Histological Alterations in Some Organs of African Catfish (Clarias gariepinus) Exposed to Sub-lethal Concentrations of Glyphosate [N-(phosphonomethyl) glycine]
DOI:
https://doi.org/10.33736/bjrst.3815.2021Keywords:
Alterations, Clarias gariepinus, glyphosate, histology, organsAbstract
This study used a static bioassay to investigate the histological effects of glyphosate on the gill, liver and muscle of African catfish (Clarias gariepinus) fingerlings. This was done with a view of further characterising the effect of glyphosate on C. gariepinus fingerlings and other aquatic life forms. Six-week old C. gariepinus fingerlings with an average weight of 10.02 ± 0.2 g were stocked into three exposure sets (control, 2.75 ppm (25% of the 96 h LC50 value) and 5.50 ppm (50% of the 96 h LC50 value)) in triplicate at 30 fish per tank for 70 days. The 96 h LC50 value was 11.00 mg/L. Histological examination of the C. gariepinus exposed to various sublethal concentrations of glyphosate showed that major histological changes in their organs were concentration dependent such as gill arch vacuolation, excessive mucosal secretions, lifting of epithelial, and epithelium thickening, hyperplasia and telangiectasis in the gills, discolouration, change in form and consistent alterations involving hyperplasia, narrowing of the central nerve, necrosis, pkynosis, blood congestion and vacuolation of the liver, mild hyperplasia and inflammatory responses in the muscle of the fish. The severity of histological alteration was more pronounced in fish organs exposed to 5.50 ppm of glyphosate concentration. This study concluded that the toxicant (glyphosate) is highly toxic to C. gariepinus particularly at a concentration of 5.50 ppm, therefore its use near farm lands or adjacent water bodies should be discouraged.
References
Adedeji O. B., Adedeji A. O., Adeyemo O. K. & Agbede S. A. (2008). Acute toxicity of diazinon to the African catfish (Clarias gariepinus). African Journal of Biotechnology 7(5): 651-654.
Aliakbar H., Reza T., Ahmad S., Toktam B., Mohammad H. & Mohsen T. (2013). Median lethal concentration of two pesticides, diazinon and deltamethrin, on tra catfish Pangasius hypophthalmus (Siluroidei, Pangasiidae). Journal of Toxicology and Industrial Health. Pp.15-19
Ayanda, O.I. & Egbamuwo, E.A. (2012). Histopathological Examination of the liver and Gills of Clarias gariepinus Treated with Glyphosate. Journal of Enviromental Research. 6 (3):228-234.
https://doi.org/10.3923/erj.2012.228.234
Ayoola, S.O. (2002). Toxicity of Glyphosate herbicide on Nile Tilapia (Oreochromis niloticus) Juvenile. Journal of Eco-toxicology and Environmental Safety. 7(4): 232-246
Ayoola S.O. (2008a). Toxicity of glyphosate herbicide on Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Agricultural Research. 3(12):825-834, Available online at http://www.academicjournals.org/AJAR.
Ayoola, S.O. (2008b). Histopathological effects of Glyphosate on Juvenile African Catfish (Clarias gariepinus). European Journal of Agriculture and Environmental Science.
(13):362-367.
Bawa, V., Kondal, J.K., Hundal, S. S., & Harpinder K. (2017). Biochemical and Histological Effects of Glyphosate on the Liver of Cyprinus carpio (Linn.). American Journal of Life Sciences. Environmental Toxicology 5(3-1):71-80.
Braunbeck, T. & Volkl, A. (1993). Toxicant-induced cytological alterations in the fish liver as biomarkers of environmental pollution? A case study on hepatocellular effects of dinitro-o-cresol in Golden Ide Leuciscus idus melanotus. In: Journal of Fish Eco-toxicology and Eco-physiology. Preceedings of an International Symposium, Heidelberg, September 1991. (Eds.) T. Braunbeck, W. Hanke, and H. Segner. VCH Verlagsgesellschaft mbH.Weinheim.
