Effect of Pre-treatment on The Impregnation of Osmotically Dehydrated Fruits: A Review

Pre-treatment effect for impregnating osmotically dehydrated fruits

  • SALIZA ASMAN Department of Physics and Chemistry, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, Johor, 84600, Pagoh Education Hub, Muar, Johor, Malaysia
  • SHALINI RAJA Department of Technology and Natural Resources, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, Johor, 84600, Pagoh Education Hub, Muar, Johor, Malaysia
Keywords: Calcium chloride, calcium lactate, fruits, osmotic dehydration, pre-treatments, sucrose


Osmotic dehydration is one of the alternative methods that is most frequently employed in the food industry to prevent large accumulation of food waste and postharvest losses, although it has a devastating influence on the textural and structural properties of the fruits. Considering that, this review offers innovative ideas and views on the impact of calcium salts, specifically calcium chloride and calcium lactate, on the impregnation of osmotically dehydrated fruits, along with various pre-treatments. Calcium chloride and calcium lactate salts assist in conserving the quality of fruits in the sense of colour, sensory, textural, structural, and other characteristics since some fruits are very perishable and rapidly degrade. Additional data showed that pre-treatments like blanching, freezing, drying, and ultrasound negatively affect calcium salt impregnation on fruit samples. The focus of this review is mainly on the preservation method of impregnating osmotically dehydrated fruits with calcium chloride and calcium lactate salt treatments, as well as blanching, freezing, drying, and ultrasound pre-treatments.


Abdul Aziz, F.M., Surip, S.N., Bonnia, N.N. & Sekak, K.A. (2018). The effect of pineapple leaf fibre (PALF) incorporation into Polyethylene Terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science, 105: 1. DOI: 10.1088/1755-1315/105/1/012082

Ade-Omowaye, B.I.O., Taiwo, K.A., Eshtiaghi, N.M., Angersbach, A. & Knorr, D. (2003). Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilization and mass transfer during dehydration of red bell peppers. Innovative Food Science & Emerging Technologies, 4(2): 177-188. DOI: 10.1016/S1466-8564(03)00020-1

Akbarian, M., Ghasemkhani, N. & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial: A review. International Journal of Biosciences (IJB), 4(1): 42-57. DOI: 10.12692/ijb/4.1.42-57

Albertos, I., Martin-Diana, A.B., Jaime, I., Diez, A.M. & Rico, D. (2016). Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innovative Food Science and Emerging Technologies, 36: 336-342. DOI: 10.1016/J.IFSET.2016.07.006

Alós, E., Rodrigo, M.J. & Zacarias, L. (2019). Ripening and senescence. Postharvest Physiology and Biochemistry of Fruits and Vegetables, 131-155. DOI: 10.1016/B978-0-12-813278-4.00007-5

Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S. & Nabetani, H. (2016). Impact of blanching and freeze-thaw pre-treatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71: 40-46. DOI: 10.1016/J.LWT.2016.03.019

Barrett, D.M., Beaulieu, J.C. & Shewfelt, R. (2010). Colour, flavour, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition, 50(5): 369-389. DOI: 10.1080/10408391003626322

Bchir, B., Besbes, S., Attia, H. & Blecker, C. (2012). Osmotic dehydration of pomegranate seeds (Punica Granatum L). Effect of freezing pre-treatment. Journal of Food Process Engineering, 35(3): 335-354. DOI: 10.1111/j.1745-4530.2010.00591.x

Borchani, C., Besbes, S., Masmoudi, M., Bouaziz, M.A., Blecker, C. & Attia, H. (2012). Influence of oven-drying temperature on physicochemical and functional properties of date fibre concentrates. Food and Bioprocess Technology, 5(5): 1541-1551. DOI: 10.1007/s11947-011-0549-z

Castelló, M.L., Fito, P.J. & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1): 64-71. DOI: 10.1016/J.JFOODENG.2009.09.016

