Optimisation of Phytate Degradation in Whole Grain Rice During Germination Processing Using Response Surface Methodology

Optimising phytate degradation in whole grain rice

Authors

  • HUEI-HONG LEE Department of Science and Technology, Universiti Putra Malaysia, Sarawak Campus, Nyabau Road, 97000 Bintulu, Sarawak, Malaysia
  • ELISHA YIU Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • ALVIN-LIM-TEIK ZHENG Department of Science and Technology, Universiti Putra Malaysia, Sarawak Campus, Nyabau Road, 97000 Bintulu, Sarawak, Malaysia
  • JOSEPH-CHOON-FAH BONG Department of Science and Technology, Universiti Putra Malaysia, Sarawak Campus, Nyabau Road, 97000 Bintulu, Sarawak, Malaysia
  • SU-PENG LOH Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
  • PANG HUNG YIU Department of Science and Technology, Universiti Putra Malaysia, Sarawak Campus, Nyabau Road, 97000 Bintulu, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.5347.2023

Keywords:

Germination, phytase activity, phytic acid (IP6), whole grain rice

Abstract

Phytic acid (IP6), stored in seeds as metal salts known as phytates, binds to micronutrients and prevents its absorption by the human body. The germination process could improve cereal nutritional values by stimulating endogenous phytase activity and promoting phytate degradation. This study evaluated the physicochemical changes of phytates in rice cultivars with different IP6 contents, followed by optimisation of phytate degradation using response surface modeling. The magnitude of changes in IP6 content and phytase activity differed among rice cultivars. This suggested that the efficiency of germination treatments relied on the amount of natural phytic acid and phytase activity present in the rice grains. The cultivar “Tuan” was then selected and studied for the germination effect on phytate degradation using a central composite design. The cultivar gave a lower IP6 content, enhanced phytase activity and improved minerals bioaccessibility under acidic conditions. Acidic germination facilitated the degradation of phytate complexes in whole grain rice by making phytate complexes more soluble, accelerating phytase activity and thus, releasing mineral micronutrients from phytate globoids. The optimum germination condition was identified at pH 2.7, 25 °C over 12 h. In conclusion, germination processing facilitated phytate degradation in whole grain rice to make value-added rice products with low phytic acid and good mineral bioaccessibility.

References

Afify, A.E.M.M.R., El-Beltagi, H.S., El-Salam, S.M.A. & Omran, A.A. (2011). Bioavailability of iron, zinc, phytate, and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE, 6(10): e25512. DOI: 10.1371/journal.pone.0025512

Agostini, J.S., Nogueira, R.B. & Ida, E.I. (2010). Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination. Brazilian Archives of Biology and Technology, 53(4): 975-980. DOI:10.1590/S1516-89132010000400028

Albarracín, M., González, R.J. & Drago, S.R. (2013). Effect of soaking process on nutrient bio-accessibility and phytic acid content of brown rice cultivar. LWT - Food Science and Technology, 53(1): 76-80. DOI: 10.1016/j.lwt.2013.01.029

Azeke, M.A., Egielewa, S.J., Eigbogbo, M.U. & Ihimire, I.G. (2011). Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology, 48(6): 724-729. DOI:10.1007/s13197-010-0186-y

Bohn, L., Meyer, A.S. & Rasmussen, S.K. (2008). Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University-SCIENCE B, 9(3): 165-191.

Carcea, M. (2021). Value of wholegrain rice in a healthy human nutrition. Agriculture, 11(8): 720. DOI: 10.3390/agriculture11080720

Champagne, E.T., Wood, D.F., Juliano, B.O. & Bechtel, D.B. (2004). The rice grain and its gross composition. In Champagne, E.T. (ed.) Rice Chemistry and Technology. Third Edition. Minneapolis, MN: American Association of Cereal Chemists Press.

Dinesh Babu, P., Subhasree, R.S., Bhakyaraj, R. & Vidhyalakshmi, R. (2009). Brown rice- beyond the color reviving a lost health food - A review. American-Eurasian Journal of Agronomy, 2(2): 67-72.

