Characterisation of Trichoderma spp. and Assessment as Biocontrol Using Dual Culture Assay Against Fungi Associated with Black Pepper (Piper nigrum L.) Diseases in Sarawak

Authors

  • YEE MIN KWAN Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak
  • JOY FRANCO WILSON Department of Crop Science, Faculty of Agricultural and Forestry Sciences, Universiti Putra Malaysia Bintulu Sarawak Campus, 97008 Bintulu, Sarawak

DOI:

https://doi.org/10.33736/bjrst.4358.2022

Keywords:

Anthracnose, in vitro antagonism, Phytophthora foot rot, yellowing disease

Abstract

Black pepper (Piper nigrum L.) is one of the most widely used spices in food, beverage, cosmetics, and medicine. Black pepper production has suffered from various fungal diseases. Microbial biological control is an essential part of integrated disease management to reduce the heavy reliance on chemical fungicides. Trichoderma fungi comprise a large group of rhizocompetent filamentous fungi widely used in the biocontrol of plant pathogens. Three field surveys conducted on five black pepper farms in Belaga, Sarawak, identified three fungal diseases: yellowing, black berry, and foot rot. Based on the morphological and molecular characterisation, the identified fungal causal agents were Fusarium solani (yellowing disease), Colletotrichum gloeosporioides (black berry disease), and Phytophthora palmivora (foot rot disease). Twenty isolates of Trichoderma spp. were isolated from secondary forest and Biopark in Bintulu, Sarawak. Trichoderma isolates were characterised based on the morphological characteristics and molecular phylogenetic analysis using the rDNA internal transcribed spacer (ITS) region. Trichoderma isolates were separated into five distinct species, namely T. harzianum, T. virens, T. brevicompactum, T. tawa, and telomorphic Hypocrea lixii. Among the Trichoderma fungi, T. harzianum was the most frequently (65%) isolated species. Trichoderma harzianum (Isolates of TJ9, 10, and 16) showed antagonistic and inhibitory effects by 61 to 70% on in vitro mycelial growth against three common fungal pathogens of black pepper, P. palmivora, C. gloeosporioides, and F. solani. This study highlights the potential of using native Trichoderma fungi as biocontrol agents in the black pepper integrated disease management program.

References

Adam, A., Kho, P.E., Sahari, N., Tida, A., Chen, Y.S., Tawie, K.M., Kamarudin, S. & Mohamad, H. (2018). Dr. LADA: Diagnosing black pepper pests and diseases with decision tree. International Journal on Advanced Science, Engineering and Information Technology, 8(4-2): 1584-1590.

https://doi.org/10.18517/ijaseit.8.4-2.6818

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6): 716-723.

https://doi.org/10.1109/TAC.1974.1100705

Aktar, M.W., Sengupta, D. & Chowdhury, A. (2009). Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1): 1-12.

https://doi.org/10.2478/v10102-009-0001-7

Alamri, S., Mostafa, Y.S., Hashem, M. & Alrumman, S. (2016). Enhancing the biocontrol efficiency of Trichoderma harzianum JF419706 through cell wall degrading enzyme production. International Journal of Agriculture and Biology, 18: 765-772.

https://doi.org/10.17957/IJAB/15.0164

Askew, D.J. & Laing, M.D. (1993). An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathology, 42(5): 686-690.

https://doi.org/10.1111/j.1365-3059.1993.tb01553.x

Biju, C.N., Ishwara, B.A., Praveena, R., Senthil, K.C.M. & Suseela, B.R. (2019). Pests and diseases of black pepper. Jakarta: International Pepper Community Publication. Pp 7-20.

Bissett J. (1991). A revision of the genus Trichoderma. III. Section Pachybasium. Canadian Journal of Botany, 69: 2373-2417.

https://doi.org/10.1139/b91-298

Cai, F. & Druzhinina, I.S. (2021). In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity, 107: 1-69.

https://doi.org/10.1007/s13225-020-00464-4

Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. & Samuels, G.J. (2015). Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107(3): 558-590.

https://doi.org/10.3852/14-147

Drenth, A. & Sendall, B. (2001). Practical guide to detection and identification of Phytophthora.Version 1.0. Brisbane: CRC for Tropical Plant Protection.

