Effect of Pre-treatment on The Impregnation of Osmotically Dehydrated Fruits: A Review
Pre-treatment effect for impregnating osmotically dehydrated fruits
DOI:
https://doi.org/10.33736/bjrst.5010.2023Keywords:
Calcium chloride, calcium lactate, fruits, osmotic dehydration, pre-treatments, sucroseAbstract
Osmotic dehydration is one of the alternative methods that is most frequently employed in the food industry to prevent large accumulation of food waste and postharvest losses, although it has a devastating influence on the textural and structural properties of the fruits. Considering that, this review offers innovative ideas and views on the impact of calcium salts, specifically calcium chloride and calcium lactate, on the impregnation of osmotically dehydrated fruits, along with various pre-treatments. Calcium chloride and calcium lactate salts assist in conserving the quality of fruits in the sense of colour, sensory, textural, structural, and other characteristics since some fruits are very perishable and rapidly degrade. Additional data showed that pre-treatments like blanching, freezing, drying, and ultrasound negatively affect calcium salt impregnation on fruit samples. The focus of this review is mainly on the preservation method of impregnating osmotically dehydrated fruits with calcium chloride and calcium lactate salt treatments, as well as blanching, freezing, drying, and ultrasound pre-treatments.
References
Abdul Aziz, F.M., Surip, S.N., Bonnia, N.N. & Sekak, K.A. (2018). The effect of pineapple leaf fibre (PALF) incorporation into Polyethylene Terephthalate (PET) on FTIR, morphology and wetting properties. IOP Conference Series: Earth and Environmental Science, 105: 1. DOI: 10.1088/1755-1315/105/1/012082
Ade-Omowaye, B.I.O., Taiwo, K.A., Eshtiaghi, N.M., Angersbach, A. & Knorr, D. (2003). Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilization and mass transfer during dehydration of red bell peppers. Innovative Food Science & Emerging Technologies, 4(2): 177-188. DOI: 10.1016/S1466-8564(03)00020-1
Akbarian, M., Ghasemkhani, N. & Moayedi, F. (2014). Osmotic dehydration of fruits in food industrial: A review. International Journal of Biosciences (IJB), 4(1): 42-57. DOI: 10.12692/ijb/4.1.42-57
Albertos, I., Martin-Diana, A.B., Jaime, I., Diez, A.M. & Rico, D. (2016). Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innovative Food Science and Emerging Technologies, 36: 336-342. DOI: 10.1016/J.IFSET.2016.07.006
Alós, E., Rodrigo, M.J. & Zacarias, L. (2019). Ripening and senescence. Postharvest Physiology and Biochemistry of Fruits and Vegetables, 131-155. DOI: 10.1016/B978-0-12-813278-4.00007-5
Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S. & Nabetani, H. (2016). Impact of blanching and freeze-thaw pre-treatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71: 40-46. DOI: 10.1016/J.LWT.2016.03.019
Barrett, D.M., Beaulieu, J.C. & Shewfelt, R. (2010). Colour, flavour, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Critical Reviews in Food Science and Nutrition, 50(5): 369-389. DOI: 10.1080/10408391003626322
Bchir, B., Besbes, S., Attia, H. & Blecker, C. (2012). Osmotic dehydration of pomegranate seeds (Punica Granatum L). Effect of freezing pre-treatment. Journal of Food Process Engineering, 35(3): 335-354. DOI: 10.1111/j.1745-4530.2010.00591.x
Borchani, C., Besbes, S., Masmoudi, M., Bouaziz, M.A., Blecker, C. & Attia, H. (2012). Influence of oven-drying temperature on physicochemical and functional properties of date fibre concentrates. Food and Bioprocess Technology, 5(5): 1541-1551. DOI: 10.1007/s11947-011-0549-z
Castelló, M.L., Fito, P.J. & Chiralt, A. (2010). Changes in respiration rate and physical properties of strawberries due to osmotic dehydration and storage. Journal of Food Engineering, 97(1): 64-71. DOI: 10.1016/J.JFOODENG.2009.09.016
Cerklewski, F.L. (2005). Calcium fortification of food can add unneeded dietary phosphorus. Journal of Food Composition and Analysis, 18(6): 595-598. DOI:10.1016/j.jfca.2004.05. 003
