Potential of Trichoderma and AMF Mixture with Different Types of Fertiliser for Durio zibethinus Murray (Durian) and Artocarpus heterophyllus Lam. (Jackfruit) Growth

Authors

  • JULIA NELSON Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
  • GABRIEL TONGA NOWEG Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak 94300 Kota Samarahan
  • ISMAIL JUSOH Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

DOI:

https://doi.org/10.33736/bjrst.4495.2022

Keywords:

Fertiliser, growth, mycorrhizal fungi, sustainable, Trichoderma

Abstract

Over the years, the co-inoculation of Trichoderma and arbuscular mycorrhizal fungi (AMF) with different types of fertiliser in a field condition has been understudied. This study explores the potential of Trichoderma and AMF mixture (T-AMF) with different types of fertiliser for plant growth with the objectives to: (i) analyse the growth of Durio zibethinus and Artocarpus heterophyllus fertilised with different types of fertiliser and inoculated with T-AMF and (ii) determine the optimal combination of organic and chemical fertiliser with T-AMF. A randomized complete block design was applied using seven treatments namely, 50 g organic fertiliser (OF) + T-AMF, 100 g OF + T-AMF, 50 g chemical fertiliser (CF) + T-AMF, 100 g CF + T-AMF, 100 g OF,  100 g CF, and  control (without fertiliser and T-AMF). The growth analysis of D. zibethinus showed the highest mean height was at 100 g OF with T-AMF, stem diameter at 100 g CF with T-AMF, and the number of leaves at 50 g CF with T-AMF. For A. heterophyllus, the highest mean height and stem diameter was at 50 g OF with T-AMF and the number of leaves at 100 g OF with T-AMF. The optimal combination of fertiliser with T-AMF for D. zibethinus’ height was 100 g OF and number of leaves was 50 g CF.  The optimal combination of fertiliser with T-AMF for A. heterophyllus’ height and stem diameter was 50 g OF. The optimal combination for its number of leaves was 100 g OF with T-AMF. This concludes that the application of fertiliser with T-AMF reacted differently to plant species and their growth parameters. The co-inoculation of Trichoderma and AMF may present a cheaper and sustainable alternative, especially when the planting scale is huge.

References

Babu, A.G., Shea, P.J. & Oh, B.T. (2014). Trichoderma sp. PDR1-7 promotes Pinus sylvestris reforestation of lead-contaminated mine tailing sites. Science of The Total Environment, 476-477: 561-567.

https://doi.org/10.1016/j.scitotenv.2013.12.119

Barman, J., Samanta, A., Saha, B. & Datta, S. (2016). Mycorrhiza: The oldest association between plant and fungi. Resonance, 21(12): 1093-1104.

https://doi.org/10.1007/s12045-016-0421-6

Barua, S., Molla, A.H., Haque, M.M. & Alam, M.S. (2018). Performance of Trichoderma-enriched bio-organic fertiliser in N supplementation and bottle gourd production in field condition. Horticulture International Journal, 2(3): 106-114.

https://doi.org/10.15406/hij.2018.02.00036

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. & Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10: 1068.

https://doi.org/10.3389/fpls.2019.01068

Berruti, A., Lumini, E., Balestrini, R. & Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilisers: Let's benefit from past successes. Frontiers in Microbiology, 6(1559): 1.

https://doi.org/10.3389/fmicb.2015.01559

Castilo, A.G., Puig, C.G. & Cumagun, C.J.R. (2019). Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium Wilt in banana. Pathogens, 8(43): 1-8.

https://doi.org/10.3390/pathogens8020043

Danarto, S.A. & Budiharta, S. (2019). Tree species preference and rehabilitation perspective by local community: Case study in Bondowoso, East Java, Indonesia. Asian Journal of Forestry, 3(2): 54-63.

https://doi.org/10.13057/asianjfor/r00300202

Dehariya, K., Shukla, A., Sheikh, I.A. & Vyas, D. (2015). Trichoderma and arbuscular mycorrhizal fungi based biocontrol of Fusarium udum Butler and their growth promotion effects on pigeon pea. Journal of Agricultural Science and Technology, 17(2): 505-517.