Cerklewski, F.L. (2005). Calcium fortification of food can add unneeded dietary phosphorus. Journal of Food Composition and Analysis, 18(6): 595-598. DOI:10.1016/j.jfca.2004.05. 003

Chavan, U.D. & Amarowicz, R. (2012). Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research, 1(2): 202-209. DOI: 10.5539/jfr.v1n2p202

Chu, Y., Wei, S., Ding, Z., Mei, J. & Xie, J. (2021). Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, 11(11): 1069. DOI: 10.3390/agriculture11111069

Del Valle, J.M., Aránguiz, V. & León, H. (1998). Effects of blanching and calcium infiltration on PPO activity, texture, microstructure and kinetics of osmotic dehydration of apple tissue. Food Research International, 31(8): 557-569. DOI: 10.1016/S0963-9969(99)00029-0

Deng, L.Z., Mujumdar, A.S., Zhang, Q., Yang, X.H., Wang, J., Zheng, Z.A., Gao, Z.J. & Xiao, H.W. (2019). Chemical and physical pre-treatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9): 1408-1432. DOI: 10.1080/10408398.2017.1409192

Durrani, A. & Verma, S. (2011). Preparation and quality evaluation of honey Amla Murabba. Indian Journal of Science and Technology, 1(1): 41-45.

El-Aouar, A.A., Azoubel, P.M., Barbosa, J.L. & Xidieh Murr, F.E. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering, 75(2): 267-274. DOI: 10.1016/j. jfoodeng.2005.04.016

Falade, K.O. & Adelakun, T.A. (2007). Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. International Journal of Food Science and Technology, 42(4): 394-402. DOI: 10.1111/j.1365-2621.2006.01228 .x

Falade, K.O., Igbeka, J.C. & Ayanwuyi, F.A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3): 979-985. DOI: 10.1016/j.jfoodeng.2006.06.033

Fan, K., Zhang, M., Wang, W. & Bhandari, B. (2020). A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. International Journal of Refrigeration, 113: 49-57. DOI: 10.1016/J.IJREFRIG.2020.02.013

Fernandes, F.A.N., Rodrigues, S., Gaspareto, O.C.P. & Oliveira, E.L. (2006). Optimization of osmotic dehydration of papaya followed by air-drying. Food Research International, 39(4): 492-498. DOI: 10.1016/j.foodres.2005.10.004

Ferrari, C.C., Carmello-Guerreiro, S.M., Bolini, H.M.A. & Hubinger, M.D. (2010). Structural changes, mechanical properties and sensory preference of osmodehydrated melon pieces with sucrose and calcium lactate solutions. International Journal of Food Properties, 13(1): 112-130. DOI: 10.1080/10942910802227934

Gallo, M., Ferrara, L. & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7(164): 1-19. DOI: 10.3390/FOODS7100164

Garcia, C.C., Uchidate, F.S., Silva, K. de S., Covizzi, L.G. & Mauro, M.A. (2021). Blanching of papaya: Effect on osmotic dehydration and characterization of the fruit invertase. Ciencia Rural, 51(9): e20200725. DOI:10.1590/0103-8478cr202 00725

Glenn, G.M. & Poovaiah, B.W. (1990). Calcium-mediated postharvest changes in texture and cell wall structure and composition in “Golden Delicious” apples. Journal of the American Society for Horticultural Science, 115(6): 1-7. DOI: 10.21273/jashs.115.6.962

Guine, R.P.F., Correia, P.M.R., Correia, A.C., Goncalves, F., Brito, M.F.S. & Ribeiro, J.R.P. (2017). Effect of drying temperature on the physical-chemical and sensorial properties of eggplant (Solanum melongena L.). Current Nutrition & Food Science, 14(1): 28-39. DOI: 10.2174/1573401313666170316113359

Holzwarth, M., Wittig, J., Carle, R. & Kammerer, D.R. (2013). Influence of putative polyphenol oxidase (PPO) inhibitors on strawberry (Fragaria x ananassa Duch.) PPO, anthocyanin and colour stability of stored purees. LWT - Food Science and Technology, 52(2): 116-122. DOI:10.1016/J. LWT.2012.10.025

Inam-ur-Raheem, M., Huma, N., Anjum, F.M. & Malik, A.U. (2013). Effect of calcium chloride and calcium lactate on quality and shelf-life of fresh-cut guava slices. Pakistan Journal of Agricultural Sciences, 50(3): 427-431.

