Production and Decomposition of Mangrove Species Rhizophora apiculata Blume in Surabaya East Coast Indonesia

Production and decomposition of Rhizophora apiculata Blume

Authors

  • HERY PURNOBASUKI Department of Biology, Faculty of Sciences and Technology, Airlangga University, Surabaya, Indonesia
  • SITTA AMALIYAH Universitas Muhammadiyah Surabaya, Indonesia
  • KAZUTAKA KOBAYASHI Botanical Garden, Tohoku University, Japan

DOI:

https://doi.org/10.33736/bjrst.5557.2023

Keywords:

Aquatic nutrition, ecosystem, mangrove litter, nutrient value

Abstract

The mangrove ecosystem is supported by the production and decomposition of leaf litter, as well as the release of nutrients into the environment and the neighbouring coastal seas. The release of phosphorus and nitrogen contributes significantly to the improvement of the nutritional values, which benefits marine species and the neighbourhood. In the current study, nutrient release, leaf decomposition rate, litter generation, and mangrove habitat at Surabaya East Coast, Java, Indonesia were all examined. Three transects and three plots in each transect were established. The percentage of initial dry mass remaining in the litter bags were determined by using two sample t-test in Statistica 6.0 software. The decomposition of Rhizophora apiculata leaves was studied by using litter bag technique. They were made of synthetic nylon with the dimension of 15×15×25 cm and mesh size of 1×1.25 mm2. Senescent leaves were used because they present major leaves on the forest floor. According to the findings, daily mangrove litter production (dry weight) varied between 2.15 and 3.28 g/m2. Branch litter (9.43 – 13.27%), reproductive parts (8.20 – 14, 31%), and leaf litter (76.26 – 78.53%) were the other major contributors. The 345.6 ha of mangrove forests along the east coast of Surabaya are the results of reforestation, which has the potential to produce nitrogen and phosphorus at the rates of 109.43 to 173.549 kg/ha/year and 5.467 to 8.12 kg/h/year, respectively. These results imply that decomposition breakdown rates differ across the research area due to the variation in the nutrients availability. Changes in the breakdown of detritus point to variations in nutrient intake, which is crucial for mangrove ecosystems.

Author Biographies

SITTA AMALIYAH, Universitas Muhammadiyah Surabaya, Indonesia

 

 

KAZUTAKA KOBAYASHI, Botanical Garden, Tohoku University, Japan

 

 

References

Affandi, M. (1996). Produksi dan laju penghancuran serasah mangrove di hutan alami dan binaan cilacap, Jawa Tengah. Tesis Pascasarjana (Magister). ITB, Bandung.

Alongi, D.M. (2018). Impact of global change on nutrient dynamics in mangrove forests. Forest, 9(256): 1-13. DOI: 10.3390/f9100596

Amaliyah, S., Hariyanto, S. & Purnobasuki, H. (2017). Roots morphology of Rhizophora apiculata Blume as an adaptation strategy of waterlogging and sediment. Journal of Biological Sciences, 17(3): 118-126. DOI: 10.3923/jbs.2017.118.126

Ananda, K., Sridhar, K.R., Raviraja, N.S. & Baerlocher, F. (2007). Breakdown of fresh and dried Rhizophora mucronata leaves in a mangrove of Southwest India. Wetlands Ecology and Management, 112: 73-81. DOI: 10.1007/s11273-007-9041-y

Arief, A. (2003). Hutan Mangrove Fungsi dan Manfaat. Yogyakarta: Kanisius Publisher.

Ashton, E.C., Hogarth, P.J. & Ormond, R. (1999). Breakdown of mangrove leaf litter in a managed mangrove forest in Peninsular Malaysia. Hydrobiology, 413: 77-88.

Averill, C. & Waring, B. (2017). Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology, 24(4): 1417-1427. DOI: 10.1111/gcb.13980

Basyuni, M. & Simanjuntak, E.O. (2021). Species composition and carbon stock estimation in Pulau Sembilan secondary mangrove forests, North Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 713: 012014. DOI: 10.1088/1755-1315/713/1/012014

Benbow, M.E., Barton, P.S., Ulyshen, M.D., Beasley, J.C., Devault, T.I., Strickland, M.S., Tomberlin, J.K., Jordan, H.R. & Pechal, J.I. (2019). Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecological Monographs, 89(1): e01331. DOI: 10.1002/ecm.1331

Bosire, J.O., Guebas, F.D., Kairo, J.G., Kazungu, J., Dehairs, F. & Koedam, N. (2005). Litter degradation and CN dynamics in reforested mangrove plantations at Gazi Bay Kenya. Biological Conservation, 126: 287-295. DOI: 10.1016/j.biocon.2005.06.007

