Comparative Diversity of Bats in Two Contrasting Habitats in Terengganu
DOI:
https://doi.org/10.33736/bjrst.4559.2022Keywords:
Dipterocarp forest, fruit bats, insect bats, Kenyir, Malaysia, plantation, SetiuAbstract
Differentiations in the habitat and resource utilisation lead to segregation and specialisation of niches for bats within the structurally complex tropical rainforest in Malaysia. This research aims to characterise chiropterans’ assemblages found in two different habitat types in Tasik Kenyir (dipterocarp forest) and Setiu (oil palm plantation). A total of 48 sampling nights were conducted within two years period from March 2017 to March 2019 which covered four sampling sites in Tasik Kenyir and four sites at Setiu. Two standard four-bank harp traps and 10 mist nets were deployed throughout the study at every site to capture bats at understory levels. This makes a total of 576 sampling efforts for both areas. Song Meter SM2bats and Echo Meter Touch from Wildlife Acoustic were used to record the echolocation of insectivorous bats. The total number of individuals and species observed were used to determine species diversity, richness, and evenness. Paleontological statistic software was used to generate the rank abundance and species accumulation curves. Bray-Curtis similarity index was used to generalise the index that represents the relative abundance of the sampling sites. A total of 835 individuals comprising 31 species from six families were captured at both study areas. Out of 835 individuals, 695 were captured within Tasik Kenyir comprising 27 species from six families (H = 2.381) while 140 individuals were captured in Setiu comprising 20 species from five families (H = 2.40). The diversity of bats in Tasik Kenyir was hypothesised to be higher than in Setiu as the habitat possess a larger undisturbed forest. However, the result showed the opposite in which no significant difference was detected from the diversity index calculated between these two areas. Detailed studies need to be conducted to determine if some areas are used as transient habitats for bats.
References
Abdullah, M.T. & Hall, L.S. (1997). Abundance and distribution of fruit bats and other mammals in the tropical forest canopy in Borneo. Sarawak Museum Journal, 79: 268-269.
Bernard, E. (2001). Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Journal of Tropical Ecology, 17: 115-126.
https://doi.org/10.1017/S0266467401001079
Bruhl, C.A., Eltz, T. & Linsemair, K.E. (2003). Size does matter- effects of tropical rainforest fragmentation on the leaf litter ant community in Sabah, Malaysia. Biodiversity and Conservation, 12: 1371-1389.
Corbet, G.B. & Hill, J.E. (1992). The mammals of the Indomalayan region: a systematic review. New York: Oxford University Press.
Francis, C.M. (2008). A field guide to the mammals of South-East Asia. New Holand, United Kingdom: New Holand Publisher (UK) Ltd.
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological statistic software package for education and data analysis. Palaeontologia Electronica, 4(1): 1-9.
Hill, J.L. & Hill, R.A. (2001). Why are tropical rain forests so species rich? Classifying, reviewing and evaluating theories. Progress in Physical Geography, 25(3): 326-354. DOI:10.1177/03091 3330102500302
https://doi.org/10.1191/030913301680193805
Hodgkison, R., Balding, S.T., Zubaid, A. & Kunz, T.H. (2004). Temporal variation in the relative abundance of fruit bats (Megachiroptera: Pteropodidae) in relation to the availability of food in a lowland Malaysian rain forest. Biotropica, 36(4): 522-533.
https://doi.org/10.1111/j.1744-7429.2004.tb00347.x
Hutcheson, K. (1970). A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29: 151-154. DOI:10.1016 /00 22-5193(70)90124-4
https://doi.org/10.1016/0022-5193(70)90124-4
IUCN (2021). The IUCN Red List of Threatened Species. Version 2021-1. https://www.iucnredlist .org. Accessed on 22nd August 2021
Jamilah, M.S., Faridah, M. & Rohani, S. (2015). Setiu: More than a wetland. In Faridah, M., Jamilah, M.S., Jarina, M.J. and Rohani, S. (Eds.) Setiu wetlands species, ecosystems and livelihoods. Terengganu, Penerbit Universiti Malaysia Terengganu. pp. 87-100.
Jayaraj, V.K., Ketol, B, Marni, W., Sait, I., Mohamad Jalanim, M., Khan, F.A.A., Fong, P.H., Hall, L.S. & Abdullah, M.T. (2011). Comparative distribution and diversity of bats from selected localities in Sarawak. Borneo Journal of Resource Science and Technology, 1: 1-13.