Carter, K., Rao, C., Lopez, A. D., & Taylor, R. (2012). Morality and cause of death reporting and analysis systems in seven pacific Island countries. BMC Journal of Public Health 12: 436.
https://doi.org/10.1186/1471-2458-12-436
Camargo, M. M. P. & Martinez, C. B. R. (2007). Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology 5(3):327-336.
https://doi.org/10.1590/S1679-62252007000300013
Cavas, T. & Konen, S. (2007). Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263-68.
https://doi.org/10.1093/mutage/gem012
Dutta, M. H., Munshi, D. J. & Roy K. P. (1994). Malathion induced changes in the lymphatic system of a catfish, Heteropneusles fossilis. Journal of Integrated Comparative Biology 34 (5):50-53.
Figueiredo-Fernandes, A., Ferreira-Cardoso J. V., Garcia-Santos S., Monteiro S. M., CarrolaFolmar, L. C., Sanders, J. O. & Julin, A. M. (1979). Toxicity of the Herbicides Glyphosate and several of its formations to fish and Aquatic Invertebrates. Journal of Environmental Contamination Toxicology. 8: 269-278.
https://doi.org/10.1007/BF01056243
Folmar, L. C., Sanders, H. O. & Julin A. M. (1979). Toxicity of the herbicide glyphosphate and several of its formulations to fish and aquatic invertebrates. Arch Environ ContamToxicol 8: 269-278.
https://doi.org/10.1007/BF01056243
Gernhöfer, M., Pawert, M., Schramm, M., Müller, E. & Triebskorn, R. (2001). Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst Stress Recovery 8:241‑60.
https://doi.org/10.1023/A:1012958804442
Giesy, J.P., Dobson S., & Solomon K.R. (2000). Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35‑120.
https://doi.org/10.1007/978-1-4612-1156-3_2
Hadi, A. A. & Alwan S. F. (2012). Histopathological changes in gills, liver and kidney of fresh water fish, Tilapia zillii, exposed to aluminium. International Journal of Pharmacy and Life Science. 3(11): 2071-2081.
Heath, A. G. (1987).Water Pollution and Fish Physiology. CRC Press, Florida. Pp. 71 - 73.
Hued, A.C., Oberhofer S, & de los Ángeles-Bistoni M. (2012). Exposure to a commercial glyphosate formulation (Roundup®) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, yprinodontiformes). Arch Environ Contam Toxicol 62:107‑17.
https://doi.org/10.1007/s00244-011-9686-7
Jiraungkoorskul W., Upatham E.S., Kruatrachue M., Sahaphong S., Vichasri-Grams S. & Pokethitiyook P. (2002). Histopathological effects of Roundup, a glyphosate herbicide, on Nile tilapia (Oreochromis niloticus). Science Asia 28:121-127.
https://doi.org/10.2306/scienceasia1513-1874.2002.28.121
Ladipo, M.K., Doherty, V.F., & Oyebadejo, S.A. (2011). Acute Toxicity, Behavioural Changes and Histopathological Effect of paraquat Dichloride on Tissues of Catfish (Clarias gariepinus). International Journal of Biology. 3(2):67-74.
https://doi.org/10.5539/ijb.v3n2p67
Luna, L.G (1968). Manual of Histologic Staining Method of the Armed Forces Institude of Pathology. New york: Migraw-Hill Pp. 73-76.
Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fish and Aquatic Sciences, 42: 630-648.
https://doi.org/10.1139/f85-083
Mohamed, F.A. (2009) Histopathological studies on Tilapia zillii and Solea vulguris from lake Qarun, Egypt. World J Fish and Mari Sci 1: 29-39.
Mollendrof, F. (1973). Cytology and Cell Physiology. 3rd Edition. Academic Press. New York. Pp. 48-51.
Myers, M. S., Johnson, L. L., Hom T., Coiler, T. K., Stein, J. E. & Varanasi, V. (1998).