Calderon, J.H.M., Pineda, J.E.M., Moya, C.M. & Monroy, V.H.R. (2021). Hydroperiod and salinity interactions control mangrove root dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7: 598132. DOI: 10.3389/fmars.2020.598132

Chapman, S. & Koch, G. (2007). What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil, 299(1): 153-162. DOI: 10.1007/s11104-007-9372-8

Davis, S., Coronado, C., Childers, D.L. & Day, J.W. (2003). Temporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75(3): 199-215. DOI: 10.1016/S0304-3770(02)00176-6

De Marco, A., Fioretto, A., Maria Giordano, M., Innangi, M., Menta, C., Papa, S. & De Santo, A.V. (2016). C stocks in forest floor and mineral soil of two Mediterranean beech forests. Forests, 7: 181. DOI: 10.3390/f7080181

de Willigen, P., Janssen, B.H., Heesmans, H.I.M., Conijn, J.G., Velthof & Chardon, W.J. (2008). Decomposition and accumulation of organic matter in soil; comparison of some models. Retrieved February 20, 2023, from https://edepot.wur.nl/15401

Dewiyanti, I. (2010). Litter decomposition of Rhizophora stylosa in Sabang-Weh Island, Aceh, Indonesia; evidence from mass loss and nutrients. Biodiversitas, 11(3): 139-144. DOI: 10.13057/biodiv/d110307

Dewiyanti, I., Nurfadillah, N., Setiawati, T., Yanti, F. & Elrahimi, S.A. (2019). Litter production and decomposition of mangrove in the Northern Coast of Aceh Besar district, Aceh province. IOP Conference Series: Materials Science and Engineering, 567: 012025: 1-8. DOI: 10.1088/1757-899X/567/1/012025

Ellis, W.L. & Bell, S.S. (2004). Canopy gaps formed by mangrove trimming: an experimental test of impact on litter fall and standing litter stock in southwest Florida (USA). Journal of Experimental Marine Biology and Ecology, 311: 201-222. DOI: 10.1016/j.jembe.2004.05.008

Farooqui, Z, Siddiqui, P.J. & Rasheed, M. (2014). Changes in organic, inorganic contents, Carbon Nitrogen ratio in decomposing Avicennia marina and Rhizophora mucronata leaves on tidal mudflats in Hajambro creek, Indus delta, Pakistan. Journal of Tropical Life Science, 4(1): 37-45.

Fell, J.W. & Master, I.M. (1980). The association and potential role of fungi in mangrove detrital systems. Botanica Marina, 23: 257-263.

Fernando, S.M.C. & Bandeira, S.O. (2009). Litter fall and decomposition of mangrove species Avicennia marina and Rhizophora mucronata in Maputo Bay, Mozambique. Western Indian Ocean Journal of Marine Science, 8(2): 173-182. DOI: 10.4314/wiojms.v8i2.56975

Firmansyah, M., Alamsjah, R., Mapparimeng & Putra, A. (2020). Laju dekomposisi serasah daun mangrove di Kelurahan Lappa Kecamatan Sinjai Utara Kabupaten Sinjai. Journal of Agrominansia, 5(1): 114-119.

Gallagher R.V.G, Lundquist, C.J. & Pilditch, C.A. (2014). Mangrove (Avicennia marina subsp. australasica) litter production and decomposition in a temperate estuary. New Zealand Journal of Marine and Freshwater Research, 48(1): 24-37. DOI: 10.1080/00288330.2013.827124

Ghaly, A.E. & Ramakrishnan, V.V. (2015). Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control, 3(2): 1000136. DOI: 10.4172/2375-4397.1000136

Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44: 11. DOI: 10.1186/s41610-020-0151-2

Gougoulias, C., Clark, J.M. & Shaw, L.J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12): 2362-2371. DOI: 10.1002/jsfa.6577

Guendehou, G.H.S., Liski, J., Tuomi, M., Moudachirou, M., Sinsin, B. & Mäkipää, R. (2014). Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Tropical Ecology, 55(2): 207-220.

Hasanuzzaman, M. & Hossain, M. (2014). Leaf litter decomposition and nutrient dynamics associated with common horticultural cropland agroforest tree species of Bangladesh. International Journal of Forestry Research, e805940. DOI: 10.1155/2014/805940

Hemati, Z., Hossain, M. & Rozainah, M.Z. (2017). Determination of carbon and nitrogen in litter fall of mangrove ecosystem in peninsular Malaysia. Pakistan Journal of Botany, 49(4): 1381-1386.

