The Growth and Morphological Characterization Of Tropical Thermophilic Bacterium Parageobacillus caldoxylosilyticus ER4B

  • Clemente Michael Vui Ling Wong Professor
  • Xin Jie Ching Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia.
  • Yoke Kqueen Cheah Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
  • Nazalan Najimuddin School of Biological Science, Universiti Sains Malaysia, Persiaran Bukit Jambul 11900 Bayan Lepas, Penang, Malaysia
Keywords: 16S ribosomal RNA, characterization, growth curve, oil palm empty fruit bunch compost, Parageobacillus caldoxylosilyticus, thermophilic bacteria

Abstract

Parageobacillus caldoxylosilyticus is a rod-shaped thermophilic bacterium that can grow optimally at high temperatures. The thermophilicity of the bacterium is expected to be largely accounted for by the production of thermostable enzymes which has valuable applications in many fields. However, the species is poorly studied, hence, the growth conditions at high temperatures remained unclear until today. Therefore, this study aimed to determine the growth characterization of P. caldoxylosilyticus, including growth media preferences, optimal growth temperature, as well as minimum and maximum growth temperature. P. caldoxylosilyticus strain ER4B isolated from oil palm empty fruit bunch compost was used in this study. The bacterial strain was first identified using 16S rRNA sequencing, and the subsequent BLAST result showed that it is closest to P. caldoxylosilyticus strain UTM6. It is found that ER4B grew best in LB as compared to R2A, TSB, and NB medium. Further temperature tests determined the optimum growth temperature of the strain to be at 64°C Besides, the bacterium forms mucoid circular punctiform colonies that are yellowish in color on an agar plate, and the colony is usually 2 mm to 4 mm in diameter. The microscopic analysis also revealed that strain ER4B is a Gram-positive rod-shaped bacterium that has a length ranging from 3 µm to 6 µm, with a diameter of around 0.5 µm.

References

Abdelkader, A.F. & Esawy, M.A. (2011). Case study of a biological control: Geobacillus caldoxylosilyticus (IRD) contributes to alleviate salt stress in maize (Zea mays L.) plants. Acta Physiologiae Plantarum, 33: 2289.

https://doi.org/10.1007/s11738-011-0769-x

Adlan, N.A., Sabri, S., Masomian, M., Ali, M.S.M., & Rahman, R.N.Z.R.A. (2020). Microbial biodegradation of paraffin wax in Malaysian crude oil mediated by degradative enzymes. Frontiers in Microbiology, 11:565608.

https://doi.org/10.3389/fmicb.2020.565608

Ahmad, S., Scopes, R.K., Rees, G.N., & Patel, B.K.C., (2000). Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. International Journal of Systematic and Evolutionary Microbiology, 50: 517-523.

https://doi.org/10.1099/00207713-50-2-517

Aliyu, H., Lebre, P., Blom, J., Cowan, D., & De Maayer, P. (2016). Phylogenomic re-assessment of the thermophilic genus Geobacillus. Systematic and Applied Microbiology, 39(8): 527-533.

https://doi.org/10.1016/j.syapm.2016.09.004

Berendsen, E.M., Wells-Bennik, M.H.J., Krawczyk, A.O., de Jong, A., van Heel, A., Holsappel, S., Eijlander, R.T., & Kuipers, O.P. (2016). Draft genome sequences of seven thermophilic spore-forming bacteria isolated from foods that produce highly heat-resistant spores, comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus. Genome Announcement, 4(3): e00105-e00106.

https://doi.org/10.1128/genomeA.00105-16

Chen, C.Y., Yeh, K.L., Lo, Y.C., Wang, H.M., & Chang, J.S. (2010). Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. International Journal of Hydrogen Energy, 35(24): 13356-13364.

https://doi.org/10.1016/j.ijhydene.2009.11.070

Fortina, M.G., Mora, D., Schumann, P., Parini, C., Manachini, P.L., & Stackebrandt, E. (2001). Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al. 2000) comb. nov. International Journal of Systemic and Evolutionary Microbiology, 51(Pt 6): 2063-2071.

https://doi.org/10.1099/00207713-51-6-2063

Hakobyan, L., Gabriely, L., & Trchounian, A. (2012). Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs. International Journal of Hydrogen Energy, 37(8): 6519-6526.

https://doi.org/10.1016/j.ijhydene.2012.01.077

Hucker, G. & Conn, H. J. (1923). Methods of gram staining. New York Agricultural Experiment Station. Technical bulletin 93.