Jones, K.E., Purvis, A., MacLarnon, A., Bininda-Emonds, O.R.P. & Simmons, N. (2002). A phylogenetic super-tree of the bat (Mammalia: Chiroptera). Biological Review, 77: 223-259.
https://doi.org/10.1017/S1464793101005899
Kate, A.T., Kuepper, B. & Piotrowski, M. (2021). Oil palm expansion in Peninsular Malaysia is guided by non-transparency. Retrieved from https://chainreactionresearch.com/report/oil-palm -expansion-in-peninsular-malaysia-is-guided-by-non-transparency
Khalib, N.K.A., Shafie, N.J, Basri, H.H., Nelson, B.R. & Abdullah, M.T. (2018). Non-volant small mammal data from fragmented forests in Terengganu State, Data-in-Brief, 21: 1514-1520. DOI:10.1016/j.dib.2018.10.061.
https://doi.org/10.1016/j.dib.2018.10.061
Kingston, T., Francis, C.M., Zubaid, A. & Kunz, T.H. (2003). Species richness in an insectivorous bat assemblage from Malaysia. Journal of Tropical Ecology, 19: 67-69.
https://doi.org/10.1017/S0266467403003080
Kingston, T., Lim, B.L. & Akbar, Z. (2009). Bats of Krau Wildlife Reserve. Bangi, Penerbit Universiti Kebangsaan Malaysia.
Kunz, T.H., De Torrez, E.B., Bauer, D., Lobova, T. & Fleming, T.H. (2011). Ecosystem services provided by bats. Annals of the New York Academy of Science, 1223(1): 1-38.
https://doi.org/10.1111/j.1749-6632.2011.06004.x
Kushairi Din, A. (2017). Malaysian Oil Palm Industry Performance 2016 and Prospects for 2017". Malaysian Palm Oil Board. Retrieved 10 September 2021.
Lockwood, J.L. & McKinney, M.L. (2001). Biotic homogenization: a sequential and selective process. In Lockwood, J.L. & McKinney, M. (eds.) Biotic homogenization. New York: Kluwer Academic. pp. 1-17.
https://doi.org/10.1007/978-1-4615-1261-5
Malaysian Palm Oil Board (MPOB) (2021). Retrieved from https://bepi.mpob.gov.my/index. php/en/?option=com_content&view=category&id=115
Mazlan, N., Tan, C.F., Kamaruzzaman, M.A., Adrus, M. & Abdullah, M.T. (2015). Survey of small mammals in Bukit Taat, Tasik Kenyir, Hulu Terengganu, Malaysia. Borneo Journal of Resource Science and Technology, 5(2): 79-83.
https://doi.org/10.33736/bjrst.225.2015
McKinney, M.L. & Lockwood, J.L. (1999). Biotic homogenization: a few inners replacing many losers in the next mass extinction. Trends in Ecology and Evolution, 14: 450-453.
https://doi.org/10.1016/S0169-5347(99)01679-1
Mohd-Azlan, J., Neuchlos, J. & Abdullah, M.T. (2005). Diversity of chiropterans in limestone forest area, Bau, Sarawak. Malaysian Applied Biology, 34(1): 59-64.
Morni, M.H., Tahir, N.F.D.A., Rosli, Q.S., Dee, J.W., Azhar, I., Roslan, A., Zahidin M.A., Abdullah, M.T. & Khan, F.A.A. (2016). New record of Rhinolophus chiewkweeae (Chiroptera: Rhinolophidae) from the east coast of Peninsular Malaysia with new information on their echolocation calls, genetics and their taxonomy. Raffles Bulletin of Zoology, 64: 242-249.
Muhammad, N.H.Z., Low, S.Y., Shukri, S.N.S.M., Samah, A.H.A., Basri, H.Z.H., Shuhaimi, M.H.M., Hamzah, H.N., Zahidin, M.A., Ariffin, M.S.A. & Zalipah, M.N. (2021). Flower visiting bats and durian trees: Species richness and population size. Journal of Sustainability Science and Management, 16(5): 80-90. DOI:10.46754/ jssm.2021.07.006
https://doi.org/10.46754/jssm.2021.07.006
Nor Zalipah, M., Roslan, A., Senawi, J., Jayaraj, V.K., Azhar, M.I., Abdullah, M.T. & Lim, B.L. (2018). Checklist of small mammals of Hulu Terengganu, Terengganu. In Abdullah, M.T., Mohammad, A., Nor Zalipah, M. and Lola, M.S. (Eds.). Greater Kenyir landscape, social development and environmental sustainability: From ridge to reef. Switzerland, Springer Nature. pp. 191-200.
https://doi.org/10.1007/978-3-319-92264-5_18
Norberg, M. & Rayner, J.M.V. (1987). Ecological morphology and flight in bats (Mammalia: Chiroptera)-wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society London, 316: 337-419.
https://doi.org/10.1098/rstb.1987.0030
Olden, J.D. & Poff, N.L. (2003). Toward a mechanistic understanding and prediction of biotic homogenization. American Naturalist, 162: 442-460.