Hernes, P.J., Benner, R., Cowie, G.L. & Goni, M. (2001). Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochimica et Cosmochimica Acta, 65(18): 3109-3122. DOI: 10.1016/S0016-7037(01)00641-X

Holmer, M. & Olsen, A.B. (2002). Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Marine Ecology Progress Series, 230: 87-101. DOI: 10.3354/meps230087

Huzham, M., Langat, J., Tamooh, F., Kennedy, H., Mencuccini, M., Skov, M.W. & Kairo, J. (2010). Decomposition of mangrove roots: Effects of location, nutrients, species identity and mix in a Kenyan forest. Estuarine, Coastal and Shelf Science, 88(1): 135-142. DOI: 10.1016/j.ecss.2010.03.021

Imagraben, S. & Dittmann, S. (2008). Leaf litter dynamics and litter consumption in two temperate South Australian mangrove forests. Journal of Sea Research, 59(1-2): 83-93. DOI: 10.1016/j.seares.2007.06.004

James, R.K., van Katwijk, M.M., Pietrzak, J.D., Candy, A.S., Klees, R., Riva, R.E.M., Slobbe, C.D., Katsman, C.A., Herman, P.M.J. & Bouma, T.J. (2019). Water motion and vegetation control the pH dynamics in seagrass-dominated bays. Limnology and Oceanography, 65(2), 349-362. DOI: 10.1002/lno.11303

Kamruzzaman, M., Basak, K., Paul, S.K., Ahmed S. & Osawa, A. (2019). Litterfall production, decomposition and nutrient accumulation in Sundarbans mangrove forests, Bangladesh. Forest Science and Technology, 15(1): 24-32. DOI: 10.1080/21580103.2018.1557566

Kanai, H., Tajima, M. & Sakai, A. (2014). Effects of salinity on the growth and survival of the seedlings of mangrove, Rhizophora stylosa. International Journal of Plant & Soil Science, 3: 879-893. DOI: 10.9734/IJPSS/2014/9812

Kathiresan, K. & Bingham, L. (2001). Biology of mangroves and mangrove Ecosystems. Advances in Marine Biology, 40: 81-251. DOI: 10.1016/S0065-2881(01)40003-4

Katili, A.S., Ibrahim, M. & Zakaria, Z. (2017). Degradation level of mangrove forest and its reduction strategy in Tabongo Village, Boalemo District, Gorontalo Province, Indonesia. Asian Journal of Forestry, 1(1): 18-22. DOI: 10.13057/asianjfor/r010102

Krishna, M.P. & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2(4):236–249. DOI: 10.1007/s40974-017-0064-9

Kristensen, E., Bouillon, S., Dittmar, T.Z. & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89: 201-219. DOI: 10.1016/j.aquabot. 2007.12.005

Kristiningrum, R., Lahjie, A., Masjaya, Yusuf, S. & Ruslim, Y. (2019). Species diversity, stand productivity, aboveground biomass, and economic value of mangrove ecosystem in Mentawir Village, East Kalimantan, Indonesia. Biodiversitas, 20(10): 2848-2857. DOI: 10.13057/biodiv/d201010

Mchenga, I.S.S. & Ali, A.I. (2017). Mangrove litter production and seasonality of dominant species in Zanzibar, Tanzania. Journal East African Natural History, 106(1): 5-18. DOI: 10.2982/ 028.106.0103

Moore, J.C., Berlow, E.L., Coleman, D.C., deRuiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J. & Wall, D.H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7: 584-600. DOI: 10.1111/j.1461-0248.2004.00606.x

Morrisey, D., Beard, C., Morrison, M., Craggs, R. & Lowe, M. (2007). The New Zealand mangrove: Review of the current state of knowledge. Auckland Regional Council Technical Publication, 325: 1-156.

Mucoba, J.J. (2010). Dissolved oxygen and biochemical oxygen demand in the waters close to the Quelimane sewage discharge. Master thesis in Chemical Oceanography NOMA. University of Bergen Norway.

