Characterisation of Biogenic Amines in Fish Collected from Sarawak Using Gas Chromatography

Authors

  • Muhammad Abdurrahman Munir
  • Zaini Assim
  • Fasihuddin Ahmad

DOI:

https://doi.org/10.33736/bjrst.340.2016

Keywords:

Biogenic amines, fish, gas chromatography, limit of detection, recovery

Abstract

Determination of five biogenic amines (heptylamine, histamine, tyramine, cadaverine and spermidine) in fish was optimised and validated using gas chromatography – flame ionisation detector (GC-FID) followed by confirmation using mass spectrometry (MS). The biogenic amines were derivatised using BSA (N, O-bis (trimethylsilyl) acetamide) + TMCS (trimethylchlorosilane) as a derivatisation agent. The linear working range was between 0.9995 – 0.9999. The limit of detection (LODs) were in the range of 1.20 – 2.90 μg/mL. The efficiency of recovery for every biogenic amines, which ranged between 98.41 – 116.39%, indicated that analytical procedure can be used to extract biogenic amines in fish. Using GC-FID, the concentration of five biogenic amines were simultaneously determined in fresh and salted fish samples such as mackerel (Scomberomorus guttatus), sardine (Sardinella gibbosa), whiptail (Himantura walga), gourami (Trichogaster pectoralis) and toli shad (Tenualosa toli). Histamine is found in fresh mackerel (S. guttatus) and sardine (S. gibbosa) at concentration of 5.96 and 2.69 mg/kg, respectively. Salted sardine (S. gibbosa) has histamine concentration of 8.95 mg/kg. All histamine concentrations detected were below 50 mg/kg (FDA regulation) which is below the permissible threshold associated with scombroid poisoning. Cadaverine was detected in fresh sardine (S. gibbosa), whiptail stingray (H. walga) and salted gourami (T. pectoralis) with concentration of 4.96, 146.39 and 18.80 mg/kg, respectively. None of them has biogenic amines, and histamine within FDA regulation levels (below 50 mg/kg).

References

Aflaki, F., Ghoulipour, V., Saemian, N., Sheibani, S., & Salahinejad, M. (2015). Determination of biogenic amines in Persian gulf fish: application of stirrer bead milling extraction method. Food Measure, 9: 86-94.

https://doi.org/10.1007/s11694-014-9213-4

Awan, M.A., Fleet, I., & Thomas, C.L.P. (2008). Determination of biogenic diamines with vaporisation derivatization approach using solid-phase microextraction gas chromatography-mass spectrometry. Food Chemistry, 111(2): 462-468.

https://doi.org/10.1016/j.foodchem.2008.03.068

Bedia, E.F. (2013). Recent analytical approaches to analysis of biogenic amines in food samples. Trends in Analytical Chemistry, 52: 239-247.

https://doi.org/10.1016/j.trac.2013.05.018

Bricio, B.M.S., Rios, A., & Valcarcel, M. (2004). Direct automatic determination of biogenic amines in wine by flow injection-capillary electrophoresis-mass spectrometry. Electrophoresis, 25: 3427-3433.

https://doi.org/10.1002/elps.200405991

Chong, C.W., Abu Baker, F., Rahman, R.A., Bakar, J., & Zaman, M.Z. (2014). Biogenic amines, amino acids and microflora changes in Indian mackerel (Rastrellinger kanagurta) stored at ambient (25-29oC) and ice temperature (0oC). Journal Food and Science Technology, 51: 1118-1125.

https://doi.org/10.1007/s13197-012-0621-3

Emborg, J. & Dalgaard, P. (2006). Formation of histamine and biogenic amines in cold-smoked tuna: an investigation of psychrotolerant bacteria from samples implicated in cases of histamine fish poisoning. Journal of Food Protein, 69: 897-906.

https://doi.org/10.4315/0362-028X-69.4.897

Food and Drug Administration (FDA). (2011). Fish and fishery products hazards and control guidance. Fourth Edition. Washington DC: Department of Health and Human Services, FDA, Center for Food Safety and Applied Nutrition.

