Gastropods in the Intertidal Shore of Kota Kinabalu, Sabah (Malaysian Borneo)

  • JOHN MADIN Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • BALU-ALAGAR VENMATHI MARAN Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
  • SUET-MUN HO Borneo Marine Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
Keywords: Borneo, gastropods community, intertidal shore, Kota Kinabalu, Sabah


Intertidal gastropods provide numerous ecological benefits and are responsible for the dynamics of the intertidal shores habitat and its community assemblages. This study examined the community structure of gastropods in the intertidal shore located near the city of Kota Kinabalu, the capital of Sabah where coastal areas are rapidly developed for various purposes and consequently destroying natural habitats.  A total of 36 gastropods species from 15 families were recorded.  The Planaxis sulcatus was the most abundant species with a density of 480 ind. m-2 followed by Nodilittorina pyramidalis (182 ind. m-2) and Cellana radiata (97 ind. m-2) respectively.  The number of species and their abundance, respectively, are almost three times lower than the number ever recorded for intertidal shores located in non-urban areas or remote locations.  This suggests that the rapidly growing coastal urban areas threatening the diversity and abundance of intertidal gastropods. The density of gastropod (i.e. P. sulcatus & N. pyramidalis) was significantly (p<0.05) high at the lower intertidal shore where slope gradient is steeper with rocks and crevices are the major component of substrates compared to the upper or middle zone which is flatter and composed mainly of coral rubble and sand. Our study suggests that gastropod communities in intertidal shores located adjacent to the urban areas are threatened especially by anthropogenic factors such as frequent human visitations and modification of natural habitat. Future development in the intertidal shore should minimise habitat destruction and should consider infrastructures that encourage gastropod populations to grow and highlighting their ecological role for conservation reasons.


Abbott, R.T. (1991). Seashells of South East Asia. Singapore: Graham Brash (Pte) Ltd.

Ahmad, O., Tay, P.F. & Yahya, K. (2011). Distribution of intertidal organisms in the shores of Teluk Aling, Pulau Pinang, Malaysia. Publications of the Seto Marine Biological Laboratory, 41: 51-61.

Bagur, M., Gutierrez, J.L., Arribas, L.P. & Palomo, M.G. (2019). Vacant bivalve boreholes increase invertebrate species richness in a physically harsh, low intertidal platform. Diversity, 11(3): 39.

Batomalaque, G.A., Arce, B.G.P., Hernandez, M.B.M. & Fontanilla, I.K.C. (2010). Survey and spatial distribution of shoreline malacofauna in Grande Island, Subic Bay. Philippine Journal of Science, 139(2): 149-159.

Beck, M.W. (1998). Comparison of the measurement and effects of habitat structure on gastropods in rocky intertidal and mangrove habitats. Marine Ecology Progress Series, 169: 165-178.

Bertness, M.D. & Leonard, G.H. (1997). The role of positive interactions in communities: lessons from intertidal habitats. Ecology, 78(7): 1976-1989.[1976:TROPII]2.0.CO;2

Bertness, M.D., Leonard, G.H., Levine, J.M., Schmidt, P.R. & Ingraham, A.O. (1999). Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology, 80(8): 2711-2726.[2711:TTRCOP]2.0.CO;2

Best, R.J., Chaudoin, A.L., Bracken, M.E.S., Graham, M.H. & Stachowicz, J.J. (2014). Plant-animal diversity relationship in a rocky intertidal system depend on invertebrate body size and algal cover. Ecology, 95(5): 1308-1322.

Boglio, E.G. & Lucas, J.S. (1997). Impacts of ectoparasitic gastropods on growth, survival, and physiology of juvenile giant clams (Tridacna gigas), including a simulation model of mortality and reduced growth rate. Aquaculture, 150(1-2): 25-43.

Brosnan, D.M. & Crumrine, L.L. (1994). Effects of human trampling on marine rocky shore communities. Journal of Experimental Marine Biology and Ecology, 177(1):79-97.