Inyang, U.E. & Ike, C.I. (1998). Effect of blanching, dehydration method and temperature on the ascorbic acid, colour, sliminess and other constituents of okra fruit. International Journal of Food Sciences and Nutrition, 49(2): 125-130. DOI: 10.3109/09637489809089392

Ispir, A. & Togrul, I.T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2): 166-180. DOI:10.1016/j.cherd .2008.07.011

Jain, V., Chawla, S., Choudhary, P. & Jain, S. (2019). Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (Ziziphus mauritiana Lamk.) fruits during storage. Journal of Food Science and Technology, 56(10): 4535-4542. DOI: 10.1007/S13197-019-03934-Z

Kader, A.A. (2008). Flavour quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 88(11): 1863-1868. DOI: 10.1002/jsfa.3293

Kentish, S.E. & Ashokkumar, M. (2011). The physical and chemical effects of ultrasound. Springer New York EBooks, 1-12: 1-12. DOI: 10.1007/978-1-4419-7472-3_1

Kethireddipalli, P., Hung, Y.C., Phillips, R.D. & McWatters, K.H. (2002). Evaluating the role of cell wall material and soluble protein in the functionality of cowpea (Vigna unguiculata) pastes. Journal of Food Science, 67(1): 53-59. DOI: 10.1111/j.1365-2621.2002.tb11358.x

Khoualdia, B., Ben-Ali, S. & Hannachi, A. (2020). Pomegranate arils osmotic dehydration: effect of pre-drying on mass transfer. Journal of Food Science and Technology, 57(6): 2129-2138. DOI: 10.1007/S13197-020-04248-1

Kinoshita, T., Nishimura, M. & Shimazaki, K.I. (1995). Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell, 7(8): 1333-1342. DOI: 10.2307/3870106

Kowalska, H., Lenart, A. & Leszczyk, D. (2008). The effect of blanching and freezing on osmotic dehydration of pumpkin. Journal of Food Engineering, 86(1): 30-38. DOI:10.1016/j .jfoodeng.2007.09.006

Kowalski, S.J. & Mierzwa, D. (2011). Influence of preliminary osmotic dehydration on drying kinetics and final quality of carrot (Daucus carota l.). Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 32(3): 185-194. DOI: 10.2478/v10176-011-0014-6

Langer, S.E., Marina, M., Burgos, J.L., Martínez, G.A., Civello, P.M. & Villarreal, N.M. (2019). Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). Journal of the Science of Food and Agriculture, 99(8): 4003-4010. DOI: 10.1002/JSFA.9626

Lasekan, O. & Hussein, F.K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile finger printing and sensory analysis. Chemistry Central Journal, 12(1): 140. DOI: 10.1186/s13065-018-0505-3

Lenart, A. (1996). Osmo-convective drying of fruits and vegetables: technology and application. Drying Technology, 14(2): 391–413. DOI: 10.1080/07373939608917104

Lewicki, P.P. & Pawlak, G. (2003). Effect of drying on microstructure of plant tissue. Drying Technology, 21(4): 657-683. DOI: 10.1081/DRT-120019057

Lobo, M.G. & Yahia, E. (2016). Biology and postharvest physiology of pineapple. Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, 39-61. DOI: 10.1002/9781118967355.CH3

Luna-Guzmán, I. & Barrett, D.M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology and Technology, 19(1): 61-72. DOI: 10.1016/s0925-5214(00)00079-x