Chavan, U.D. & Amarowicz, R. (2012). Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research, 1(2): 202-209. DOI: 10.5539/jfr.v1n2p202
Chu, Y., Wei, S., Ding, Z., Mei, J. & Xie, J. (2021). Application of ultrasound and curing agent during osmotic dehydration to improve the quality properties of freeze-dried yellow peach (Amygdalus persica) slices. Agriculture, 11(11): 1069. DOI: 10.3390/agriculture11111069
Del Valle, J.M., Aránguiz, V. & León, H. (1998). Effects of blanching and calcium infiltration on PPO activity, texture, microstructure and kinetics of osmotic dehydration of apple tissue. Food Research International, 31(8): 557-569. DOI: 10.1016/S0963-9969(99)00029-0
Deng, L.Z., Mujumdar, A.S., Zhang, Q., Yang, X.H., Wang, J., Zheng, Z.A., Gao, Z.J. & Xiao, H.W. (2019). Chemical and physical pre-treatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9): 1408-1432. DOI: 10.1080/10408398.2017.1409192
Durrani, A. & Verma, S. (2011). Preparation and quality evaluation of honey Amla Murabba. Indian Journal of Science and Technology, 1(1): 41-45.
El-Aouar, A.A., Azoubel, P.M., Barbosa, J.L. & Xidieh Murr, F.E. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering, 75(2): 267-274. DOI: 10.1016/j. jfoodeng.2005.04.016
Falade, K.O. & Adelakun, T.A. (2007). Effect of pre-freezing and solutes on mass transfer during osmotic dehydration and colour of oven-dried African star apple during storage. International Journal of Food Science and Technology, 42(4): 394-402. DOI: 10.1111/j.1365-2621.2006.01228 .x
Falade, K.O., Igbeka, J.C. & Ayanwuyi, F.A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80(3): 979-985. DOI: 10.1016/j.jfoodeng.2006.06.033
Fan, K., Zhang, M., Wang, W. & Bhandari, B. (2020). A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. International Journal of Refrigeration, 113: 49-57. DOI: 10.1016/J.IJREFRIG.2020.02.013
Fernandes, F.A.N., Rodrigues, S., Gaspareto, O.C.P. & Oliveira, E.L. (2006). Optimization of osmotic dehydration of papaya followed by air-drying. Food Research International, 39(4): 492-498. DOI: 10.1016/j.foodres.2005.10.004
Ferrari, C.C., Carmello-Guerreiro, S.M., Bolini, H.M.A. & Hubinger, M.D. (2010). Structural changes, mechanical properties and sensory preference of osmodehydrated melon pieces with sucrose and calcium lactate solutions. International Journal of Food Properties, 13(1): 112-130. DOI: 10.1080/10942910802227934
Gallo, M., Ferrara, L. & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7(164): 1-19. DOI: 10.3390/FOODS7100164
Garcia, C.C., Uchidate, F.S., Silva, K. de S., Covizzi, L.G. & Mauro, M.A. (2021). Blanching of papaya: Effect on osmotic dehydration and characterization of the fruit invertase. Ciencia Rural, 51(9): e20200725. DOI:10.1590/0103-8478cr202 00725
Glenn, G.M. & Poovaiah, B.W. (1990). Calcium-mediated postharvest changes in texture and cell wall structure and composition in “Golden Delicious” apples. Journal of the American Society for Horticultural Science, 115(6): 1-7. DOI: 10.21273/jashs.115.6.962
Guine, R.P.F., Correia, P.M.R., Correia, A.C., Goncalves, F., Brito, M.F.S. & Ribeiro, J.R.P. (2017). Effect of drying temperature on the physical-chemical and sensorial properties of eggplant (Solanum melongena L.). Current Nutrition & Food Science, 14(1): 28-39. DOI: 10.2174/1573401313666170316113359
Holzwarth, M., Wittig, J., Carle, R. & Kammerer, D.R. (2013). Influence of putative polyphenol oxidase (PPO) inhibitors on strawberry (Fragaria x ananassa Duch.) PPO, anthocyanin and colour stability of stored purees. LWT - Food Science and Technology, 52(2): 116-122. DOI:10.1016/J. LWT.2012.10.025
Inam-ur-Raheem, M., Huma, N., Anjum, F.M. & Malik, A.U. (2013). Effect of calcium chloride and calcium lactate on quality and shelf-life of fresh-cut guava slices. Pakistan Journal of Agricultural Sciences, 50(3): 427-431.