Nagelkerken, I., Blaber, S.J.M., Bouillon, S., Green, P., Haywood, M., Kirton, L.G., Meynecke, J.O., Pawlik, J., Penrose, H.M., Sasekumar, A. & Somerfield, P.J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89: 155-185. DOI: 10.1016/j.aquabot.2007.12.007

Nardoto, G.B. & Bustamante, M.M.C. (2003). Effects of fire on soil nitrogen dynamics and microbial biomass in savannas of Central Brazil. Pesquisa Agropecuaria Brasileira, 38(8): 955-962. DOI: 10.1590/S0100-204X2003000800008

Nga, B.T., Tinh, H.Q., Tam, D.T., Schaffer M. & Roijackers, R. (2005). Young mangrove stands produce a large and high quality litter input to aquatic systems in Camau Province, Vietnam. Wageningen Universiteit. Wetlands Ecology and Management, 13: 569-576. DOI: 10.1007/s11273-004-6073-4

Nugraha, Y.A., Sulistiono, H.A., Susanto, H.A., Simanjuntak, C.P.H. & Wildan, D.M. (2020). Mangrove ecosystem related to fisheries productivity in the coastal area of Karawang Regency, West Java, Indonesia. IOP Conf. Series: Earth and Environmental Science, 800: 012016. DOI: 10.1088/1755-1315/800/1/012016

Numbere, A.O. & Camilo, G.R. (2017). Mangrove leaf litter decomposition under mangrove forest stands with different levels of pollution in the Niger River Delta, Nigeria. Africa Journal of Ecology, 55(2): 162-167. DOI: 10.1111/aje.12335

Nybakken, J.W. (1993). Marine biology, an ecological approach. Third edition, New York, Harper Collins College Publishers. 462 pp.

Olson, J.S. (1963). Energy storage and the balance of producers and decomposers in ecological system. Ecology, 44: 322-331. DOI: 10.2307/1932179

Ouyang, X. & Lee, S.Y. (2022). Decomposition of vascular plants and carbon mineralization in coastal wetlands. Carbon Mineralization in Coastal Wetlands, 2: 25-54. DOI: 10.1016/B978-0-12-819220-7.00002-9

Pandey, R.R., Sharma, G., Tripathi, S.K. & Singh, A.K. (2007). Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management, 240: 96-104. DOI: 10.1016/j.foreco.2006.12.013

Pannier, F. (1984). Analyses of soil, plant and water components. In Snedaker, S.C. and Snedaker, J.G. (eds.). The Mangrove Ecosystem: Research Methods. Unesco. Pp. 131-144.

Prado, M.R.V., Ramosos, F.T., Weber, C.L.D.S. & Müller, C.B. (2016). Organic carbon and total nitrogen in the densimetric fractions of organic matter under different soil management. Revista Caatinga, Mossoró, 29(2): 263-273. DOI: 10.1590/1983-21252016v29n201rc

Prescott, C.E., Blevins, L.L. & Staley, C. (2004). Litter decomposition in British Columbia Forests: Controlling factors and influences of forestry activities. Journal of Ecosystems and Management, 5(2): 44-57. DOI: 10.22230/jem.2005v5n2a298

Purnobasuki, H., Purnama, P.R. & Kobayashi, K. (2017). Morphology of four root types and anatomy of root-root junction in relation gas pathway of Avicennia marina (Forsk) Vierh roots. Vegetoz, 30(2): 100-104. DOI: 10.5958/2229-4473.2017.00143.4

Purnobasuki, H., Sarno, & Hermawan, A. (2022). Litter fall and decomposition of mangrove species Avicennia marina in Surabaya East Coast, Indonesia. Pakistan Journal of Botany, 54(4): 1399-1403. DOI: 10.30848/pjb2022-4(45)

Raganas, A.F.M & Macandog, D.B.M. (2020). Physicochemical factors influencing zonation patterns, niche width and tolerances of dominant mangroves in southern Oriental Mindoro, Philippines. Indo Pacific Journal of Ocean Life, 4(2): 51-62. DOI: 10.13057/oceanlife/o040201

Rafael, A. & Calumpong, H.P. (2018). Comparison of litter production between natural and reforested mangrove areas in Central Philippines. AACL Bioflux, 11(4): 1399-1414.

Rahman, M.M. & Tsukamoto, J. (2013). Leaf traits, litter decomposability and forest floor dynamics in an evergreen- and a deciduous-broadleaved forest in warm temperate Japan. Forestry, 86(4): 441-451. DOI: 10.1093/forestry/cpt015

Ramli, M., Bengen, D.G., Kaswadji, R.F. & Affandi, R. (2011). Sumberdaya detritus dari hutan mangrove sebagai makanan potensial ikan belanak (Liza subviridis) di Pantai Utara Konawe Selatan Sulawesi Tenggara. Jurnal Agriplus, 21(1): 178-184.

Reef, R., Feller, I.C. & Lovelock, C.E. (2010). Nutrient of mangroves. Tree Physiology, 30: 1148-1160. DOI: 10.1093/treephys/tpq048

Rosmaniar (2008). Kepadatan dan Distribusi Kepiting Bakau (Scylla spp.) serta Hubungannya dengan Faktor Fisika Kimia di Perairan Pantai Labu Kabupaten Deli Serdang. [Thesis]. Universitas Sumatera Utara. Medan.