Martin-Diana, A.B., Rico, D., Frias, J.M., Barat, J.M., Henehan, G.T.M. & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. In Trends in Food Science and Technology, 18(4): 210-218. DOI: 10.1016/j.tifs .2006.11.027

Mason, T.J., Paniwnyk, L., Chemat, F. & Vian, M.A. (2010). Chapter 10. Ultrasonic Food Processing. The Royal Society of Chemistry EBooks, 387-414. DOI: 10.1039/9781849730976-00387

Mayor, L., Moreira, R. & Sereno, A.M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1): 29-37. DOI: 10.1016/j.jfoodeng.2010.08.031

Mayor, L., Pissarra, J. & Sereno, A.M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3): 326-339. DOI: 10.1016/j.jfoodeng.2007.06.038

Mieszczakowska-Frąc, M., Dyki, B. & Konopacka, D. (2016). Effects of ultrasound on polyphenol retention in apples after the application of pre-drying treatments in liquid medium. Food and Bioprocess Technology, 9(3): 543-552. DOI: 10.1007/ s11947-015-1648-z

Mohd Ali, M., Hashim, N., Abd Aziz, S. & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137: 1-13. DOI: 10.1016/j.foodres.2020.109675

Monsoor, M.A. (2005). Effect of drying methods on the functional properties of soy hull pectin. Carbohydrate Polymers, 61(3): 362–367. DOI: 10.1016/J.CARBPOL.2005.06.009

Moraga, M.J., Moraga, G., Fito, P.J. & Martínez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering, 90(3): 372-379. DOI: 10.1016/ j.jfoodeng.2008.07.007

Muhammad, N.W.F., Nurrulhidayah, A.F., Hamzah, M.S., Rashidi, O. & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4: 266-273. DOI:10.26656/ fr.2017.4(S1).S14.

Ngamchuachit, P., Sivertsen, H.K., Mitcham, E.J. & Barrett, D.M. (2014). Effectiveness of calcium chloride and calcium lactate on maintenance of textural and sensory qualities of fresh-cut mangos. Journal of Food Science, 79(5): 786-794. DOI: 10.1111/1750-3841.12446

Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A. & Alzamora, S.M. (2013). Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. Journal of Food Engineering, 119(1): 104-114. DOI: 10.1016/J.JFOODENG.2013.04. 032

Osorio, C., Franco, M.S., Castano, M.P., Gonzalez-Miret, M.L., Heredia, F.J. & Morales, A.L. (2007). Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science and Emerging Technologies, 8(3): 353:359. DOI: 10.1016/J.IFSET.2007.03.009

Pereira, L.M., Carmello-Guerreiro, S.M., Bolini, H.M.A., Cunha, R.L. & Hubinger, M.D. (2007). Effect of calcium salts on the texture, structure and sensory acceptance of osmotically dehydrated guavas. Journal of the Science of Food and Agriculture, 87(6): 1149-1156. DOI: 10.1002/ jsfa.2836

Phisut, N., Rattanawedee, M. & Aekkasak, K. (2013). Effect of osmotic dehydration process on the physical, chemical and sensory properties of osmo-dried cantaloupe. International Food Research Journal, 20(1): 189-196.

Phuoc Minh, N., Phu Thuong Nhan, N., Kieu Trinh, T., Minh Huy, N., Dinh Khoi, T. & Truong Son, L. (2019). Effect of blanching, drying and storage to cinnamic acid and antioxidant activity on dried strawberry (Fragaria). Journal of Pharmaceutical Sciences and Research, 11(3): 1021-1024.