dos Santos, M.F., dos Santos, L.E., da Costa, D.L., Viera, T.A. & Lustosa, D.C. (2020). Trichoderma spp. on treatment of Handroanthus serratifolius seeds: Effect on seedling germination and development. Heliyon, 6: e04044.

https://doi.org/10.1016/j.heliyon.2020.e04044

Duaja, M.D., Kartika, E. & Lizawati, L. (2019). Application of indigenous AMF from ex-coal mining soil combined with phosphorus fertilisers to improved oil palm seedling growth (Elaeis guineensis Jacq.). Biogenesis: Jurnal Ilmiah Biologi, 7(1): 38.

https://doi.org/10.24252/bio.v7i1.5990

Duc, N.H., Mayer, Z., Pek, Z., Helyes, L. & Posta, K. (2017). Combined inoculation of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Trichoderma spp. for enhancing defense enzymes and yield of three pepper cultivars. Plant Ecology, 4(2): 359-368.

Gao, C., Ahmed, M.E.S., Dina, F.I.A., Yousef, A.H., Hiba, S. & Mohamed, S.S. (2020). The integration of bio and organic fertilisers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10(319): 1-25.

https://doi.org/10.3390/agronomy10030319

Goswami, C. & Chacrabati, R. (2015). Jackfruit (Artocarpus heterophylus). In Simmonds, M.S.J. & Victor, R.P. (Eds.), Nutritional composition of fruit cultivars. United States of America: Elsevier Inc. Pp. 317-335.

https://doi.org/10.1016/B978-0-12-408117-8.00014-3

Haddad, P.E., Leite, L.G., Lucon, C.M.M. & Harakava, R. (2017). Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesquisa Agropecuária Brasileira, 52 (12): 1140-1148.

https://doi.org/10.1590/s0100-204x2017001200002

Halifu, S., Deng, X., Song, X. & Song, R. (2019). Effects of two Trichoderma strains on plant growth,rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests, 10(758): 1-17.

https://doi.org/10.3390/f10090758

Igiehon, N.O. & Babalola, O.O. (2017). Biofertilisers and sustainable agriculture: Exploring arbuscular mycorrhizal fungi. Applied Microbiology and Biotechnology, 101: 4871-4881.

https://doi.org/10.1007/s00253-017-8344-z

Joshi, D., Singh, P., Lal, A.K.S.R.J. & Tripathi, N. (2016). Antifungal potential of metabolites from Trichoderma sp. against Colletotrichum falcatum went causing red rot of sugarcane. Sugar Tech, 18(5): 529-536.

https://doi.org/10.1007/s12355-015-0421-y

Karličić, V., Golubović, Ć.V. & Raičević, V. (2016). The alleviation of reforestation challenges by beneficial soil microorganisms. Reforesta, 1(1): 238-260.

https://doi.org/10.21750/REFOR.1.12.12

Ketsa, S., Wisutiamonkul, A., Palapol, Y. & Paull, R.E. (2020). The durian: Botany, horticulture, and utilization. Horticultural Reviews, 47(1): 125-211.

https://doi.org/10.1002/9781119625407.ch4

Lagos, C., Larsen, J., Fuentes, A., Herrera, H., García-Romera, I., Campos-Vargas, R. & Arriagada, C. (2021). Inoculation of Triticum aestivum L. (poaceae) with plant-growth-promoting fungi alleviates plant oxidative stress and enhances phenanthrene dissipation in soil. Agronomy, 11(3): 411-427.

https://doi.org/10.3390/agronomy11030411

Matrood, A.A.A., Khrieba, M.I. & Okon, O.G. (2020). Synergistic interaction of Glomus mosseae T. and Trichoderma harzianum R. in the induction of systemic resistance of Cucumis sativus L. to Alternaria alternata (Fr.) K. Plant Science Today, 7(1): 101-108.

https://doi.org/10.14719/pst.2020.7.1.629

McLean, K.L., Hunt, J. & Stewart, A. (2001). Compatibility of the biocontrol agent Trichoderma harzianum C52 with selected fungicides. New Zealand Plant Protection, 54: 84-88.