Egli, I., Davidsson, L., Juillerat, M.A., Barclay, D. & Hurrell, R.F. (2003). Phytic acid degradation in complementary foods using phytase naturally occurring in whole grain cereals. Journal of Food Science, 68(5): 1855-1859. DOI: 10.1111/j.1365-2621.2003.tb12342.x

Graf, E. (1986). Chemistry and applications of phytic acid: An overview. In Graf, E. (ed.) Phytic Acid: chemistry and applications. Minneapolis, Pilatus Press.

Grases, F., Simonet, B.M., Prieto, R.M. & March, J.G. (2001). Dietary phytate and mineral bioavailability. Journal of Trace Elements in Medicine and Biology, 15(4): 221-228. DOI: 10.1016/S0946-672X(01)80037-7

Hemalatha, S., Platel, K. & Srinivasan, K. (2007). Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chemistry, 102(4): 1328-1336. DOI: 10.1016/j. foodchem.2006.07.015

Islam, M.A. & Becerra, J.X. (2012). Analysis of chemical components involved in germination process of rice variety Jhapra. Journal of Scientific Research, 4(1): 251-262. DOI: 10.3329/jsr.v4i1.7598

Iwai, T., Takahashi, M., Oda, K., Terada, Y. & Yoshida, K.T. (2012). Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 160(4): 2007-2014. DOI: 10.1104 /pp.112.206573

Juliano, B.O. (1985). Criteria and tests for rice grain qualities. In Juliano, B.O. (ed.) Rice Chemistry and Technology. Second Edition. American Saint Paul, Minnesota. Association of Cereal Chemists.

Kim, T.W. & Lei, X.G. (2005). An improved method for a rapid determination of phytase activity in animal feed. Journal of Animal Science, 83(5): 1062-1067. DOI: 10.2527/2005.8351062x

Kumar, V., Sinha, A.K., Makkar, H.P.S. & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: A review. Food Chemistry, 120(4): 945-959. DOI: 10.1016/j.foodchem. 2009.11.052

Lee, H.H., Neoh, P.P.N., Bong, W.S.T., Puvanes-waran, J., Wong, S.C., Yiu, P.H. & Rajan, A. (2011). Genotyping of Sarawak rice cultivars using microsatellite markers. Pertanika Journal of Tropical Agricultural Science, 34(1): 123-136.

Lee, H.H., Loh, S.P., Bong, C.F., Sarbini, S.R. & Yiu, P.H. (2015). Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice. Journal of Food Science and Technology, 52(12): 7806-7816. DOI: 10.1007 /s13197-015-1918-9

Lehrfeld, J. (1989). High-performance liquid chromatography analysis of phytic acid on a pH-Stable, macroporous polymer column. Cereal Chemistry, 66(6): 510-515.

Lehrfeld, J. (1994). HPLC separation and quantitation of phytic acid and some inositol phosphates in foods: Problems and solutions. Journal of Agricultural and Food Chemistry, 42(12): 2726-2731. DOI: 10.1021/jf00048a015

Liang, J., Han, B., Nout, M.J.R. & Hamer, R.J. (2008a). Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 110(4): 821-828. DOI: 10.1016/j.food chem.2008.02.064

Liang, J., Li, Z., Tsuji, K., Nakano, K., Nout, M.J.R. & Hamer, R.J. (2008b). Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. Journal of Cereal Science, 48(1): 83-91. DOI: 10.1016/j. jcs.2007.08.003

Liang, J., Han, B.Z., Nout, M.J.R. & Hamer, R.J. (2009). Effect of soaking and phytase treatment on phytic acid, calcium, iron and zinc in rice fractions. Food Chemistry, 115(3): 789-794. DOI: 10.1016/j.foodchem.2008.12.051

