Effect of Thermal Treatment on Kelulut Honey Towards the Physicochemical, Antioxidant and Antimicrobial Properties

Keywords: Antibacterial, antioxidant, stingless bee honey, thermal treatment


Heat treatment on commercial honey could deteriorate its quality associated with physicochemical and bioactive capacities. In this study, the effects of thermal treatment (50 °C, 75 °C and 90 °C) on the physicochemical properties (i.e., pH, colour intensity), total phenolic content and total flavonoid content were investigated on the Kelulut honey. The results revealed a significant increase in TFC (0.154 mg QE/g honey) for the heat-treated Kelulut honey compared to the control (0.085 mg QE/g honey). The antioxidant activity of the heat-treated honey revealed an increase in 2, 2- Diphenyl-1-picrylhydrazyl levels by 42%, while the ferric reducing antioxidant power levels were reduced significantly by 22.4% compared to the untreated honey. The antimicrobial activities of heat-treated honey declined against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella typhi bacteria at 75 °C and 90 °C. Based on the effects observed in the bioactive capacities of the heat-treated honey, it is therefore recommended to minimize thermal treatment on the honey during the processing to maintain its natural nutritional quality and benefit consumers.


Abd Jalil, M.A., Kasmuri, A.R. & Hadi, H. (2017). Stingless bee honey, the natural wound healer: A review. Skin Pharmacology and Physiology, 30: 66-75.


Akgün, N., Çelik, Ö.F. & Kelebekli, L. (2021). Physicochemical properties, total phenolic content, and antioxidant activity of chestnut, rhododendron, acacia and multifloral honey. Journal of Food Measurement and Characterization, 26: 1-8.


Al, M.L., Daniel, D., Moise, A., Bobis, O., Laslo, L. & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4): 863-867.


Ali, H., Abu Bakar, M.F., Majid, M., Muhammad, N. & Lim, S.Y. (2020). In vitro antidiabetic activity of stingless bee honey from different botanical origins. Food Research, 4(5): 1421-1426.


Almasaudi, S.B., Al-Nahari, A.A.M., Abd El-Ghany, E.S.M., Barbour, E., Al Muhayawi, S.M., Al-Jaouni, S., Azhar, E., Qari, M., Qari, Y.A. & Harakeh, S. (2017). Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi Journal of Biological Sciences, 24(6): 1255-1261.


Azlim Almey, A.A., Ahmed Jalal Khan, C., Syed Zahir, I., Mustapha Suleiman, K., Aisyah, M.R. & Kamarul Rahim, K. (2010). Total phenolic content and primary antioxidant activity of methanolic and ethanolic extracts of aromatic plants' leaves. International Food Research Journal, 17(4): 1077-1084.

Boussaid, A., Chouaibi, M., Rezig, L., Hellal, R., Donsì, F., Ferrari, G. & Hamdi, S. (2018). Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry, 11(2): 265-274.


Braghini, F., Biluca, F.C., Gonzaga, L.V., Kracik, A.S., Vieira, C.R.W., Vitali, L., Micke, G.A., Costa, A.C.O. & Fett, R. (2019). Impact of short-term thermal treatment on stingless bee honey (Meliponinae): Quality, phenolic compounds and antioxidant capacity. Journal of Food Processing and Preservation, 43(7): 1-8.


Carciochi, R.A., Galván, D., Alessandro, L. & Manrique G.D. (2016). Effect of roasting conditions on the antioxidant compounds of quinoa seeds. International Journal of Food Science Technology, 51(4): 1018-1025.


Chan, B.K., Haron, H., Talib, R.A. & Subramaniam, P. (2017). Physical properties, antioxidant content and anti-oxidative activities of Malaysian Stingless Kelulut (Trigona spp.) honey. Journal of Agricultural Science, 9(13): 32-40.


