Anthocyanin Content and Antioxidant Activity of Red Chrysanthemum (Chrysanthemum morifolium Ramat.) at Different Flower Ages

Anthocyanin content and antioxidant activity of red chrysanthemum

  • ANISA MAGFIROH Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, Semarang City, Central Java 50275, Indonesia
  • ENDAH DWI HASTUTI Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, Semarang City, Central Java 50275, Indonesia
  • YULITA NURCHAYATI Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, Semarang City, Central Java 50275, Indonesia
  • NINTYA SETIARI Department of Biology, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH, Tembalang, Semarang City, Central Java 50275, Indonesia
Keywords: anthocyanin, antioxidant, flower age, red chrysanthemum


Chrysanthemum sp. is a floricultural plant of the Asteraceae family with high economic value. The anthocyanin pigment in red chrysanthemum acts as an antioxidant, the content of which can be influenced by genetic factors such as the physiological age of the flower. This study aimed to determine the effect of flower age on anthocyanin content and antioxidant activity in red chrysanthemum plants. The age of red chrysanthemum used was 115 Days After Planting (DAP) (early bloom stage), 120 DAP (half-bloom stage), 125 DAP (blooming stage), and 134 DAP (wilted flower). The anthocyanin content was analysed using spectrophotometric methods. Antioxidant activity was determined by the DPPH method and then the absorbance was measured using a UV-Vis spectrophotometer. The results showed that the highest anthocyanin content was obtained at the age of 134 DAP at 3.56 mg/g, followed by the age of 115 DAP at 2.40 mg/g, then at 125 DAP at 1.95 mg/g and the lowest at 120 DAP at 1, 69 mg/g. The highest antioxidant activity was shown in chrysanthemum flowers aged 115 DAP which had an IC50 value of 288.85 g/ml. The research shows that wilted chrysanthemum flowers still contain anthocyanins so it can be used in various industrial fields such as chrysanthemum tea and additives for soap.


Albert, N.W., Lewis, D.H., Zhang, H., Irving, L.J., Jameson, P.E. & Davies, K.M. (2009). Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 60(7): 2191-2202. 10.1093/jxb/erp097.

Amthor, J.S. (2010). From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytologist, 188(4): 939-959.

Aramwit, P., Bang, N. & Srichana, T. (2010). The properties and stability of anthocyanins in mulberry fruits. Food Research International, 43(4): 1093-1097. DOI: 10.1016/j.foodres.2010.01.022.

Batubara, I., Kartika, Y. & Darusman, L.K. (2016). Relationship between Zingiberaceae leaves compounds and its tyrosinase activity. Biosaintifika: Journal of Biology and Biology Education, 8(3): 371-377.

Chen, S.M., Li, C.H., Zhu, X.R., Deng, Y.M., Sun, W., Wang, L.S., Chen, F.D. & Zhang, Z. (2012). The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biologia Plantarum, 56(3): 458-464. DOI: 10.1007/s10535-012-0069-3

Chen, J., Ye, H., Wang, J. & Zhang, L. (2023). Relationship between anthocyanin composition and floral color of Hibiscus syriacus. Horticulturae, 9(48): 1-13. 10048

Du, H., Wu, J., Ji, K.X., Zeng, Q.Y., Bhuiya, M.W., Su, S., Shu, Q.Y., Ren, H.X., Liu, Z.A. & Wang, S. (2015). Methylation mediated by an anthocyanin, O methyltransferase, is involved in purple flower coloration in Paeonia. Journal of Experimental Botany, 66(21): 6563-6577.

Fu, W., Li, P. & Wu, Y. (2012). Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 135: 45-51. DOI: 10.1016/j.scienta .2011.12.004.

Gantait, S.S. & Pal, P. (2010). Anthocyanin content of spray Chrysanthemum cultivars under polyhouse and open field conditions. Indian Journal of Natural Products and Resources, 1(2): 236-242.

Han, S., Chen., S.M., Song., A.P., Liu., R.X., Li., H.Y., Jiang, J.F. & Chen, F.D. (2017). Photosynthetic responses of Chysanthemum morifolium to growth irradiance, morphology, anatomy, and chloroplast ultrastucture. Photosynthetica, 55(1): 184-192.