Gonzaga, V.E., Lescano, A.G., Huaman, A.A., Salmn-Mulanovich, G., & Blazes, D.L. (2009). Histamine levels in fish from markets in Lima, Peru. Journal of Food Protein, 72: 1112-1115.

https://doi.org/10.4315/0362-028X-72.5.1112

Gosetti, F., Mazzucco, E., Gianotti, V., Polati, S., & Gennaro, M.C. (2007). High-performance liquid chromatography/tandem mass spectrometry determination of biogenic amines in typical Piedmont cheeses. Journal of Chromatography A, 1149: 151-157.

https://doi.org/10.1016/j.chroma.2007.02.097

Jia, S., Kang, Y.P., Park, J.H., Lee, J., & Kwon, S.W. (2011). Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time of flight mass spectrometry. Journal of Chromatography A, 1218(51): 9174-9182.

https://doi.org/10.1016/j.chroma.2011.10.040

Kalac, P. (2009). Recent advanced in the research on biological roles of dietary polyamines in man. Journal of Application Biomedical, 7(2): 65-74.

https://doi.org/10.32725/jab.2009.007

Karovicova, J. & Kohajdova, Z. (2005). Biogenic amines in food. Chemical Papers, 59(1): 70-79.

Kim, M.K., Mah, J.H., & Hwang, H.J. (2009). Biogenic amine formation and bacterial contribution in fish, squid and shellfish. Food Chemistry, 116(1): 87-95.

https://doi.org/10.1016/j.foodchem.2009.02.010

Lazaro, C.A., Conte-Junior, C.A., Cunha, F.L., Marsico, E.T., Mano, S.B., & Franco, R.M. (2013). Validation of an HPLC methodology for the identification and quantification of biogenic amines in chicken meat. Food Analytical Methods, 6: 1024-1032.

https://doi.org/10.1007/s12161-013-9565-0

Linares, D.M., Rio, D.B., Ladero, V., Martinez, N., Fernandez, M., & Martin, M.C. (2012). Factors influencing biogenic amines accumulation in dairy products. Frontiers in Microbiology, 3: 180-190.

https://doi.org/10.3389/fmicb.2012.00180

Linares, D.M., Martin, M., Ladero, V., Alvarez, M.A., & Fernandez, M. (2011). Biogenic amines in dairy products. Critical Reviews in Food Science and Nutrition, 51(7): 691-703.

https://doi.org/10.1080/10408398.2011.582813

Lorenzo, J.M., Martinez, S., Franco, I., & Carballo, J. (2007). Biogenic amine content during the manufacture of dry-cured bacon, a Spanish traditional meat product: effect of some additives. Meat Science, 77(2): 287-293.

https://doi.org/10.1016/j.meatsci.2007.03.020

Mohamed, R., Livia, S.S., Hassan, S., Soher, E.S., & Ahmed-Adel, E.B. (2009). Changes in free amino acids and biogenic amines of Egyptian salted-fermented fish (Feseekh) during ripening and storage. Food Chemistry, 115.

https://doi.org/10.1016/j.foodchem.2008.12.077

Naila, A., Flint, S., Fletcher, G., Bremer, P., & Meerdink, G. (2010). Control of biogenic amines in food-existing and emerging approaches. Journal of Food Science, 75: 139-150.

https://doi.org/10.1111/j.1750-3841.2010.01774.x

Oguri, S., Enami, M., & Soga, N. (2007). Selective analysis of histamine in food by means of solid-phase extraction cleanup and chromatographic separation. Journal of Chromatography, 1139: 70-74.

https://doi.org/10.1016/j.chroma.2006.10.077

Onal, A. (2007). A review: current analytical methods for the determination of biogenic amines in foods. Food Chemistry, 103(4): 1475-1486.