Chen, C., Campbell, L.T., Blair, S.E. & Carter, D.A. (2012). The effect of standard heat and filtration processing procedures on antimicrobial activity and hydrogen peroxide levels in honey. Frontiers in Microbiology, 3: 1-8.


Chong, K.Y., Chin, N.L. & Yusof. Y.A. (2017). Thermosonication and optimization of stingless bee honey processing. Food Science and Technology International, 23(7): 608-622.


Chua, L.S., Adnan, N.A., Abdul-Rahaman, N.L. & Sarmidi, M.R. (2014). Effect of thermal treatment on the biochemical composition of tropical honey samples. International Food Research Journal, 21(2): 773-778.

Cooper, R.A., Jenkins, L., Henriques, A.F., Duggan, R.S. & Burton, N.F. (2010). Absence of bacterial resistance to medical-grade manuka honey. European Journal of Clinical Microbiology, 29(10): 1237-1241.


Diva, A.N., Pratami, D.K., Wijanarko, A., Hermansyah, H. & Sahlan, M. (2019). Effect of ethanolic propolis extract from Tetragonula biroi bees on the growth of human cancer cell lines HeLa and MCF-7. AIP Conference Proceedings, 2092(1): 1-6.


Elamine, Y., Anjos, O., Estevinho, L.M., Lyoussi, B., Aazza, S. & Miguel, M.G. (2020). Effect of extreme heat processing on the Moroccan Zantaz' honey antioxidant activities. Journal of Food Science and Technology, 57(9): 3323-3333.


Froschle, M., Horn, H. & Spring, O. (2018). Characterization of Jatropha curcas honeys originating from the southern highlands of Madagascar. LWT - Food Science and Technology, 93: 525-533.


Iqbal, M., Fan, T.P., Watson, D. Alenezi, S., Saleh, K. & Sahlan, M. (2019). Preliminary studies: the potential antiangiogenic activities of two Sulawesi Island (Indonesia) propolis and their chemical characterization. Heliyon, 5(7): 1-12.


Ismail, M.M. (2014). Competitiveness of beekeeping industry in Malaysia, Inaugural Lecture Series. Serdang: Universiti Putra Malaysia. Pp. 1-70.

Lindquist E. & Yang Y. (2011). Degradation of benzoic acid and its derivatives in subcritical water. Journal of Chromatography A, 1218(15): 2146-2152.


Mahnot, N.K., Saikia, S. & Mahanta, C.L. (2019). Quality characterization and effect of sonication time on bioactive properties of honey from North East India. Journal of Food Science and Technology, 56(2): 724-736.


Miyata, R., Sahlan, M., Ishikawa, Y., Hashimoto, H., Honda, S. & Kumazawa, S. (2019). Propolis components from stingless bees collected on South Sulawesi, Indonesia, and their xanthine oxidase inhibitory activity. Journal of Natural Products, 82: 205-210.


Moniruzzaman, M., An, C., Rao, P., Hawlader, M., Mohd Azlan, S., Sulaiman, S. & Gan, S. (2014). Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Research International, 2014: 1-11.


Moniruzzaman, M., Khalil, I., Sulaiman, S.A. & Gan, S.H. (2013). Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complementary and Alternative Medicine, 13(43): 1-12.


Nayik, G.A. & Nanda, V. (2016). Effect of thermal treatment and pH on antioxidant activity of saffron honey using response surface methodology. Food Measure, 10(1): 64-70.


Ngaini, Z., Hussain, H., Kelabo, E.S., Wahi, R. & Farooq, S. (2021a). Chemical profiling, biological properties and environmental contaminants of stingless bee honey and propolis. Journal of Apicultural Research, 1-17.


Ngaini, Z., Kelabo, E.S., Hussain, H. & Wahi, W. (2021b). High therapeutic properties of honey from the Borneo stingless bee, Heterotrigona itama. International Journal of Current Research, 13(4): 100-107.


Nijveldt, RJ., Van Nood, E.L.S., Van Hoorn, D.E., Boelens, P.G., Van Norren, K. & Van Leeuwen, P.A. (2001). Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74(4): 418-425.