https://doi.org/10.1086/378212
Omar, N.I., Abd Latif, M., Shamsul, N., Sharif Katullah, M.I., Basri, H.H., Mazlan, A.A., Azmi, N.F., Ering, R., Abdullah, S., Anuar, H., Ismail, N.A., Ahmad, M.H., Mohammad Shah, M.N., Mohd Johan, K.B. & Abdullah, M.T. (2019). Rapid assessment and taxonomic checklist of vertebrates at the foot of Gunung Tebu Forest Reserve, Terengganu. In Abdullah, M.T., Mohammad, A., Nor Zalipah, M. & Lola, M.S. (eds.) Greater Kenyir landscapes. Social development and environmental sustainability: From ridge to reef. Switzerland, Springer Nature. pp. 201-217.
https://doi.org/10.1007/978-3-319-92264-5_19
Payne, J. & Francis, C.M. (2007). A field guide to the mammals of Borneo. Kota Kinabalu: The Sabah Society and WWF Malaysia.
Phillipps, Q. & Phillipps, K. (2016). Phillipps' field guide to the mammals of Borneo and their ecology: Sabah, Sarawak, Brunei, and Kalimantan. Oxford, United Kingdom: John Beaufoy Publishing Ltd. pp. 400.
Podong, C. & Poolsiri, R. (2013). Forest structure and species diversity of secondary forest after cultivation in relation to various sources at lower northern Thailand. Proceedings of the International Academy of Ecology and Environmental Sciences, 3(3): 208-218.
Pounsin, G., Wahab, N.S., Roslan A., Zahidin, M.A., Pesiu, E., Tamrin, N.A. & Abdullah, M.T. (2018). Diversity of bats in contrasting habitats of Hulu Terengganu dipterocarp forest and Setiu Wetland BRIS Forest with a note on preliminary study of vertical stratification of Pteropodid bats. Tropical Life Sciences Research, 29(1): 51-69.
https://doi.org/10.21315/tlsr2018.29.1.4
Ramlee, M.N.A., Hussin, M.F., Roslan, A., Rosmidi, F.H., Pesiu, E., Rahim, N.A.A., Ahmad, N.I.I., David, G., Zakaria, A.A., Adanan, N.A., Basri, H.H., Ariffin, M.S.A., Bartholomew, C.V., Zahidin, M.A., Lola, M.S. & Abdullah, M.T. (2020). Conspectus of flora, fauna and micro-climate data in Tasik Kenyir from Mac 2015-February 2016. Data-in-Brief, 29: 105328. DOI:10.1016/j.dib.2020.105328.
https://doi.org/10.1016/j.dib.2020.105328
Roslan, A. (2017). Species richness of bats and vertical stratification of pteropodid bats in relation to wing morphology in East Coast of Peninsular Malaysia. (Masters' thesis), Universiti Malaysia Terengganu.
Roslan, A., David, G., Zahidin M.A., Rosmidi, F.H., Ahmad, N.I.I. & Abdullah, M.T. (2016). A new distributional record of Chaerephon johorensis (Chiroptera: Mollosidae) at Belukar Bukit, Hulu Terengganu, Terengganu, Malaysia. Journal of Wildlife and Parks, 31: 61-65.
Shafie, N.J., Sah, S.A., Latip, N.S., Azman, N.M. & Khairuddin, N.L. (2011). Diversity pattern of bats at two contrasting habitat types along Kerian River, Perak, Malaysia. Tropical Life Sciences Research, 22(2): 13-22.
Shazali, N., Chew, T.H., Shamsir, M.S., Tingga, R.C.T., Mohd Ridwan, A.R. & Khan, F.A.A. (2017) Assessing bat roosts using the LiDAR system at Wind Cave Nature Reserve in Sarawak, Malaysian Borneo. Acta Chiropterologica, 19(1): 199-210.
https://doi.org/10.3161/15081109ACC2017.19.1.016
World Wildlife Fund -WWF. (n.d.). Deforestation and Forest Degradation | Threats | WWF. World Wildlife Fund. https://www.worldwildlife.org/ threats/deforestation-and-forest-degradation
Yoshiyuki, M. & Lim, B.L. (2005). A new horseshoe bat, Rhinolophus chiewkweeae (Chiroptera, Rhinolophidae), from Malaysia. Bulletin of the National Science Museum Tokyo, 31: 29-36.
Zakaria, N., Tarmizi, A.A., Zuki, M.A.T., Ahmad, A., Mamat, M.A. & Abdullah, M.T. (2020). Bats data from fragmented forests in Terengganu State, Malaysia. Data in Brief, 30: 105567.
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.