Prajapati, U., Asrey, R., Varghese, E. & Sharma, R.R. (2021). Effects of calcium lactate on postharvest quality of bitter gourd fruit during cold storage. Physiology and Molecular Biology of Plants, 27(8): 1811-1821. DOI: 10.1007/S12298-021-01045-8

Prinzivalli, C., Brambilla, A., Maffi, D., lo Scalzo, R. & Torreggiani, D. (2006). Effect of osmosis time on structure, texture and pectic composition of strawberry tissue. European Food Research and Technology, 224(1): 119-127. DOI: 10.1007/ S00217-006-0298-9

Quiles, A., Hernando, I., Perez-Munuera, I., Llorca, E., Larrea, V. & Angeles Lluch, M. (2004). The effect of calcium and cellular permeabilization on the structure of the parenchyma of osmotic dehydrated “Granny Smith” apple. Journal of the Science of Food and Agriculture, 84(13): 1765-1770. DOI: 10.1002/jsfa.1884

Ramya, V. & Jain, N.K. (2017). A review on osmotic dehydration of fruits and vegetables: An integrated approach. Journal of Food Process Engineering, 40(3): 1-22. DOI: 10.1111/jfpe. 12440

Revati Rajanya, D. & Singh, G. (2021). Recent trends in osmotic dehydration of fruits: A review. Plant Archives, 21(1). DOI: 10.51470/plantarchives .2021.v21.no1.013

Rubio-Senent, F., Rodriguez-Gutierrez, G., Lama-Munoz, A. & Fernandez-Bolanos, J. (2015). Pectin extracted from thermally treated olive oil by-products: Characterization, physicochemical properties, invitro bile acid and glucose binding. Food Hydrocolloids, 43: 311-321. DOI: 10.10 16/J.FOODHYD.2014.06.001

Ruiz-Ojeda, L.M. & Penas, F.J. (2013). Comparison study of conventional hot-water and microwave blanching on quality of green beans. Innovative Food Science and Emerging Technologies, 20: 191-197. DOI: 10.1016/J.IFSET.2013.09.009

Sanchez-Zapata, E., Fernandez-Lopez, J., Penaranda, M., Fuentes-Zaragoza, E., Sendra, E., Sayas, E. & Perez-Alvarez, J.A. (2011). Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product. Food Research International, 44(7): 2401-2407. DOI: 10.1016/J. FOODRES.2010.04.034

Sarabo, Z., Hanafi, N., Rosli, M.H., Rashid, S.M.R.A., Mohd Ropi, N.A., Hasham, R., Sarmidi, M.R., Cheng, K.K. & Othman, N.H. (2021). Effect of different pre-treatments on the physicochemical properties of freeze-dried Ananas comosus L. Materials Today: Proceedings, 42: 229-233. DOI: 10.1016/j.matpr .2020.11.971

Selani, M.M., Bianchini, A., Ratnayake, W.S., Flores, R.A., Massarioli, A.P., de Alencar, S.M. & Canniatti Brazaca, S.G. (2016). Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods for Human Nutrition, 71(2): 137-144. DOI: 10.1007/s11130-016-0531-z

Serrano, M., Martinez-Romero, D., Castillo, S., Guillen, F. & Valero, D. (2004). Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biology and Technology, 34(2): 155-167. DOI: 10.1016/J.POSTHARVBIO.2004.05. 004

Silva, K.S., Fernandes, M.A. & Mauro, M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134: 37-44. DOI: 10.1016/j. jfoodeng.2014.02.020

Sousa, P.H.M., Souza Neto, M.A., Maia, G.A., Souza Filho, M.S.M. & Figueiredo, R.W. (2003). Osmotic dehydration of fruits. Bulletin of the Brazilian Society of Food Science and Technology, 37: 94-100.

Sripinyowanich, J. & Noomhorm, A. (2013). Effects of freezing pre-treatment, microwave-assisted vibro-fluidized bed drying and drying temperature on instant rice production and quality. Journal of Food Processing and Preservation, 37(4): 314-324. DOI: 10.1111/J.1745-4549.2011.00651.X

Stone, M.B., Toure, D., Greig, J.K. & Naewbanij, J.O. (1986). Effects of pre-treatment and dehydration temperature on colour, nutrient retention and sensory characteristics of okra. Journal of Food Science, 51(5): 1201-1203. DOI: 10.1111/j.1365-2621.1986.tb13084.x

Suresh, K. & Sagar, V.R. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Mysore J Food Sci Technol, 47(1): 15-26. DOI: 10.1007/s13197-010-0010-8

Taiwo, K.A. & Adeyemi, O. (2009). Influence of blanching on the drying and rehydration of banana slices. African Journal of Food Science, 3(10): 307-315.