Toxicopathic hepatic lesions in subadult English sole from Puget sound, WA; relationship to other indicators of contaminant exposure. Journal of Marine Environmental Resources 45:47-67.
https://doi.org/10.1016/S0141-1136(97)00021-4
Neibor, E., & Richardson, D. H. (1980). Replacement of non-descript term heavy metal by a biological and chemically significant classification of metal ions. Environmental Pollution Series 3(1): 24-45.
https://doi.org/10.1016/0143-148X(80)90017-8
Neskovic, N.K., Poleksic, V., Elezovic, I., Karan,V. & Budimir, M. (1996). Biochemical and histopathological effects of Glyphosate on Carp (Cyprinus Carpio). Bulletin of Environmental Contamination Toxicology 56: 295- 302.
https://doi.org/10.1007/s001289900044
Nowak, B. (1992). Histological changes in gills induced by residues of endosulfan. Journal of Aquatic Toxicology 23: 63-84.
https://doi.org/10.1016/0166-445X(92)90012-C
Ogundiran M. A., Fawole O. O., Adewoye S. O. & Ayandiran T. A. (2009). Pathologic lesions in the gills of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluents. Journal of Cell and Animal Biology 3 (5): 078-082. Available online at http://www.academicjournals.org/JCAB.
Okayi R.G., Aunue, P. A., Tachia, M. U. & Oshoke, O.J. (2010). Acute toxicity of Glyphosate on Clarias gariepinus Fingerlings. Journal of Research in Forestry, Wildlife and Environment. 2 (2): 150-154.
Olurin, K.B., Olojo, E.A.A., Mbaka, G., & Akindele, A. T. (2006). Histopathological responses of the gill and liver tissues of Clarias gariepinus fingerlings to the herbicide, Glyphosate. African Journal of Biotechnology 5 (24): 2480-2487.
Ortiz, R.M., Noren, D.P., Ortiz, C.L. & Talamantes, F. (2003). GTL and gherlin increase with fasting in a naturally adapted species, the northern elephant seal (Mirounga angustirostris). Journal of Endocrinology 178: 533 - 539.
https://doi.org/10.1677/joe.0.1780533
Pacheco, M. & Santos, M. A. (2002). Biotransformation, genotoxic and histopathological effects of environmental contaminants in European eel, Anguilla anguilla L. Eco-toxicology and Environmental Safety 53:331-347.
https://doi.org/10.1016/S0147-6513(02)00017-9
Ramírez-Duarte, W.F., Rondón-Barragán I.S. & Eslava-Mocha, P.R. (2008). Acute toxicity and histopathological alterations of Roundup® herbicide on "cachama blanca" (Piaractus brachypomus). Pesq. Vet. Bras. 28(11):547-554
https://doi.org/10.1590/S0100-736X2008001100002
Reuters (2011). Roundup: Cancer Cause or Crucial for Food Production? The Huffington Post. Reuters
Available from: http://www.huffingtonpost.com/2011/04/11/round‑up‑cancer‑cause_n_847423.html. [Last accessed on 2017 Mar 15].
Richmonds, C. & H. M. Dulta (1989). Histopatholigical changes induced by malathion in the gills of blue gill. Lepomis macrochinis. Bulletin Environmental Contamination Toxicology 43: 123-130.
https://doi.org/10.1007/BF01702248
Risbourg S. B. & Bastide J. (1995). Hepatic perturbations induced by a herbicide (atrazine) in juvenile grey mullet, Liza ramada (Mugilidae Telostei): an ultra structural study. Journal of Aquatic Toxicology 31:217-229.
https://doi.org/10.1016/0166-445X(94)00065-X
Ruppel, M.L., Brightwell, B.B., Schaefer, J. & Marvel J.T. (1977). Metabolism and degradation of glyphosate in soil and water. J Agric Food Chem 25:517‑28.
https://doi.org/10.1021/jf60211a018
Sabae S.Z., El-Sheekh M. M., Khalil, M. A., Elshouny, W. A. E. & Badr, H. M. (2014) Seasonal and regional variation of physicochemical and bacteriological parameters of surface water in El-Bahr ElPherony, Menoufia, Egypt. World J Fish Marine Sci 6: 328-335.