Inyang, U.E. & Ike, C.I. (1998). Effect of blanching, dehydration method and temperature on the ascorbic acid, colour, sliminess and other constituents of okra fruit. International Journal of Food Sciences and Nutrition, 49(2): 125-130. DOI: 10.3109/09637489809089392
Ispir, A. & Togrul, I.T. (2009). Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2): 166-180. DOI:10.1016/j.cherd .2008.07.011
Jain, V., Chawla, S., Choudhary, P. & Jain, S. (2019). Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (Ziziphus mauritiana Lamk.) fruits during storage. Journal of Food Science and Technology, 56(10): 4535-4542. DOI: 10.1007/S13197-019-03934-Z
Kader, A.A. (2008). Flavour quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 88(11): 1863-1868. DOI: 10.1002/jsfa.3293
Kentish, S.E. & Ashokkumar, M. (2011). The physical and chemical effects of ultrasound. Springer New York EBooks, 1-12: 1-12. DOI: 10.1007/978-1-4419-7472-3_1
Kethireddipalli, P., Hung, Y.C., Phillips, R.D. & McWatters, K.H. (2002). Evaluating the role of cell wall material and soluble protein in the functionality of cowpea (Vigna unguiculata) pastes. Journal of Food Science, 67(1): 53-59. DOI: 10.1111/j.1365-2621.2002.tb11358.x
Khoualdia, B., Ben-Ali, S. & Hannachi, A. (2020). Pomegranate arils osmotic dehydration: effect of pre-drying on mass transfer. Journal of Food Science and Technology, 57(6): 2129-2138. DOI: 10.1007/S13197-020-04248-1
Kinoshita, T., Nishimura, M. & Shimazaki, K.I. (1995). Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell, 7(8): 1333-1342. DOI: 10.2307/3870106
Kowalska, H., Lenart, A. & Leszczyk, D. (2008). The effect of blanching and freezing on osmotic dehydration of pumpkin. Journal of Food Engineering, 86(1): 30-38. DOI:10.1016/j .jfoodeng.2007.09.006
Kowalski, S.J. & Mierzwa, D. (2011). Influence of preliminary osmotic dehydration on drying kinetics and final quality of carrot (Daucus carota l.). Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa, 32(3): 185-194. DOI: 10.2478/v10176-011-0014-6
Langer, S.E., Marina, M., Burgos, J.L., Martínez, G.A., Civello, P.M. & Villarreal, N.M. (2019). Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). Journal of the Science of Food and Agriculture, 99(8): 4003-4010. DOI: 10.1002/JSFA.9626
Lasekan, O. & Hussein, F.K. (2018). Classification of different pineapple varieties grown in Malaysia based on volatile finger printing and sensory analysis. Chemistry Central Journal, 12(1): 140. DOI: 10.1186/s13065-018-0505-3
Lenart, A. (1996). Osmo-convective drying of fruits and vegetables: technology and application. Drying Technology, 14(2): 391–413. DOI: 10.1080/07373939608917104
Lewicki, P.P. & Pawlak, G. (2003). Effect of drying on microstructure of plant tissue. Drying Technology, 21(4): 657-683. DOI: 10.1081/DRT-120019057
Lobo, M.G. & Yahia, E. (2016). Biology and postharvest physiology of pineapple. Handbook of Pineapple Technology: Postharvest Science, Processing and Nutrition, 39-61. DOI: 10.1002/9781118967355.CH3
Luna-Guzmán, I. & Barrett, D.M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology and Technology, 19(1): 61-72. DOI: 10.1016/s0925-5214(00)00079-x