Dubey, S.C., Singh, S.R. & Singh, B. (2010). Morphological and pathogenic variability of Indian isolates of Fusarium oxysporum f. sp. ciceris causing chickpea wilt. Archives of Phytopathology and Plant Protection, 43: 174-189.

https://doi.org/10.1080/03235400802021108

Ezziyyani, M., Pe'rez Sa'nchez, C., Sid, A.A, Requema, M.E. & Candela, M.E. (2004). Trichoderma harzianum como biofungicida para el biocontrol de Phytophthora capsici en plantas de pimiento (Capsicum annuum L). Anales de Biología, 26: 35-45.

Gonzalez, M.F., Magdama, F., Galarza, L., Sosa, D. & Romero, C. (2020). Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Communicative and Integrative Biology, 13(1): 160-169.

https://doi.org/10.1080/19420889.2020.1829267

Harman, G.E., Howell, C.R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43-56.

https://doi.org/10.1038/nrmicro797

Hassan, M.M., Gaber, A. & El-Hallous, E.I. (2014). Molecular and morphological characterization of Trichoderma harzianum from different Egyptian soils. Wulfenia Journal, 21: 80-96.

Jayakumar V., Kannamma Usha Rani G, Amaresan N. & Rajalakshmi S. (2009). First report of anthracnose disease of black pepper (Piper nigrum) caused by an unknown species of Colletotrichum. Plant Disease, 93(2): 199.

https://doi.org/10.1094/PDIS-93-2-0199A

Jiang, Y., Wang, J.L., Chen, J., Mao, L.J., Feng, X.X., Zhang, C.L. & Lin, F.C. (2016). Trichoderma biodiversity of agricultural fields in East China reveals a gradient distribution of species. PLoS ONE, 11(8): e0160613. https://doi.org/10.1371/journal.pone.0160613

Krishnamurthy, K.S., Parthasarathy, V.A., Saji, K.V. & Krishnamoorthy, B. (2010). Ideotype concept in black pepper (Piper nigrum L.). Journal of Spices and Aromatic Crops, 19(1&2): 1-13.

Kotasthane, A., Agrawal, T., Kushwah, R. & Rahatkar, O.V. (2015). In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology, 141: 523-543.

https://doi.org/10.1007/s10658-014-0560-0

Kubicek, C.P., Steindorff, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A., Baroncelli, R., Sarrocco, S., Noronha, E.F., Vannacci, G., Shen, Q., Grigoriev, I.V. & Druzhinina, I.S. (2019). Evolution and comparative genomics of the most common Trichoderma species. BMC Genomics, 20: 485.

https://doi.org/10.1186/s12864-019-5680-7

Kumar, R., Kumari, K., Hembram, K.C., Kandha, L. & Bindhani, B.K. (2019). Expression of an endo α-1, 3-glucanase gene from Trichoderma harzianum in rice induces resistance against sheath blight. Journal of Plant Biochemistry and Biotechnology, 28: 84-90.

https://doi.org/10.1007/s13562-018-0465-7

Leslie J.F. & Summerell B.A. (2006). The Fusarium laboratory manual, First Edition. Hoboken: Blackwell Publishing. Pp 212-255.

https://doi.org/10.1002/9780470278376

Mukherjee, A.K., Sampath, K. A., Kranthi, S. & Mukherjee, P.K. (2014). Biocontrol potential of three novel Trichoderma strains: isolation, evaluation and formulation. 3 Biotech, 4(3): 275-281.

https://doi.org/10.1007/s13205-013-0150-4

Napitupulu, T.P., Ilyas, M., Kanti, A. & Sudiana, I.M. (2019). In vitro evaluation of Trichoderma harzianum strains for the control of Fusarium oxysporum f. sp. cubense. Plant Pathology and Quarantine, 9(1): 152-159. https://plantpathology quarantine.org/pdf/PPQ_9_1_13-1.pdf

https://doi.org/10.5943/ppq/9/1/13

Paulus, A.D. (2020). Pepper. Department of Agriculture Sarawak (DOA). Retrieved November 30, 2020 from https://doa. sarawak.gov.my/page-0-0-138-Pepper.ht ml.