Samanta P., Kumari P., Pal S., Mukherjee A.K., & Ghosh, A.R. (2018). Histopathological and ultrastructural alterations in some organs of Oreochromis niloticus exposed to glyphosate-based herbicide, excel mera 71. J Microsc Ultrastruct 6:35-43.
https://doi.org/10.4103/JMAU.JMAU_8_18
Selvanathan, J., Vincent, S. & Nirmala, A. (2013). Histopathology changes in fresh water fish Clarias batirachius(linn.) exposed to Mercury and Cadmium. International Journal of Life Science and Pharmaceutical Research 3 (2): 34-38.
Sihtmae, M., Blinova, I., Kunnis-Beres, M., Kanarbik, L., Heinlaan, M. & Kahru, A. (2013) Ecotoxicological effects of different glyphosate formulations. App Soil Ecol 72: 215-224.
https://doi.org/10.1016/j.apsoil.2013.07.005
Sullivan, K. M. & Somero, G. N. (1983). Size and diet related variations in enzyme activity and tissue compositions in the sablefish, Anoplopana Fimbria. Biological Bulletin of Marine Biology Laboratory 164:315-326.
https://doi.org/10.2307/1541147
Tomlin C.D.S (2006). The Pesticide Manual: A World Compendium. 14thedn. British Crop Protection Council:Hampshire, UK. pp: 545-548.
Thanomsit, C., Wattanakornsiri A., & Nanthanawat, P. (2016). Effect of Glyphosate on Fish Behavior and Histological Alteration of Gills in Asian Sea Bass (Lates calcarifer)
WHO (1994). Glyphosate. Environmental Health Criteria no.159, World Health Organization, Geneva.
Downloads
Published
How to Cite
Issue
Section
License
Copyright Transfer Statement for Journal
1) In signing this statement, the author(s) grant UNIMAS Publisher an exclusive license to publish their original research papers. The author(s) also grant UNIMAS Publisher permission to reproduce, recreate, translate, extract or summarize, and to distribute and display in any forms, formats, and media. The author(s) can reuse their papers in their future printed work without first requiring permission from UNIMAS Publisher, provided that the author(s) acknowledge and reference publication in the Journal.
2) For open access articles, the author(s) agree that their articles published under UNIMAS Publisher are distributed under the terms of the CC-BY-NC-SA (Creative Commons Attribution-Non Commercial-Share Alike 4.0 International License) which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original work of the author(s) is properly cited.
3) For subscription articles, the author(s) agree that UNIMAS Publisher holds copyright, or an exclusive license to publish. Readers or users may view, download, print, and copy the content, for academic purposes, subject to the following conditions of use: (a) any reuse of materials is subject to permission from UNIMAS Publisher; (b) archived materials may only be used for academic research; (c) archived materials may not be used for commercial purposes, which include but not limited to monetary compensation by means of sale, resale, license, transfer of copyright, loan, etc.; and (d) archived materials may not be re-published in any part, either in print or online.
4) The author(s) is/are responsible to ensure his or her or their submitted work is original and does not infringe any existing copyright, trademark, patent, statutory right, or propriety right of others. Corresponding author(s) has (have) obtained permission from all co-authors prior to submission to the journal. Upon submission of the manuscript, the author(s) agree that no similar work has been or will be submitted or published elsewhere in any language. If submitted manuscript includes materials from others, the authors have obtained the permission from the copyright owners.
5) In signing this statement, the author(s) declare(s) that the researches in which they have conducted are in compliance with the current laws of the respective country and UNIMAS Journal Publication Ethics Policy. Any experimentation or research involving human or the use of animal samples must obtain approval from Human or Animal Ethics Committee in their respective institutions. The author(s) agree and understand that UNIMAS Publisher is not responsible for any compensational claims or failure caused by the author(s) in fulfilling the above-mentioned requirements. The author(s) must accept the responsibility for releasing their materials upon request by Chief Editor or UNIMAS Publisher.
6) The author(s) should have participated sufficiently in the work and ensured the appropriateness of the content of the article. The author(s) should also agree that he or she has no commercial attachments (e.g. patent or license arrangement, equity interest, consultancies, etc.) that might pose any conflict of interest with the submitted manuscript. The author(s) also agree to make any relevant materials and data available upon request by the editor or UNIMAS Publisher.