Ibrahim, M.A.C. & Ahmad, W.A. (2017). Growth optimization of a thermophilic strain Geobacillus caldoxylosilyticus UTM6 isolated from Selayang hot spring. eProceedings Chemistry, 2(1): 119-123.

Kalil, M.S., Alshiyab, H.S.S., & Wan Yusoff, W.M. (2008). Effect of nitrogen source and carbon to nitrogen ratio on hydrogen production using C. acetobutylicum. American Journal of Biochemistry and Biotechnology, 4: 393-401.

https://doi.org/10.3844/ajbbsp.2008.393.401

Kolcuoğlu, Y., Colak, A., Faiz, O., & Belduz, A.O. (2011). Cloning, expression and characterization of highly thermo- and pH-stable maltogenic amylase from a thermophilic bacterium Geobacillus caldoxylosilyticus TK4. Process Biochemistry, 45(6): 821-828.

https://doi.org/10.1016/j.procbio.2010.02.001

Lebre, P., Aliyu, H., De Maayer, P., & Cowan, D. (2018). In silico characterization of the global Geobacillus and Paragebacillus secretome. Microbial Cell Factories, 17: 156.

https://doi.org/10.1186/s12934-018-1005-9

Lutkenhaus, L & Addinall, S.G. (1997). Bacterial cell division and the Z ring. Annual Review of Biochemistry, 66: 93-116.

https://doi.org/10.1146/annurev.biochem.66.1.93

Mahon, C.R., Lehman, D.C., & Manuselis, G. (2018). Textbook of Diagnostic Microbiology. Elsevier Health Sciences. ISBN 978-0-323-48212-7.

Murtey, M.D. & Ramasamy, P. (2016). Sample preparations for scanning electron microscopy - Life Sciences. In Dr. Milos Janecek (Ed.), Modern Electron Microscopy in Physical and Life Sciences. InTech, DOI: 10.5772/61720. https://www.intechopen.com/chapters/49652.

https://doi.org/10.5772/61720

Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., & Ivanova, M.V., (2001). Taxanomic study of aerobic thermopilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenesis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International Journal of Systematic and Evolutionary Microbiology, 51: 433-446.

https://doi.org/10.1099/00207713-51-2-433

Obojska, A., Ternan, N.G., Lejczak, B., Kafarski, P., & McMullan, G. (2002). Organophosphonate utilization by the thermophile Geobacillus caldoxylosilyticus T20. Applied and Environmental Microbiology, 68(4): 2081-2084.

https://doi.org/10.1128/AEM.68.4.2081-2084.2002

Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O'Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford), 2020: baaa062.

https://doi.org/10.1093/database/baaa062

Seo, M., Lee, B., Pyun, Y., & Park, H. (2011). Isolation and characterization of N-Acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8. Bioscience, Biotechnology, and Biochemistry, 75(9): 1789-1795.

https://doi.org/10.1271/bbb.110322

Walker, G.M. (1999) Yeast Physiology and Biotechnology. England: John Wiley & Sons Ltd.

Werner-Washburne, M., Braun, E.L., Crawford, M.E., & Peck, V.M. (1993). Stationary phase in the yeast Saccharomyces cerevisiae. Microbiological Review, 57: 383-401.

https://doi.org/10.1128/mr.57.2.383-401.1993

Xiao, J. & Goley, E.D. (2016). Redefining the roles of the FtsZ-ring in bacterial cytokinesis. Current Opinion in Microbiology, 34: 90-96.

https://doi.org/10.1016/j.mib.2016.08.008

Yunitsyna, O., Sinelnikov, I., Kisil, O., Bolotova, K., Aksenov, A., & Simonsen, G. (2019). Isolation of thermophilic enzyme-producing Parageobacillus bacteria from chipped woody waste. BioResources, 14(1): 1452-1465.

https://doi.org/10.15376/biores.14.1.1452-1465

Zeigler, D.R. (2014). The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet. Microbiology, 160(Pt 1): 1-11.

https://doi.org/10.1099/mic.0.071696-0

Published
2021-12-31
How to Cite
Wong, C. M. V. L., Ching, X. J., Cheah, Y. K., & Najimuddin, N. (2021). The Growth and Morphological Characterization Of Tropical Thermophilic Bacterium Parageobacillus caldoxylosilyticus ER4B. Borneo Journal of Resource Science and Technology, 11(2), 51-61. https://doi.org/10.33736/bjrst.4075.2021