Lu, L., Tian, S., Liao, H., Zhang, J., Yang, X., Labavitch, J.M. & Chen, W. (2013). Analysis of metal element distributions in rice (Oryza sativa L.) Seeds and relocation during germination based on x-ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. PLoS ONE, 8(2): e57360. DOI: 10.1371/journal.pone.0057360

Luo, Y., Gu, Z., Han, Y. & Chen, Z. (2009). The impact of processing on phytic acid, in vitro soluble iron and Phy/Fe molar ratio of faba bean (Vicia faba L.). Journal of the Science of Food and Agriculture, 89(5): 861-866. DOI: 10.1002/jsfa.3525

Luo, Y., Xie, W., Jin, X., Zhang, B., Wang, Q. & He, Y. (2013). The impact of processing on phytic acid, in vitro soluble zinc and Phy/Zn molar ratio of faba bean (Vicia faba L.). International Food Research Journal, 20(3): 1285-1291.

Murphy, S.C., Gilroy, D., Kerry, J.F., Buckley, D.J. & Kerry, J.P. (2003). Evaluation of surimi, fat and water content in a low/no added pork sausage formulation using response surface methodology. Meat Science, 66(3): 689-701. DOI: 10.1016/j.meatsci.2003.07.001

Myers, R.H., Douglas, C., Montgomery, D.C. & Anderson-Cook, C.M. (2016). Response surface methodology: Process and product optimization using designed experiments. Fourth Edition. New York: John Wiley and Sons.

Nicholas, D., Hazila, K.K., Chua, H.P. & Rosniyana, A. (2014). Nutritional value and glycemic index of Bario rice varieties. Journal of Tropical Agriculture and Food Science, 42(1): 1-8.

Panlasigui, L.N. & Thompson, L.U. (2006). Blood glucose lowering effects of brown rice in normal and diabetic subjects. International Journal of Food Sciences and Nutrition, 57(3-4): 151-158. DOI: 10.1080/09637480500410879

Raboy, V. (2009). Approaches and challenges to engineering seed phytate and total phosphorus. Plant Science, 177(4): 281-296. DOI: 10.1016 /j.plantsci.2009.06.012

Sing, S.X., Lee, H.H., Wong, S.C., Bong, C.F.J. & Yiu, P.H. (2015). Ferulic acid, gamma oryzanol and GABA content in whole grain rice and their variation with bran colour. Emirates Journal of Food and Agriculture, 27(9): 706-711. DOI: 10.9755/ejfa.2015.04.067

Slavin, J.L. (2000). Whole grains, refined grains, and fortified refined grains: what's the difference? Asia Pacific Journal of Clinical Nutrition, 9(S1): S23-27. DOI: 10.1046/j.1440-6047.2000.00171.x

Thompson, L.U. (1986). Phytic acid: a factor influencing starch digestibility and blood glucose response. In Graf, E. (ed.) Phytic Acid: chemistry and applications. Minneapolis: Pilatus Press.

Wang, K.M., Wu, J.G., Li, G., Zhang, D.P., Yang, Z.W. & Shi, C.H. (2011). Distribution of phytic acid and mineral elements in three indica rice (Oryza sativa L.) cultivars. Journal of Cereal Science, 54(1): 116-121. DOI: 10.1016/j.jcs. 2011.03.002

Zhao, M., Lin, Y. & Chen, H. (2020). Improving nutritional quality of rice for human health. Theoretical and Applied Genetics, 133(5): 1397-1413. DOI: 10.1007/s00122-019-03530-x

Published

2023-12-28

How to Cite

HUEI-HONG LEE, ELISHA YIU, ALVIN-LIM-TEIK ZHENG, JOSEPH-CHOON-FAH BONG, SU-PENG LOH, & YIU, P. H. (2023). Optimisation of Phytate Degradation in Whole Grain Rice During Germination Processing Using Response Surface Methodology : Optimising phytate degradation in whole grain rice. Borneo Journal of Resource Science and Technology, 13(2), 132–141. https://doi.org/10.33736/bjrst.5347.2023