOI: 10.1016/j.jembe.2004.05.008
Farooqui, Z, Siddiqui, P.J. & Rasheed, M. (2014). Changes in organic, inorganic contents, Carbon Nitrogen ratio in decomposing Avicennia marina and Rhizophora mucronata leaves on tidal mudflats in Hajambro creek, Indus delta, Pakistan. Journal of Tropical Life Science, 4(1): 37-45.
Fell, J.W. & Master, I.M. (1980). The association and potential role of fungi in mangrove detrital systems. Botanica Marina, 23: 257-263.
Fernando, S.M.C. & Bandeira, S.O. (2009). Litter fall and decomposition of mangrove species Avicennia marina and Rhizophora mucronata in Maputo Bay, Mozambique. Western Indian Ocean Journal of Marine Science, 8(2): 173-182. DOI: 10.4314/wiojms.v8i2.56975
Firmansyah, M., Alamsjah, R., Mapparimeng & Putra, A. (2020). Laju dekomposisi serasah daun mangrove di Kelurahan Lappa Kecamatan Sinjai Utara Kabupaten Sinjai. Journal of Agrominansia, 5(1): 114-119.
Gallagher R.V.G, Lundquist, C.J. & Pilditch, C.A. (2014). Mangrove (Avicennia marina subsp. australasica) litter production and decomposition in a temperate estuary. New Zealand Journal of Marine and Freshwater Research, 48(1): 24-37. DOI: 10.1080/00288330.2013.827124
Ghaly, A.E. & Ramakrishnan, V.V. (2015). Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control, 3(2): 1000136. DOI: 10.4172/2375-4397.1000136
Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44: 11. DOI: 10.1186/s41610-020-0151-2
Gougoulias, C., Clark, J.M. & Shaw, L.J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. DOI: 10.1002/jsfa.6577
Guendehou, G.H.S., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B. & Mäkipää, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology, 55(2): 207-220.
Hasanuzzaman, M. & Hossain, M. (2014). Leaf litter decomposition and nutrient dynamics associated with common horticultural cropland agroforest tree species of Bangladesh. International Journal of Forestry Research, e805940. DOI: 10.1155/2014/805940
Hemati, Z., Hossain, M. & Rozainah, M.Z. (2017). Determination of carbon and nitrogen in litter fall of mangrove ecosystem in peninsular Malaysia. Pakistan Journal of Botany, 49(4): 1381-1386.
Hernes, P.J., Benner, R., Cowie, G.L. & Goni, M. (2001). Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochimica et Cosmochimica Acta, 65(18): 3109-3122. DOI: 10.1016/S0016-7037(01)00641-X
Holmer, M. & Olsen, A.B. (2002). Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Marine Ecology Progress Series, 230: 87-101. DOI: 10.3354/meps230087
Huzham, M., Langat, J., Tamooh, F., Kennedy, H., Mencuccini, M., Skov, M.W. & Kairo, J. (2010). Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest. Estuarine, Coastal and Shelf Science, 88(1): 135-142. DOI: 10.1016/j.ecss.2010.03.021
Imagraben, S. & Dittmann, S. (2008). Leaf litter dynamics and litter consumption in two temperate South Australian mangrove forests. Journal of Sea Research, 59(1-2): 83-93. DOI: 10.1016/j.seares.2007.06.004
James, R.K., van Katwijk, M.M., Pietrzak, J.D., Candy, A.S., Klees, R., Riva, R.E.M., Slobbe, C.D., Katsman, C.A., Herman, P.M.J. & Bouma, T.J. (2019). Water motion and vegetation control the pH dynamics in seagrass-dominated bays. Limnology and Oceanography, 65(2), 349-362. DOI: 10.1002/lno.11303
Kamruzzaman, M., Basak, K., Paul, S.K., Ahmed S. & Osawa, A. (2019). Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology, 15(1): 24-32. DOI: 10.1080/21580103.2018.1557566
Kanai, H., Tajima, M. & Sakai, A. (2014). Effects of salinity on the growth and survival of the seedlings of mangrove, Rhizophora stylosa. International Journal of Plant & Soil Science, 3: 879-893. DOI: 10.9734/IJPSS/2014/9812
Kathiresan, K. & Bingham, L. (2001). Biology of mangroves and mangrove Ecosystems. Advances in Marine Biology, 40: 81-251. DOI: 10.1016/S0065-2881(01)40003-4
Katili, A.S., Ibrahim, M. & Zakaria, Z. (2017). Degradation level of mangrove forest and its reduction strategy in Tabongo Village, Boalemo District, Gorontalo Province, Indonesia. Asian Journal of Forestry, 1(1): 18-22. DOI: 10.13057/asianjfor/r010102
Krishna, M.P. & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4):236–249. DOI: 10.1007/s40974-017-0064-9
Kristensen, E., Bouillon, S., Dittmar, T.Z. & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89: 201-219. DOI: 10.1016/j.aquabot. 2007.12.005
Kristiningrum, R., Lahjie, A., Masjaya, Yusuf, S. & Ruslim, Y. (2019). Species diversity, stand productivity, aboveground biomass, and economic value of mangrove ecosystem in Mentawir Village, East Kalimantan, Indonesia. Biodiversitas, 20(10): 2848-2857. DOI: 10.13057/biodiv/d201010
Mchenga, I.S.S. & Ali, A.I. (2017). Mangrove litter production and seasonality of dominant species in Zanzibar, Tanzania. Journal East African Natural History, 106(1): 5-18. DOI: 10.2982/ 028.106.0103
Moore, J.C., Berlow, E.L., Coleman, D.C., deRuiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J. & Wall, D.H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7: 584-600. DOI: 10.1111/j.1461-0248.2004.00606.x
Morrisey, D., Beard, C., Morrison, M., Craggs, R. & Lowe, M. (2007). The New Zealand mangrove: Review of the current state of knowledge. Auckland Regional Council Technical Publication, 325: 1-156.