Martin-Diana, A.B., Rico, D., Frias, J.M., Barat, J.M., Henehan, G.T.M. & Barry-Ryan, C. (2007). Calcium for extending the shelf life of fresh whole and minimally processed fruits and vegetables: a review. In Trends in Food Science and Technology, 18(4): 210-218. DOI: 10.1016/j.tifs .2006.11.027
Mason, T.J., Paniwnyk, L., Chemat, F. & Vian, M.A. (2010). Chapter 10. Ultrasonic Food Processing. The Royal Society of Chemistry EBooks, 387-414. DOI: 10.1039/9781849730976-00387
Mayor, L., Moreira, R. & Sereno, A.M. (2011). Shrinkage, density, porosity and shape changes during dehydration of pumpkin (Cucurbita pepo L.) fruits. Journal of Food Engineering, 103(1): 29-37. DOI: 10.1016/j.jfoodeng.2010.08.031
Mayor, L., Pissarra, J. & Sereno, A.M. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3): 326-339. DOI: 10.1016/j.jfoodeng.2007.06.038
Mieszczakowska-Frąc, M., Dyki, B. & Konopacka, D. (2016). Effects of ultrasound on polyphenol retention in apples after the application of pre-drying treatments in liquid medium. Food and Bioprocess Technology, 9(3): 543-552. DOI: 10.1007/ s11947-015-1648-z
Mohd Ali, M., Hashim, N., Abd Aziz, S. & Lasekan, O. (2020). Pineapple (Ananas comosus): A comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Research International, 137: 1-13. DOI: 10.1016/j.foodres.2020.109675
Monsoor, M.A. (2005). Effect of drying methods on the functional properties of soy hull pectin. Carbohydrate Polymers, 61(3): 362–367. DOI: 10.1016/J.CARBPOL.2005.06.009
Moraga, M.J., Moraga, G., Fito, P.J. & Martínez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering, 90(3): 372-379. DOI: 10.1016/ j.jfoodeng.2008.07.007
Muhammad, N.W.F., Nurrulhidayah, A.F., Hamzah, M.S., Rashidi, O. & Rohman, A. (2020). Physicochemical properties of dragon fruit peel pectin and citrus peel pectin: A comparison. Food Research, 4: 266-273. DOI:10.26656/ fr.2017.4(S1).S14.
Ngamchuachit, P., Sivertsen, H.K., Mitcham, E.J. & Barrett, D.M. (2014). Effectiveness of calcium chloride and calcium lactate on maintenance of textural and sensory qualities of fresh-cut mangos. Journal of Food Science, 79(5): 786-794. DOI: 10.1111/1750-3841.12446
Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A. & Alzamora, S.M. (2013). Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. Journal of Food Engineering, 119(1): 104-114. DOI: 10.1016/J.JFOODENG.2013.04. 032
Osorio, C., Franco, M.S., Castano, M.P., Gonzalez-Miret, M.L., Heredia, F.J. & Morales, A.L. (2007). Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science and Emerging Technologies, 8(3): 353:359. DOI: 10.1016/J.IFSET.2007.03.009
Pereira, L.M., Carmello-Guerreiro, S.M., Bolini, H.M.A., Cunha, R.L. & Hubinger, M.D. (2007). Effect of calcium salts on the texture, structure and sensory acceptance of osmotically dehydrated guavas. Journal of the Science of Food and Agriculture, 87(6): 1149-1156. DOI: 10.1002/ jsfa.2836
Phisut, N., Rattanawedee, M. & Aekkasak, K. (2013). Effect of osmotic dehydration process on the physical, chemical and sensory properties of osmo-dried cantaloupe. International Food Research Journal, 20(1): 189-196.
Phuoc Minh, N., Phu Thuong Nhan, N., Kieu Trinh, T., Minh Huy, N., Dinh Khoi, T. & Truong Son, L. (2019). Effect of blanching, drying and storage to cinnamic acid and antioxidant activity on dried strawberry (Fragaria). Journal of Pharmaceutical Sciences and Research, 11(3): 1021-1024.