Talens, P., Martínez-Navarrete, N., Fito, P. & Chiralt, A. (2002). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3(2): 191-199. DOI: 10.1016/ S1466-8564(02)00027-9

Techakanon, C. & Barrett, D.M. (2017). The effect of calcium chloride and calcium lactate pre-treatment concentration on peach cell integrity after high-pressure processing. International Journal of Food Science and Technology, 52(3): 635-643. DOI: 10.1111/ijfs.13316

Tedjo, W., Taiwo, K.A., Eshtiaghi, M.N. & Knorr, D. (2002). Comparison of pre-treatment methods on water and solid diffusion kinetics of osmotically dehydrated mangos. Journal of Food Engineering, 53(2): 133-142. DOI: 10.1016/S0260-8774 (01)00149-2

Telis, V.R.N., Telis-Romero, J. & Gabas, A.L. (2005). Solids rheology for dehydrated food and biological materials. Drying Technology, 23(4)- 759-780. DOI: 10.1081/DRT-200054190

Thakur, R.J., Shaikh, H., Gat, Y. & Waghmare, R.B. (2019). Effect of calcium chloride extracted from eggshell in maintaining quality of selected fresh-cut fruits. International Journal of Recycling of Organic Waste in Agriculture, 8: 27-36. DOI: 10.1007/S40093-019-0260-Z

Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6): 303324.

Troyo, R.D. & Acedo, A.L. (2019). Effects of calcium ascorbate and calcium lactate on quality of fresh-cut pineapple (Ananas comosus). International Journal of Agriculture, Forestry and Life Sciences, 3(1): 143-150.

Udomkun, P., Mahayothee, B., Nagle, M. & Müller, J. (2014). Effects of calcium chloride and calcium lactate applications with osmotic pre-treatment on physicochemical aspects and consumer acceptances of dried papaya. International Journal of Food Science and Technology, 49(4): 1122-1131. DOI: 10.1111/ijfs.12408

Vishwanathan, K.H., Giwari, G.K. & Hebbar, H.U. (2013). Infrared assisted dry-blanching and hybrid drying of carrot. Food and Bioproducts Processing, 91(2): 89-94. DOI: 10.1016/J. FBP.2012.11.004

Wei, C.B., Liu, S.H., Liu, Y.G., Zang, X.P., Lu, L.L. & Sun, G.M. (2011). Changes and distribution of aroma volatile compounds from pineapple fruit during postharvest storage. Acta Horticulturae, 902: 431-436. DOI: 10.17660/ACTAHORTIC .2011.902.53

Yadav, A.K. & Singh, S.V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9): 1654-1673. DOI: 10.1007/s13197-012-0659-2

Yang, H.Y. & Lawless, H.T. (2005). Descriptive analysis of divalent salts. Journal of Sensory Studies, 20(2): 97-113. DOI: 10.1111/j.1745-459x.2005.00005.x

Zhao, J.H., Hu, R., Xiao, H.W., Yang, Y., Liu, F., Gan, Z.L. & Ni, Y.Y. (2014). Osmotic dehydration pre-treatment for improving the quality attributes of frozen mango: Effects of different osmotic solutes and concentrations on the samples. International Journal of Food Science and Technology, 49(4): 960-968. DOI: 10.1111/ijfs.1238

How to Cite
ASMAN, S., & RAJA, S. (2023). Effect of Pre-treatment on The Impregnation of Osmotically Dehydrated Fruits: A Review. Borneo Journal of Resource Science and Technology, 13(1), 1-21. https://doi.org/10.33736/bjrst.5010.2023