Evaluation of Piper nigrum L. as a Prebiotic Ingredient Using In Vitro Colon Model

Sarawak pepper as prebiotic ingredient

  • SITI MAISARAH MOHD NASHRI Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Kampus Bintulu, Sarawak, Malaysia
  • HUI YAN TAN Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia.
  • SHAHRUL RAZID SARBINI 1 Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia; 2 Halal Product Research Institute, Universiti Putra Malaysia, Putra Infoport, Serdang, Selangor, Malaysia
Keywords: Black pepper, digestibility, functional food, gut microbiota, short-chain fatty acids

Abstract

Black and white pepper of the species Piper nigrum L. is regarded as the king of spices, and Malaysia is the second largest producer of peppercorns, after Indonesia. This spice contains abundant bioactive compounds that are capable of enhancing human health. However, the prebiotic potential of P. nigrum L. as a food ingredient has not yet been explored. Therefore, this research studied P. nigrum L. through in vitro gastrointestinal digestion and colonic fermentation using human faecal slurry. Samples were analysed for the colonic bacterial changes and its metabolites production using HPLC. Both black and white pepper showed prebiotic responses similar to those in inulin, particularly in stimulating the growth of human gastrointestinal microbiota. This study finds that P. nigrum L. promotes the growth of probiotic strains such as Bifidobacterium spp., and Lactobacillus / Enterococcus. Both black and white pepper also showed the ability to suppress colonic pathogen strain like Clostridium histolyticum. In vitro colonic fermentation of P. nigrum L. also significantly stimulate production of health beneficial metabolites. The production of short-chain fatty acids like acetate and propionate were observed to be particularly abundant. This is the contribution of piperine in both black and white pepper. In which, piperine provide both anti-bacterial and anti-inflammatory properties. Overall, P. nigrum L. showed appreciable prebiotic value similar to the commercial prebiotic, inulin. Thus, black and white pepper from Sarawak, Malaysia helps in promoting human gastrointestinal health. This finding may contribute to the value-added of Sarawak pepper as a functional food that can be involved in daily meals as spices.

References

Aguirre, M., Souza, C.B. & Venema, K. (2016). The gut microbiota from lean and obese subjects contribute differently to the fermentation of arabinogalactan and inulin. PLOS ONE, 11(7): e0159236. DOI: 10.1371/journal.pone.0159236

Alloui, M.N., Agabou, A. & Alloui, N. (2014). Application of herbs and phytogenic feed additives in poultry production-A Review. Global Journal of Animal Scientific Research, 2(3): 234-243.

Ashokkumar, K., Murugan, M., Dhanya, M.K., Pandian, A. & Warkentin, T.D. (2021). Phytochemistry and therapeutic potential of black pepper [Piper nigrum (L.)] essential oil and piperine: A review. Clinical Phytoscience, 7(1): 1-11.

Azagra-Boronat, I., Massot-Cladera, M., Knipping, K., Garssen, J., Ben Amor, K., Knol, J., Franch, A., Castell, M., Rodríguez-Lagunas, M.J. & Pérez-Cano, F.J. (2020). Strain-specific probiotic properties of bifidobacteria and lactobacilli for the prevention of diarrhea caused by rotavirus in a preclinical model. Nutrients, 12(2): 498.

Cao, C., Wang, L., Zhang, X., Ai, C., Wang, Z., Huang, L., Song, S. & Zhu, B. (2023). Interaction between Bacteroidetes species in the fermentation of Lycium barbarum arabinogalactan. Food Chemistry, 409: 135288.

Clarke, J., Boussioutas, A., Flanders, B., Lockett, T., Harrap, K., Saunders, I., Lynch, P., Appleyard, M., Spigelman, A., Cameron, D. & Macrae, F. (2023). Can butyrate prevent colon cancer? The AusFAP study: A randomised, crossover clinical trial. Contemporary Clinical Trials Communications, 32: 101092.

Dreger, P., Schetelig, J., Andersen, N., Corradini, P., van Gelder, M., Gribben, J., Kimby, E., Michallet, M., Moreno, C., Stilgenbauer, S. & Montserrat, E. (2014). Managing high-risk CLL during transition to a new treatment era: Stem cell transplantation or novel agents? Blood, 124(26): 3841-3849. DOI: 10.1182/blood-2014-07-586826

Genua, F., Mirković, B., Mullee, A., Levy, M., Gallagher, W.M., Vodicka, P. & Hughes, D.J. (2021). Association of circulating short chain fatty acid levels with colorectal adenomas and colorectal cancer. Clinical Nutrition ESPEN, 46: 297-304.