Prajapati, U., Asrey, R., Varghese, E. & Sharma, R.R. (2021). Effects of calcium lactate on postharvest quality of bitter gourd fruit during cold storage. Physiology and Molecular Biology of Plants, 27(8): 1811-1821. DOI: 10.1007/S12298-021-01045-8
Prinzivalli, C., Brambilla, A., Maffi, D., lo Scalzo, R. & Torreggiani, D. (2006). Effect of osmosis time on structure, texture and pectic composition of strawberry tissue. European Food Research and Technology, 224(1): 119-127. DOI: 10.1007/ S00217-006-0298-9
Quiles, A., Hernando, I., Perez-Munuera, I., Llorca, E., Larrea, V. & Angeles Lluch, M. (2004). The effect of calcium and cellular permeabilization on the structure of the parenchyma of osmotic dehydrated “Granny Smith” apple. Journal of the Science of Food and Agriculture, 84(13): 1765-1770. DOI: 10.1002/jsfa.1884
Ramya, V. & Jain, N.K. (2017). A review on osmotic dehydration of fruits and vegetables: An integrated approach. Journal of Food Process Engineering, 40(3): 1-22. DOI: 10.1111/jfpe. 12440
Revati Rajanya, D. & Singh, G. (2021). Recent trends in osmotic dehydration of fruits: A review. Plant Archives, 21(1). DOI: 10.51470/plantarchives .2021.v21.no1.013
Rubio-Senent, F., Rodriguez-Gutierrez, G., Lama-Munoz, A. & Fernandez-Bolanos, J. (2015). Pectin extracted from thermally treated olive oil by-products: Characterization, physicochemical properties, invitro bile acid and glucose binding. Food Hydrocolloids, 43: 311-321. DOI: 10.10 16/J.FOODHYD.2014.06.001
Ruiz-Ojeda, L.M. & Penas, F.J. (2013). Comparison study of conventional hot-water and microwave blanching on quality of green beans. Innovative Food Science and Emerging Technologies, 20: 191-197. DOI: 10.1016/J.IFSET.2013.09.009
Sanchez-Zapata, E., Fernandez-Lopez, J., Penaranda, M., Fuentes-Zaragoza, E., Sendra, E., Sayas, E. & Perez-Alvarez, J.A. (2011). Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product. Food Research International, 44(7): 2401-2407. DOI: 10.1016/J. FOODRES.2010.04.034
Sarabo, Z., Hanafi, N., Rosli, M.H., Rashid, S.M.R.A., Mohd Ropi, N.A., Hasham, R., Sarmidi, M.R., Cheng, K.K. & Othman, N.H. (2021). Effect of different pre-treatments on the physicochemical properties of freeze-dried Ananas comosus L. Materials Today: Proceedings, 42: 229-233. DOI: 10.1016/j.matpr .2020.11.971
Selani, M.M., Bianchini, A., Ratnayake, W.S., Flores, R.A., Massarioli, A.P., de Alencar, S.M. & Canniatti Brazaca, S.G. (2016). Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods for Human Nutrition, 71(2): 137-144. DOI: 10.1007/s11130-016-0531-z
Serrano, M., Martinez-Romero, D., Castillo, S., Guillen, F. & Valero, D. (2004). Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biology and Technology, 34(2): 155-167. DOI: 10.1016/J.POSTHARVBIO.2004.05. 004
Silva, K.S., Fernandes, M.A. & Mauro, M.A. (2014). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134: 37-44. DOI: 10.1016/j. jfoodeng.2014.02.020
Sousa, P.H.M., Souza Neto, M.A., Maia, G.A., Souza Filho, M.S.M. & Figueiredo, R.W. (2003). Osmotic dehydration of fruits. Bulletin of the Brazilian Society of Food Science and Technology, 37: 94-100.