Hasidah, Mukarlina & Rousdy, D.W. (2017). Content of chlorophyll pigments, carotenoids, and anthocyanins in caladium leaves. Jurnal Protobiont, 6(2): 29-37.

Kim, D.Y., Kyung, J.W., Dae, I.W., Soo, M.P., Bokyung, K. & Hwan, M.L. (2018). Chemical composition, antioxidant and antimelanogenic activities of essential oils from Chrysanthemum boreale Makino at different harvesting stages. Chemistry and Biodiversity, 15(2): 1-14.

Kurnia, T. (2017). Morphology of Chrysanthemum White and Yellow Puma with retardant addition. Journal of Biology and Learning Biology, 2(2): 44-53.

Lee, Y.M., Yoon, Y., Yoon, H., Park, H.M., Song, S. & Yeum, K.J. (2017). Dietary anthocyanins against obesity and inflammation. Nutrients, 9(10): 1-15. DOI: 10.3390/nu9101089.

Lees, D.H. & Francis, F.J. (1972). Standardization of pigment analyses in cranberries. HortScience, 7(1): 83-84.

Li, C., Yu, W., Xu, J., Lu, X. & Liu, Y. (2022). Anthocyanin biosynthesis induced by MYB transcription factors in plants. International Journal of Molecular Sciences, 23(19): 11701. DOI: 10.3390/ijms231911701

Lin, L.Z. & Harnly, J.M. (2010). Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chemistry, 120(1): 319-326. DOI: 10.1016/j.foodchem.2009.09.083

Liu, J.Z., Du, L.D., Chen, S.M., Cao, J.R., Ding, X.Q., Zheng, C.S. & Sun, C.H. (2022). Comparative analysis of the effects of internal factors on the floral color of four chrysanthemum cultivars of different colors. Agriculture, 12(5): 1-15.

Liu, Y., Tikunov, Y., Schouten, R.E., Marcelis, L.F.M., Visser, R.G.F. & Bovy, A. (2018). Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Frontiers in Chemistry, 6: 52. DOI: 10.3389/fchem.2018. 00052.

Luo, H., Deng, S., Fu, W., Zhang, X., Zhang, X., Zhang, Z. & Pang, X. (2017). Characterization of active anthocyanin degradation in the petals of Rosa chinensis and Brunfelsia calycina reveals the effect of gallated catechins on pigment maintenance. International Journal of Molecular Science, 18(4): 699. DOI: 10.3390/ijms18040699.

Maguire, K.M., Banks, N.H., Lang, A. & Gordon, I.L. (2000). Harvest date, cultivar orchard, and tree effects on water vapor permeance in apples. Journal of the American Society for Horticultural Science Jashs, 125(1): 100-104.

Marszałek, K., Woźniak, Ł., Kruszewski, B. & Skąpska, S. (2017). The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences, 18(2): 277. DOI: 10. 3390/ijms18020277

Mekapogu, M., Vasamsetti, B.M.K., Kwon, O.K., Ahn, M.S., Lim, S.H. & Jung, J.A. (2020). Anthocyanins in floral colors: Biosynthesis and regulation in chrysanthemum flowers. International Journal of Molecular Sciences, 21(18): 1-25. DOI: 10.3390/ijms21186537

Molyneux, P. (2004). The use of the stable free radical Diphenyl picrylhydrazyl (DPPH) for estimating antioxidant activity. Journal Science Technology, 26(2): 211-219.

Movahed, N., Pastore, C., Cellini, A., Allegro, G., Valentini, G., Zenoni, S., Cavallini, E., D'Incà, E., Tornielli, G.B. & Filippetti, I. (2016). The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Journal of Plant Research, 129(3): 513-526. DOI: 10.1007/s10265-016-0786-3

Nurcahya, Y., Mudjalipah, S., Yosita, L. & Mardiani. (2021). Training on utilizing waste roses and chrysanthemums to become solid bath soap for flower farmers in Lembang. Journal of Community Service Biology Lessons, 1(1): 54-60.

Petroni, K. & Tonelli, C. (2011). Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 181(3): 219-229.