Gibson, G.R., Probert, H.M., Loo, J.V., Rastall, R.A. & Roberfroid, M.B. (2004). Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutrition Research Reviews, 17(2): 259-275. DOI: 10.1079/NRR200479

Harris, S., Powers, S., Monteagudo-Mera, A., Kosik, O., Lovegrove, A., Shewry, P. & Charalampopoulos, D. (2020). Determination of the prebiotic activity of wheat arabinogalactan peptide (AGP) using batch culture fermentation. European Journal of Nutrition, 59: 297-307.

Joy, N., Abraham, Z. & Soniya, E. (2007). A preliminary assessment of genetic relationships among agronomically important cultivars of black pepper. BMC Genetics, 8(1): 42. DOI: 10.1186/1471-2156-8-42

Khawas, S., Nosáľová, G., Majee, S.K., Ghosh, K., Raja, W., Sivová, V. & Ray, B. (2017). In vivo cough suppressive activity of pectic polysaccharide with arabinogalactan type II side chains of Piper nigrum fruits and its synergistic effect with piperine. International Journal of Biological Macromolecules, 99: 335-342. DOI: 10.1016/j.ijbiomac.2017.02.093

Lee-Ling, C., Hui Yan, T., Saupi, N., Saari, N. & Sarbini, S.R. (2022a). An in vitro study: Prebiotic effects of edible palm hearts in batch human fecal fermentation system. Journal of the Science of Food and Agriculture, 102(15): 7231-7238. DOI: 10.1002/jsfa.12088

Lee-Ling, C., Hui Yan, T., Saupi, N. & Sarbini, S.R. (2022b). Investigation of local palm hearts (Umbut) as potential prebiotic ingredients using in vitro colon model experimentation. In E-Proceeding 2nd International Scientific Conference on Indigenous Crops, 66. Bintulu, Sarawak, Malaysia: Faculty of Agriculture and Forestry Sciences, University Putra Malaysia Bintulu Campus.

Li, Z., Qing, Y., Cui, G., Li, M., Liu, T., Zeng, Y., Zhou, C., Hu, X., Jiang, J., Wang, D., Gao, Y., Zhang, J., Cai, C., Wang, T. & Wan, C. (2023). Shotgun metagenomics reveals abnormal short-chain fatty acid-producing bacteria and glucose and lipid metabolism of the gut microbiota in patients with schizophrenia. Schizophrenia Research, 255: 59-66.

Louis, P., Duncan, S.H., Sheridan, P.O., Walker, A.W. & Flint, H.J. (2022). Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome, 3: e3.

Lu, Q.Y., Summanen, P.H., Lee, R.P., Huang, J., Henning, S.M., Heber, D., Finegold, S.M. & Li, Z. (2017). Prebiotic potential and chemical composition of seven culinary spice extracts. Journal of Food Science, 82(8): 1807-1813. DOI:10.1111/1750-3841.13792

Mandalari, G., Faulks, R.M., Rich, G.T., Lo Turco, V., Picout, D.R., Lo Curto, R.B., Bisignano, G., Dugo, P., Dugo, G., Waldron, K.W., Ellis, P.R., Martin, S.J. & Wickham, S.J. (2008). Release of protein, lipid, and vitamin E from almond seeds during digestion. Journal of Agricultural and Food Chemistry, 56(9): 3409-3416. DOI: 10.1021/jf073393v

Munoz, J., James, K., Bottacini, F. & Van Sinderen, D. (2020). Biochemical analysis of cross-feeding behaviour between two common gut commensals when cultivated on plant-derived arabinogalactan. Microbial Biotechnology, 13(6): 1733-1747.

Ogwaro, B.A., O’Gara, E.A., Hill, D.J. & Gibson, H. (2021). A study of the antimicrobial activity of combined black pepper and cinnamon essential oils against Escherichia fergusonii in traditional African yoghurt. Foods, 10(11): 2847. DOI: 10.3390/foods10112847

Peterson, C.T., Rodionov, D.A., Iablokov, S.N., Pung, M.A., Chopra, D., Mills, P.J. & Peterson, S.N. (2019). Prebiotic potential of culinary spices used to support digestion and bioabsorption. Evidence-Based Complementary and Alternative Medicine, 2019: e8973704. DOI: 10.1155/2019/8973704

Peterson, C.T., Perez Santiago, J., Iablokov, S.N., Chopra, D., Rodionov, D.A. & Peterson, S.N. (2022). Short-chain fatty acids modulate healthy gut microbiota composition and functional potential. Current Microbiology, 79(5): 128.