https://doi.org/10.30843/nzpp.2001.54.3780

Nieto-Jacobo, M.F., Steyaert, J.M., Salazar-Badillo, F.B., Nguyen, D.V., Rostás, M., Braithwaite, M., De Souza, J.T., Jimenez-Bremont, J.F., Ohkura, M., Stewart, A. & Mendoza-Mendoza, A. (2017). Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontier Plant Science, 8(102): 1-18.

https://doi.org/10.3389/fpls.2017.00102

Omomowo, I. O., Fadiji, A. E. & Omomowo, O. I. (2018). Assessment of bio-efficacy of Glomus versiforme and Trichoderma harzianum in inhibiting powdery mildew disease and enhancing the growth of cowpea. Annals of Agricultural Sciences, 63(1): 9-17.

https://doi.org/10.1016/j.aoas.2018.03.001

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. & Simons, A. (2009). Agroforestree Database: A tree reference and selection guide version 4.0. http://apps.worldagroforestry.org/treedb2/AFTPDFS/Durio_zibethinus.PDF

Patil, H.J. & Solanki, M.K. (2016). Microbial inoculant: Modern era of fertilisers and pesticides. In P.R. Singh D., Singh H. (Ed.), Microbial Inoculants in Sustainable Agricultural Productivity (1st ed.). New Dehli, India: Springer. Pp. 319-343.

https://doi.org/10.1007/978-81-322-2647-5_19

Rubio, M.B., Quijada, N.M., Pérez, E., Domínguez, S., Monte, E. & Hermosa, R. (2014). Identifying beneficial qualities of Trichoderma parareesei for plants. Applied and Environmental Microbiology, 80(6): 1864-1873.

https://doi.org/10.1128/AEM.03375-13

Shashtri, T., Tiwari, V., Kolla, A.P., Bajpai, R., Sinha, K. & Kolla, V. (2020). Arbuscular mycorrhizae fungi a potential eco-friendly tool for sustainable agriculture under changing climatic conditions/ in biotic and abiotic stress conditions. Revista de la Asociación Colombiana de Ciencias Biológicas, 32: 63-76.

https://doi.org/10.47499/revistaaccb.v1i32.206

Strid, A., Cross, A. & Jenkins, J. (2018). Captan general fact sheet, National Pesticide Information Center, Oregon State University. npic.orst.edu/factsheets/captangen.html.

Szczałba, M., Kopta, T., Gąstoł, M. & Sękara, A. (2019). Comprehensive insight into arbuscular mycorrhizal fungi, Trichoderma spp. and plant multilevel interactions with emphasis on biostimulation of horticultural crops. Journal of Applied Microbiology, 127(3): 630-647.

https://doi.org/10.1111/jam.14247

Ważny, R., Rozpądek, P., Jędrzejczyk, R.J., Śliwa, M., Stojakowska, A., Anielska, T. & Turnau, K. (2018). Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment? Mycorrhiza, 28(3): 235-246.

https://doi.org/10.1007/s00572-018-0819-y

Xie, X., Hu, W., Fan, W., Chen, H. & Tang, M. (2019). Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Frontiers in Plant Science, 10: 1172.

https://doi.org/10.3389/fpls.2019.01172

Zhang, F., Huo, Y., Xu, X., Hu, J., Sun, X., Xiao, Y. & Zhang, Y. (2018). Trichoderma improves the growth of Leymus chinensis. Biology and Fertility of Soils, 54(6): 685-696.

https://doi.org/10.1007/s00374-018-1292-7

Published

2022-06-30

How to Cite

NELSON, J., NOWEG, G. T., & JUSOH, I. (2022). Potential of Trichoderma and AMF Mixture with Different Types of Fertiliser for Durio zibethinus Murray (Durian) and Artocarpus heterophyllus Lam. (Jackfruit) Growth. Borneo Journal of Resource Science and Technology, 12(1), 73–80. https://doi.org/10.33736/bjrst.4495.2022