Povero, G., Gonzali, S., Bassolino, L., Mazzucato, A. & Perata, P. (2011). Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of aft and atv genes. Journal of Plant Physiology, 168(3): 270-279.

Ramdani, J. (2018). Growth and yield of Pakchoi (Brassica chinensis L.) plants with various doses of compost and phonska fertilizer in Entisol, North Lombok. (PhD Thesis). Agroecotechnology Study Program, Faculty of Agriculture, University of Mataram, NTB.

Riaz, M., Zia-Ul-Haq, M. & Saad, B. (2016). Biosynthesis and stability of anthocyanins. In Riaz, M., Zia-Ul-Haq, M. and Saad, B. (eds.), Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects. Germany, Springer International Publishing. PP. 71-86. DOI: 10.1007/978-3-319-26456-1_6

Santosa, A., Hamidah, S. & Budiarto. (2019). Empowerment of utilization of chrysanthemum plant waste in Candi Village, Bandungan District, Semarang Regency. Journal of Social Economic Dynamics, 20(2): 201-210.

Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C. & Hernández-Carlos, B. (2019). Antioxidant compounds and their antioxidant mechanism. London, UK: IntechOpen.

Vaknin, H., Bar-Akiva, A., Ovadia, R., Nissim-Levi, A., Forer, I., Weiss, D. & Oren Shamir, M. (2005). Active anthocyanin degradation in Brunfelsia calycina (yesterday–today tomorrow) flowers. Planta, 222(1): 19-26.

Xanthopoulos, G.T., Templalexis, C.G., Aleiferis, N.P. & Lentzou, D.I. (2017). The contribution of transpiration and respiration in water loss of perishable agricultural products: the case of pears. Biosystems Engineering, 158: 76-85. DOI: 10.1016/j.biosystemseng.2017.03.011.

Xiang, L.L, Liu, X.F., Li, X., Yin, X.R., Grierson, D., Li, F. & Chen, K. (2015). A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in chrysanthemums (Chrysanthemum morifolium Ramat.). PLoS ONE, 10(11): e0143892. DOI: 10.1371/journal.pone .014389

Youssef, F.S., Fitri, I.S.Y., Alshammari, E., Ashour, M.L., Wink, M. & El Readi, M.Z. (2020). Chrysanthemum indicum and Chrysanthemum morifolium: Chemical composition of their essential oils and their potential use as natural preservatives with antimicrobial and antioxidant activities. Foods, 9: 1-18.

Yue, J., Zhu, C., Zhou, Y., Niu, X., Miao, M., Tang, X., Chen, F., Zhao, W. & Liu, Y. (2018). Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium “Chuju”. Scientific Reports, 8: 13414. DOI: 10.1038/s41598-018-31831-6

Yulianti, D., Sunyoto, M. & Wulandari, E. (2019). Antioxidant activity of Centella asiatica L. urban leaves and chrysanthemum (Crhysanthemum sp.) leaves at three variations of drying temperatures. Pasundan Food Technology Journal, 6(3): 142-147.

Yun, Z., Jin, S., Ding, Y., Wang, Z., Gao, H., Pan, Z., Xu, J., Cheng, Y. & Deng, X. (2012). Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 63(8): 2873-2893. DOI: 10.1093/jxb/err390.

Zhang, X., Xu, Z., Yu, X., Zhao, L. & Zhao, M. (2019). Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa. International Journal of Molecular Science, 20: 1-18.

Zhao, M.Y., Sui, X.M., Wang, Y., Xu, Z.D., Yu, X.Y. & Han, X. (2019). Component analysis of anthocyanins in petals at different flowering stages of three Rosa rugosa hybrid cultivars. Advances in Bioscience and Biotechnology, 10(1): 1-11.

Zhu, X.G., Long, S.P. & Ort, D.R. (2010). Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 61: 235-261.

How to Cite
ANISA MAGFIROH, ENDAH DWI HASTUTI, YULITA NURCHAYATI, & NINTYA SETIARI. (2023). Anthocyanin Content and Antioxidant Activity of Red Chrysanthemum (Chrysanthemum morifolium Ramat.) at Different Flower Ages. Borneo Journal of Resource Science and Technology, 13(1), 72-80.