Onyeka, O., Okeke, M.U., Ezejiofor, C.C. & Ndubuisi, J.O. (2018). Antimicrobial activity of honeys from Nsukka and Ugwuaji in Enugu state, on selected pathogenic bacteria isolated from wound. Advances in Analytical Chemistry, 8(1): 6-9.

Rao, P.V., Krishnan, K.T., Salleh, N. & Gan, S.H. (2016). Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Revista Brasileira de Farmacognosia, 26(5): 657-664.


Romainor, A.N.B., Chin, S.F., Pang, S.C. & Bilung, L.M. (2014). Preparation and characterization of chitosan nanoparticles-doped cellulose films with antimicrobial property. Journal of Nanomaterials, 2014: 1-10.


Sahlan, M., Mahira, K.F., Wiratama, I., Mahadewi, A.G., Yohda, M., Hermansyah, H. & Noguchi, K. (2019). Purification and characterization of proteins in multifloral honey from Kelulut bee (stingless bee). Heliyon, 5: 1-11.


Šarić, G., Marković, K., Vukičević, D., Lež, E., Hruškar, M. & Vahčić, N. (2013). Changes of antioxidant activity in honey after heat treatment. Czech Journal of Food Sciences, 31(6): 601-606.


Shapla, U.M., Solayman, M., Alam, N., Khalil, M.I. & Gan, S.H. (2018). 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal, 12(35): 1-18.


Shen, Q., Zhang, B., Xu, R., Wang, Y., Ding, X. & Li, P. (2010). Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe, 16(4): 380-386.


Singh, I. & Singh, S. (2018). Honey moisture reduction and its quality. Journal of Food Science and Technology, 55(10): 3861-3871.


Stojković, M., Cvetković, D., Savić, A., Topalić-Trivunović, L., Velemir, A., Papuga, S. & Žabić, M. (2020). Changes in the physicochemical, antioxidant and antibacterial properties of honeydew honey subjected to heat and ultrasound pretreatments. Journal of Food Science and Technology, 58: 2555-2566.


Subramanian, R., Hebbar H.U. & Rastogi, N.K. (2007). Processing of honey: A review. International Journal of Food Properties, 10(1): 127-143.


Sulaiman, N.H.I. & Sarbon, N.M. (2020). Physicochemical, antioxidant and antimicrobial properties of selected Malaysian honey as treated at different temperature: A comparative study. Journal of Apicultural Research, 1-9.


Turkmen, N., Sari, F., Poyrazoglu, E.S. & Velioglu, Y.S. (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry, 95(4): 653-657.


Turhan, I., Tetik, N., Karhan, M., Gurel, F. & Tavukcuoglu, H.R. (2008). Quality of honeys influenced by thermal treatment. LWT-Food Science and Technology, 41(8): 1396-1399.


Wiegand, I., Hilpert, K. & Hancock, R.E.W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2): 163-175.


Yan, S., Sun, M., Zhao, L., Wang, K., Fang, X., Wu, L. & Xue, X. (2019). Comparison of differences of α‑dicarbonyl compounds between naturally matured and artificially heated acacia honey: Their application to determine honey quality. Journal of Agricultural and Food Industry, 67: 12885-12894.


Zarei, M., Fazlara, A. & Tulabifard, N. (2019). Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon, 5(6): 1-6.


Zhishen, J., Mengcheng, T. & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4): 555-559.


How to Cite
MARDHIAH MOHD SHAHABUDDIN, MOHD ALHAFIIZH ZAILANI, WAN ROSLINA WAN YUSOF, & NOORASMIN MOKHTAR AHMAD. (2022). Effect of Thermal Treatment on Kelulut Honey Towards the Physicochemical, Antioxidant and Antimicrobial Properties. Borneo Journal of Resource Science and Technology, 12(2), 39-47. https://doi.org/10.33736/bjrst.4645.2022