Mucoba, J.J. (2010). Dissolved oxygen and biochemical oxygen demand in the waters close to the Quelimane sewage discharge. Master thesis in Chemical Oceanography NOMA. University of Bergen Norway.
Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., Kirton, L.G., Meynecke, J.O., Pawlik, J., Penrose, H.M., Sasekumar, A. & Somerfield, P.J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89: 155-185. DOI: 10.1016/j.aquabot.2007.12.007
Nardoto, G.B. & Bustamante, M.M.C. (2003). Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuaria Brasileira, 38(8): 955-962. DOI: 10.1590/S0100-204X2003000800008
Nga, B.T., Tinh, H.Q., Tam, D.T., Schaffer M. & Roijackers, R. (2005). Young mangrove stands produce a large and high quality litter input to aquatic systems in Camau Province, Vietnam. Wageningen Universiteit. Wetlands Ecology and Management, 13: 569-576. DOI: 10.1007/s11273-004-6073-4
Nugraha, Y.A., Sulistiono, H.A., Susanto, H.A., Simanjuntak, C.P.H. & Wildan, D.M. (2020). Mangrove ecosystem related to fisheries productivity in the coastal area of Karawang Regency, West Java, Indonesia. IOP Conf. Series: Earth and Environmental Science, 800: 012016. DOI: 10.1088/1755-1315/800/1/012016
Numbere, A.O. & Camilo, G.R. (2017). Mangrove leaf litter decomposition under mangrove forest stands with different levels of pollution in the Niger River Delta, Nigeria. Africa Journal of Ecology, 55(2): 162-167. DOI: 10.1111/aje.12335
Nybakken, J.W. (1993). Marine biology, an ecological approach. Third edition, New York, Harper Collins College Publishers. 462 pp.
Olson, J.S. (1963). Energy storage and the balance of producers and decomposers in ecological system. Ecology, 44: 322-331. DOI: 10.2307/1932179
Ouyang, X. & Lee, S.Y. (2022). Decomposition of vascular plants and carbon mineralization in coastal wetlands. Carbon Mineralization in Coastal Wetlands, 2: 25-54. DOI: 10.1016/B978-0-12-819220-7.00002-9
Pandey, R.R., Sharma, G., Tripathi, S.K. & Singh, A.K. (2007). Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management, 240: 96-104. DOI: 10.1016/j.foreco.2006.12.013
Pannier, F. (1984). Analyses of soil, plant and water components. In Snedaker, S.C. and Snedaker, J.G. (eds.). The Mangrove Ecosystem: Research Methods. Unesco. Pp. 131-144.
Prado, M.R.V., Ramosos, F.T., Weber, C.L.D.S. & Müller, C.B. (2016). Organic carbon and total nitrogen in the densimetric fractions of organic matter under different soil management. Revista Caatinga, Mossoró, 29(2): 263-273. DOI: 10.1590/1983-21252016v29n201rc
Prescott, C.E., Blevins, L.L. & Staley, C. (2004). Litter decomposition in British Columbia Forests: Controlling factors and influences of forestry activities. Journal of Ecosystems and Management, 5(2): 44-57. DOI: 10.22230/jem.2005v5n2a298
Purnobasuki, H., Purnama, P.R. & Kobayashi, K. (2017). Morphology of four root types and anatomy of root-root junction in relation gas pathway of Avicennia marina (Forsk) Vierh roots. Vegetoz, 30(2): 100-104. DOI: 10.5958/2229-4473.2017.00143.4
Purnobasuki, H., Sarno, & Hermawan, A. (2022). Litter fall and decomposition of mangrove species Avicennia marina in Surabaya East Coast, Indonesia. Pakistan Journal of Botany, 54(4): 1399-1403. DOI: 10.30848/pjb2022-4(45)
Raganas, A.F.M & Macandog, D.B.M. (2020). Physicochemical factors influencing zonation patterns, niche width and tolerances of dominant mangroves in southern Oriental Mindoro, Philippines. Indo Pacific Journal of Ocean Life, 4(2): 51-62. DOI: 10.13057/oceanlife/o040201
Rafael, A. & Calumpong, H.P. (2018). Comparison of litter production between natural and reforested mangrove areas in Central Philippines. AACL Bioflux, 11(4): 1399-1414.