Sripinyowanich, J. & Noomhorm, A. (2013). Effects of freezing pre-treatment, microwave-assisted vibro-fluidized bed drying and drying temperature on instant rice production and quality. Journal of Food Processing and Preservation, 37(4): 314-324. DOI: 10.1111/J.1745-4549.2011.00651.X
Stone, M.B., Toure, D., Greig, J.K. & Naewbanij, J.O. (1986). Effects of pre-treatment and dehydration temperature on colour, nutrient retention and sensory characteristics of okra. Journal of Food Science, 51(5): 1201-1203. DOI: 10.1111/j.1365-2621.1986.tb13084.x
Suresh, K. & Sagar, V.R. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Mysore J Food Sci Technol, 47(1): 15-26. DOI: 10.1007/s13197-010-0010-8
Taiwo, K.A. & Adeyemi, O. (2009). Influence of blanching on the drying and rehydration of banana slices. African Journal of Food Science, 3(10): 307-315.
Talens, P., Martínez-Navarrete, N., Fito, P. & Chiralt, A. (2002). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3(2): 191-199. DOI: 10.1016/ S1466-8564(02)00027-9
Techakanon, C. & Barrett, D.M. (2017). The effect of calcium chloride and calcium lactate pre-treatment concentration on peach cell integrity after high-pressure processing. International Journal of Food Science and Technology, 52(3): 635-643. DOI: 10.1111/ijfs.13316
Tedjo, W., Taiwo, K.A., Eshtiaghi, M.N. & Knorr, D. (2002). Comparison of pre-treatment methods on water and solid diffusion kinetics of osmotically dehydrated mangos. Journal of Food Engineering, 53(2): 133-142. DOI: 10.1016/S0260-8774 (01)00149-2
Telis, V.R.N., Telis-Romero, J. & Gabas, A.L. (2005). Solids rheology for dehydrated food and biological materials. Drying Technology, 23(4)- 759-780. DOI: 10.1081/DRT-200054190
Thakur, R.J., Shaikh, H., Gat, Y. & Waghmare, R.B. (2019). Effect of calcium chloride extracted from eggshell in maintaining quality of selected fresh-cut fruits. International Journal of Recycling of Organic Waste in Agriculture, 8: 27-36. DOI: 10.1007/S40093-019-0260-Z
Tortoe, C. (2010). A review of osmodehydration for food industry. African Journal of Food Science, 4(6): 303324.
Troyo, R.D. & Acedo, A.L. (2019). Effects of calcium ascorbate and calcium lactate on quality of fresh-cut pineapple (Ananas comosus). International Journal of Agriculture, Forestry and Life Sciences, 3(1): 143-150.
Udomkun, P., Mahayothee, B., Nagle, M. & Müller, J. (2014). Effects of calcium chloride and calcium lactate applications with osmotic pre-treatment on physicochemical aspects and consumer acceptances of dried papaya. International Journal of Food Science and Technology, 49(4): 1122-1131. DOI: 10.1111/ijfs.12408
Vishwanathan, K.H., Giwari, G.K. & Hebbar, H.U. (2013). Infrared assisted dry-blanching and hybrid drying of carrot. Food and Bioproducts Processing, 91(2): 89-94. DOI: 10.1016/J. FBP.2012.11.004
Wei, C.B., Liu, S.H., Liu, Y.G., Zang, X.P., Lu, L.L. & Sun, G.M. (2011). Changes and distribution of aroma volatile compounds from pineapple fruit during postharvest storage. Acta Horticulturae, 902: 431-436. DOI: 10.17660/ACTAHORTIC .2011.902.53
Yadav, A.K. & Singh, S.V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9): 1654-1673. DOI: 10.1007/s13197-012-0659-2
Yang, H.Y. & Lawless, H.T. (2005). Descriptive analysis of divalent salts. Journal of Sensory Studies, 20(2): 97-113. DOI: 10.1111/j.1745-459x.2005.00005.x
Zhao, J.H., Hu, R., Xiao, H.W., Yang, Y., Liu, F., Gan, Z.L. & Ni, Y.Y. (2014). Osmotic dehydration pre-treatment for improving the quality attributes of frozen mango: Effects of different osmotic solutes and concentrations on the samples. International Journal of Food Science and Technology, 49(4): 960-968. DOI: 10.1111/ijfs.1238
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.