Pokusaeva, K., Fitzgerald, G.F. & van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes & Nutrition, 6(3): 285-306.

Pradeep, K.U., Geervani, P. & Eggum, B.O. (1993). Common Indian spices: Nutrient composition, consumption and contribution to dietary value. Plant Foods for Human Nutrition, 44(2): 137-148.

Rawi, M.H., Abdullah, A., Ismail, A. & Sarbini, S.R. (2021). Manipulation of gut microbiota using Acacia gum polysaccharide. ACS Omega, 6(28): 17782-17797. DOI: 10.1021/acsomega.1c00302

Rawi, M.H., Zaman, S.A., Pa’ee, K.F., Leong, S.S. & Sarbini, S.R. (2020). Prebiotics metabolism by gut-isolated probiotics. Journal of Food Science and Technology, 57(8): 2786-2799. DOI: 10.1007/s13197-020-04244-5

Sarbini, S.R., Kolida, S., Naeye, T., Einerhand, A., Brison, Y., Remaud-Simeon, M., Monsan, P., Gibson, G.R. & Rastall, R.A. (2011). In vitro fermentation of linear and α-1,2-branched dextrans by the human fecal microbiota. Applied and Environmental Microbiology, 77(15): 5307-5315. DOI: 10.1128/AEM.02568-10

Sarbini, S.R., Kolida, S., Naeye, T., Einerhand, A.W., Gibson, G.R., & Rastall, R.A. (2013). The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. Journal of Functional Foods, 5(4): 1938-1946. DOI: 10.1016/j.jff.2013.09.015

Sarker, M.M.R. (2012). Induction of humoral immunity through the enhancement of IgM production in murine splenic cells by ethanolic extract of seed of Piper nigrum L. Journal of Scientific Research, 4(3): 751-756.

Shen, L., Keenan, M.J., Raggio, A., Williams, C. & Martin, R.J. (2011). Dietary-resistant starch improves maternal glycemic control in Goto-Kakizaki rat. Molecular Nutrition & Food Research, 55(10): 1499-1508. DOI: 10.1002/mnfr.201000605

Shon, H.J., Kim, Y.M., Kim, K.S., Choi, J.O., Cho, S.H., An, S., Park, S.H., Cho, Y.J., Park, J.H., Seo, S.U., Cho, J.Y., Kim, W.U., Kim, D. & Seo, S.U. (2023). Protective role of colitis in inflammatory arthritis via propionate-producing Bacteroides in the gut. Frontiers in Immunology, 14: 2023. DOI: 10.3389/fimmu.2023.1064900

Sun, Y., Hu, J., Zhang, S., He, H., Nie, Q., Zhang, Y., Chen, C., Geng, F. & Nie, S. (2021). Prebiotic characteristics of arabinogalactans during in vitro fermentation through multi-omics analysis. Food and Chemical Toxicology, 156: 112522.

Wang, S.P., Rubio, L.A., Duncan, S.H., Donachie, G. E., Holtrop, G., Lo, G., Farquharson, F.M., Wagner, J., Parkhill, J., Louis, P., Walker, A.W. & Flint, H.J. (2020). Pivotal roles for pH, lactate, and lactate-utilizing bacteria in the stability of a human colonic microbial ecosystem. Msystems, 5(5): e00645-20.

Wang, Y., Liu, Y., Polic, I.I., Matheyambath, A.C. & LaPointe, G. (2021). Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. Longum BB536 in the simulator of the Human Intestinal Microbial Ecosystem (SHIME®). Journal of Functional Foods, 87: 104820.

Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S. & De Meulenaer, B. (2015). Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT - Food Science and Technology, 64(1): 177-188. DOI: 10.1016/j.lwt.2015.05.045

Zaporozhets, T.S., Besednova, N.N., Kuznetsova, T.A., Zvyagintseva, T.N., Makarenkova, I.D., Kryzhanovsky, S.P. & Melnikov, V.G. (2014). The prebiotic potential of polysaccharides and extracts of seaweeds. Russian Journal of Marine Biology, 40(1): 1-9. DOI: 10.1134/S1063074014010106

Published
2023-12-24
How to Cite
SITI MAISARAH MOHD NASHRI, HUI YAN TAN, & SHAHRUL RAZID SARBINI. (2023). Evaluation of Piper nigrum L. as a Prebiotic Ingredient Using In Vitro Colon Model. Borneo Journal of Resource Science and Technology, 13(2), 13-23. https://doi.org/10.33736/bjrst.5320.2023