Santana, A.R.A., Werth, M. & Cecilllio, E.B. (2018). Use of food resources by detritivorous fish in floodplains: A synthesis. Acta Biologica Colombiana, 20(1): 5-14. DOI: 10.15446/abc.v20n1.42260

Singh, G., Chauhan, R., Ranjan, R.K., Prasad, M.B. & Ramanathan, A.L. (2015). Phosphorous dynamics in mangroves of India. Current Science, 108(10): 1874-1881. DOI: 10.18520/CS/ V108/I10/1874-1881

Siska, F., Sulistijorini & Kusmana, C. (2016). Litter decomposition rate of Avicennia marina and Rhizophora apiculata in Pulau Dua Nature Reserve, Banten. Journal of Tropical Life Science, 6(2): 91-96. DOI: 10.11594/jtls.06.02.05

Soenardjo, N. (1999). Produksi dan laju dekomposisi serasah mangrove dan hubungannya dengan struktur komunitas mangrove di Kaliuntu, Kab. Rembang Jawa Tengah. Thesis Program Pascasarjana. IPB, Bogor.

Sofo, A., Mininni, A.N. & Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4): 456. DOI: 10.3390/agronomy10040456

Sukardjo, S. (2010). Litter production of the mangrove forests in Tiris, Indramayu, West Java, Indonesia. Marine Research in Indonesia, 35(1): 19-30. DOI: 10.14203/mri.v35i1.8

Susanto, A.H., Soedarti, T. & Purnobasuki, H. (2018). Mangrove community structure of Surabaya east coast. Vegetos, 31(3): 09-12. DOI: 10.5958/2229-4473.2018.00085.X

Taberima, S., Nugroho, Y.D. & Murdiyarso, D. (2014). The distribution of carbon stock in selected mangrove ecosystem of wetlands Papua: Bintuni, Teminabuan, and Timika Eastern Indonesia. International Journal of Chemical, Environmental & Biological Sciences, C914072: 7-10. DOI: 10.15242/IICBE.C914072

Thatoi, H., Behera, B.C., Mishra, R.R. & Dutta, S.K. (2013). Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Annals of Microbiology, 63: 1-19. DOI: 10.1007/s13213-012-0442-7

Vinh, T.V., Allenbach, M., Linh, K.T.V. & Marchand, C. (2020). Changes in leaf litter quality during its decomposition in a tropical planted mangrove forest (Can Gio, Vietnam). Frontiers in Environmental Science, 8:10. DOI: 10.3389/fenvs.2020.00010

Wiyarta, R., Indrayani, Y., Mulia, F. & Astiani, D. (2019). Carbon sequestration by young Rhizophora apiculata plants in Kubu Raya District, West Kalimantan, Indonesia. Biodiversitas, 20(2): 311-315. DOI: 10.13057 /biodiv/d200202

Wissinger, S.A., Perchik, M.E. & Klemmer, A.J. (2018). Role of animal detritivores in the breakdown of emergent plant detritus in temporary ponds. Freshwater Science, 37(4): 826-835. DOI: 10.1086/700682

Woodroffe, C.D. (1985). Studies of a mangrove basin, Tuff Crater, New Zealand: I. Mangrove biomass and production of detritus. Estuarine, Coastal and Shelf Science, 20: 265-280. DOI: 10.1016/0272-7714(85)90042-3

Yang, R., Dong,J., Li, C., Wang, L., Quan, Q. & Liu, J. (2021). The decomposition process and nutrient release of invasive plant litter regulated by nutrient enrichment and water level change. PLOS One, 16(5): e0250880. DOI: 10.1371/ journal.pone.0250880

Zhang, J., Li, H., Zhang, H., Zhang, H. & Tang, Z. (2021). Responses of litter decomposition and nutrient dynamics to nitrogen addition in temperate shrublands of North China. Frontiers in Plant Science, 11: 618675. DOI: 10.3389/fpls.2020.618675

Published

2023-12-25

How to Cite

HERY PURNOBASUKI, SITTA AMALIYAH, & KAZUTAKA KOBAYASHI. (2023). Production and Decomposition of Mangrove Species Rhizophora apiculata Blume in Surabaya East Coast Indonesia: Production and decomposition of Rhizophora apiculata Blume. Borneo Journal of Resource Science and Technology, 13(2), 53–66. https://doi.org/10.33736/bjrst.5557.2023