https://doi.org/10.1016/j.foodchem.2006.08.028

Pons-Sanchez-Cascado, S., Vesciana-Nogues, M., Bover-Cid, S., Marine-Font, A., & Vidal-Carau, M. (2006). Use of volatile and non-volatile amines to evaluate the freshness of anchovies stored in ice. Journal of Science and Food Agriculture, 86(5): 699-705.

https://doi.org/10.1002/jsfa.2398

Proestos, C., Loukatos, P., & Komaitis, M. (2008). Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chemistry, 106: 1218-1224.

https://doi.org/10.1016/j.foodchem.2007.06.048

Rabie, M. & Toliba, A. (2013). Effect of irradiation and storage on biogenic amine content in ripened Egyptian smoked cooked sausage. Journal of Food and Science Technology, 50(6): 1165-1171.

https://doi.org/10.1007/s13197-011-0444-7

Rivas, B., Goncalez, R., Landete, J.M., & Munoz, R. (2008). Characterization of a second ornithine deacarboxylase isolated from Morganell morganii. Journal of Food Protein, 71(3): 657-661.

https://doi.org/10.4315/0362-028X-71.3.657

Saaid, M., Saad, B., Hashim, N.H., Ali, A.S.M., & Saleh, M.I. (2009). Determination of biogenic amines in selected Malaysian food. Food Chemistry, 113(4): 1356-1362.

https://doi.org/10.1016/j.foodchem.2008.08.070

Sagratini, G., Fernandez-Frazon, M., Berardinis, F., Font, G., Vittori, S., & Manes, J. (2012). Simultaneous determination of eight underivatised biogenic amines in fih by solid phase extraction and liquid chromatography-tandem mass spectrometry. Food Chemistry, 132(1): 537-543.

https://doi.org/10.1016/j.foodchem.2011.10.054

Spano, G., Russo, P., Lonvaud-Funel, A., Lucas, P., Alexandre, H., Grandvalet, C., Coton, E., Coton, M., Barnavon, L., Bach, B., Rattray, F., Bunte, A., Magni, C., Ladero, V., Alvarez, M., Fernandez, M., Lopez, P., Corbi, A., Trip, H., & Lolkema, J.S. (2010). Biogenic amines in fermented foods. European Journal of Clinical Nutrition, 64(3): 95-100.

https://doi.org/10.1038/ejcn.2010.218

Standarova, E., Borkovcova, I., & Vorlova, L. (2008). The occurrence of biogenic amines in dairy products on the Czech market. Acta Scientiarium Poloranum Medicina Veterinaria, 7(4): 35-42.

Tao, Z., Sato, M., Han. Y., Tan. Z., Yamaguchi, T., & Nakano, T. (2011). A simple and rapid method for histamine analysis in fish and fishery products by TLC determination. Food Control, 22: 1154-1157.

https://doi.org/10.1016/j.foodcont.2010.12.014

Visciano, P., Schirone, M., Tolafo, R., & Suzzi, G. (2012). Biogenic amines in raw and processed seafood. Frontiers in Microbiology, 3: 188-190.

https://doi.org/10.3389/fmicb.2012.00188

Zaman, M.Z., Abu Bakar, F., Selamat, J., & Bakar, J. (2010). Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech Journal of Food Science, 28: 440-449.

https://doi.org/10.17221/312/2009-CJFS

Zhai, H., Yang, X., Li., Xia, G. Cen, J., Huang, H., & Hao, S. (2012). Biogenic amines in commercial fish and fish products sold in southern China. Food Control, 25: 303-330.

https://doi.org/10.1016/j.foodcont.2011.10.057

Downloads

Published

2017-01-17

How to Cite

Munir, M. A., Assim, Z., & Ahmad, F. (2017). Characterisation of Biogenic Amines in Fish Collected from Sarawak Using Gas Chromatography. Borneo Journal of Resource Science and Technology, 6(2), 21–27. https://doi.org/10.33736/bjrst.340.2016

Issue

Section

General