Rahman, M.M. & Tsukamoto, J. (2013). Leaf traits, litter decomposability and forest floor dynamics in an evergreen- and a deciduous-broadleaved forest in warm temperate Japan. Forestry, 86(4): 441-451. DOI: 10.1093/forestry/cpt015
Ramli, M., Bengen, D.G., Kaswadji, R.F. & Affandi, R. (2011). Sumberdaya detritus dari hutan mangrove sebagai makanan potensial ikan belanak (Liza subviridis) di Pantai Utara Konawe Selatan Sulawesi Tenggara. Jurnal Agriplus, 21(1): 178-184.
Reef, R., Feller, I.C. & Lovelock, C.E. (2010). Nutrient of mangroves. Tree Physiology, 30: 1148-1160. DOI: 10.1093/treephys/tpq048
Rosmaniar (2008). Kepadatan dan Distribusi Kepiting Bakau (Scylla spp.) serta Hubungannya dengan Faktor Fisika Kimia di Perairan Pantai Labu Kabupaten Deli Serdang. [Thesis]. Universitas Sumatera Utara. Medan.
Santana, A.R.A., Werth, M. & Cecilllio, E.B. (2018). Use of food resources by detritivorous fish in floodplains: A synthesis. Acta Biologica Colombiana, 20(1): 5-14. DOI: 10.15446/abc.v20n1.42260
Singh, G., Chauhan, R., Ranjan, R.K., Prasad, M.B. & Ramanathan, A.L. (2015). Phosphorous dynamics in mangroves of India. Current Science, 108(10): 1874-1881. DOI: 10.18520/CS/ V108/I10/1874-1881
Siska, F., Sulistijorini & Kusmana, C. (2016). Litter decomposition rate of Avicennia marina and Rhizophora apiculata in Pulau Dua Nature Reserve, Banten. Journal of Tropical Life Science, 6(2): 91-96. DOI: 10.11594/jtls.06.02.05
Soenardjo, N. (1999). Produksi dan laju dekomposisi serasah mangrove dan hubungannya dengan struktur komunitas mangrove di Kaliuntu, Kab. Rembang Jawa Tengah. Thesis Program Pascasarjana. IPB, Bogor.
Sofo, A., Mininni, A.N. & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4): 456. DOI: 10.3390/agronomy10040456
Sukardjo, S. (2010). Litter production of the mangrove forests in Tiris, Indramayu, West Java, Indonesia. Marine Research in Indonesia, 35(1): 19-30. DOI: 10.14203/mri.v35i1.8
Susanto, A.H., Soedarti, T. & Purnobasuki, H. (2018). Mangrove community structure of Surabaya east coast. Vegetos, 31(3): 09-12. DOI: 10.5958/2229-4473.2018.00085.X
Taberima, S., Nugroho, Y.D. & Murdiyarso, D. (2014). The distribution of carbon stock in selected mangrove ecosystem of wetlands Papua: Bintuni, Teminabuan, and Timika Eastern Indonesia. International Journal of Chemical, Environmental & Biological Sciences, C914072: 7-10. DOI: 10.15242/IICBE.C914072
Thatoi, H., Behera, B.C., Mishra, R.R. & Dutta, S.K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 63: 1-19. DOI: 10.1007/s13213-012-0442-7
Vinh, T.V., Allenbach, M., Linh, K.T.V. & Marchand, C. (2020). Changes in leaf litter quality during its decomposition in a tropical planted mangrove forest (Can Gio, Vietnam). Frontiers in Environmental Science, 8:10. DOI: 10.3389/fenvs.2020.00010
Wiyarta, R., Indrayani, Y., Mulia, F. & Astiani, D. (2019). Carbon sequestration by young Rhizophora apiculata plants in Kubu Raya District, West Kalimantan, Indonesia. Biodiversitas, 20(2): 311-315. DOI: 10.13057 /biodiv/d200202
Wissinger, S.A., Perchik, M.E. & Klemmer, A.J. (2018). Role of animal detritivores in the breakdown of emergent plant detritus in temporary ponds. Freshwater Science, 37(4): 826-835. DOI: 10.1086/700682
Woodroffe, C.D. (1985). Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science, 20: 265-280. DOI: 10.1016/0272-7714(85)90042-3
Yang, R., Dong,J., Li, C., Wang, L., Quan, Q. & Liu, J. (2021). The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change. PLOS One, 16(5): e0250880. DOI: 10.1371/ journal.pone.0250880
Zhang, J., Li, H., Zhang, H., Zhang, H. & Tang, Z. (2021). Responses of litter decomposition and nutrient dynamics to nitrogen addition in temperate shrublands of North China. Frontiers in Plant Science, 11: 618675. DOI: 10.3389/fpls.2020.618675
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.