Pertot, I., Alabouvette, C., Esteve, E.H. & Soraya, F. (2015). Mini-paper - The use of microbial biocontrol agents against soil-borne diseases. EIP-AGRI Focus Group Soil-borne Diseases, 1-11.

Perwara G. & Munggaran B. (2020). Pepper statistical yearbook 2019. Jakarta: International Pepper Community Publication. Pp 5-9.

Posada D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(7):1253-1256.

https://doi.org/10.1093/molbev/msn083

Qualhato, T.F., Lopes, F.A., Steindorff, A.S., Brandão, R.S., Jesuino, R.S. & Ulhoa, C.J. (2013). Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnology Letters, 35(9):1461-1468.

https://doi.org/10.1007/s10529-013-1225-3

Rifai, M.A. (1969). A revision of the genus Trichoderma. Mycological Papers, 116: 1-54.

Ronquist, F. & Huelsenbeck, J.P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574.

https://doi.org/10.1093/bioinformatics/btg180

Samuels, G.J., Ismaiel, A., Mulaw, T.B., Szakacs, G., Druzhinina, I.S., Kubicek, C.P. & Jaklitsch, W.M. (2012). The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal Diversity, 55: 77-108.

https://doi.org/10.10 07/s13225-012-0152-2

Saravanakumar, K. & Wang, M.H. (2020). Isolation and molecular identification of Trichoderma species from wetland soil and their antagonistic activity against phytopathogens. Physiological and Molecular Plant Pathology, 109: 101458.

https://doi.org/10.1016/j.pmpp.2020.101458

Siddiquee, S., Shafawati, S.N. & Naher, L. (2016). Effective composting of empty fruit bunches using potential Trichoderma strains. Biotechnology Reports, 13: 1-7.

https://doi.org/10.1016/j.btre.2016.11.001

Siti, N.S.Z. & Nuraini, M.N. (2020). A review on major fungus associated with black pepper (Piper nigrum L.) diseases in Malaysia. International Journal of Scientific and Engineering Research, 11(10): 319-324.

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F. & Sharma, A. (2020). Trichoderma: The "secrets" of a multitalented biocontrol agent. Plants, 9(6): 762.

https://doi.org/10.3390/plants 9060762

Stecher, G., Tamura, K. & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4): 1237-1239.

https://doi.org/10.1093/molbev/msz312

Vinale, F., Nigro, M., Sivasithamparam, K., Flematti, G., Ghisalberti, E.L., Ruocco, M., Varlese, R., Marra, R., Lanzuise, S., Eid, A., Woo, S.L. & Lorito M. (2013). Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiology Letters, 347(2): 123-129.

https://doi.org/10.1111/1574-6968.12231

Wong, M.H. (2010). Diseases of pepper (Part 1). Department of Agriculture Sarawak (DOA). Retrieved September 10, 2021 from https://doa.sarawak.gov.my/page-0-270-283-ARC-ARTICLES-Archives.html.

Zin, N.A. & Badaluddin, N.A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2): 168-178.

https://doi.org/10.1016/j.aoas.2020.09.003

Published

2022-06-30

How to Cite

KWAN, Y. M., & WILSON, J. F. (2022). Characterisation of Trichoderma spp. and Assessment as Biocontrol Using Dual Culture Assay Against Fungi Associated with Black Pepper (Piper nigrum L.) Diseases in Sarawak. Borneo Journal of Resource Science and Technology, 12(1), 60–72. https://doi.org/10.33736/bjrst.4358.2022