Carpenter, K.E., Barber, P.H., Crandall, E.D., Ablan-Lagman, M.C.A., Ambariyanto, A., Mahardika, G.N., Manjaji-Matsumoto, B.M., Juinio-Menez, M.A., Santos, M.D., Starger, C.J. & Toha, A.H.A. (2011). Comparative phylogeography of the Coral Triangle and implications for marine management. Journal of Marine Biology, 2011: 1-14.

Carlton, J.T. (1996). Biological invasions and cryptogenic species. Ecology, 77(6):1653-1655.

Chapman, M.G. & Underwood, A.J. (1994). Dispersal of the intertidal snail, Nodilittorina pyramidalis in response to the topographic complexity of the substratum. Journal of Experimental Marine Biology and Ecology, 179(2):145-169.

Chapman, M.G. (1994). Small- and broad-scale patterns of distribution of the upper-shore littorinid, Nodilittorina pyramidalis, in New South Wales. Australian Journal of Ecology, 19(1): 83-95.

Charles, J., Appadoo, C. & Poonyth, A. (2011). A study on assemblage of invertebrates inhabiting rocky shores within the port- limit of Port- Louis, Mauritius. Journal of Coastal Development, 14(2): 159-167.

Cheng, W.H., Yap, C.K., Ismail, A. & Abdul Rahim, I. (2012). Distribution and concentrations of Ni in tissues of the gastropod Nerita lineata collected from intertidal areas of Peninsular Malaysia. Pertanika Journal of Tropical Agricultural Science, 35(4): 723-736.

Crowe, T.P., Thompson, R.C., Bray, S. & Hawkins, S.J. (2000). Impacts of anthropogenic stress on rocky intertidal communities. Journal of Aquatic Ecosystem Stress and Recovery, 7(4): 273-297.

Duffy, J.E. & Hay, M.E. (1991). Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology, 72(4): 1286-1298.

Duran, L.R. & Castilla, J.C. (1989). Variation and persistence of the middle rocky intertidal community of central Chile, with and without human harvesting. Marine Biology, 103(4): 555-562.

Dutton, A. & Benkendorff, K. (2008). Biodiversity assessment and monitoring of the Port Stanvac intertidal reef. Report to the Adelaide and Mt Lofty Natural Resource Management Board. Flinders University, Adelaide. Pp 61

Emery, K.O. (1961). A simple method of measuring beach profiles. Limnology and Oceanography, 6(1): 90-93.

Hayward, P.J. (1980). Invertebrate epiphytes of coastal marine algae. In Price, J.H., Irvine, D.E.G. and Farnham, W.F. (eds.) The Shore Environment, Vol. 2: Ecosystems. The Systematics Association Special Volume No. 17b. Academic Press, London. Pp 761-787.

Huang, D., Todd, P.A., Chou, L.M., Ang, K.H., Boon, P.Y., Cheng, L. & Ling, H. (2006). Effects of shore height and visitor pressure on the diversity and distribution of four intertidal taxa at Labrador Beach, Singapore. The Raffles Bulletin of Zoology, 54(2): 477-484.

Iken, K. (1999). Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. Journal of Experimental Marine Biology and Ecology, 236(1): 133-148.

Istiqlal, B.A., Kasa, I.W. & Yusup, D.S. (2018). Invertebrates diversity of Merta Segara and Nyangnyang Beach: comparison study of two beaches with different characteristics. Journal of Advances in Tropical Biodiversity and Environmental Sciences, 2(2): 14-20.

Jackery, I.L., Madin, J. & Saleh, E. (2016). Qualitative survey of indigenous, non-indigenous and invasive macrofouling species in Sepangar Bay, Sabah, Malaysia. International Conference on Marine Science and Aquaculture (ICOMSA): Nurturing Innovation Ecosystems for Sustainable Oceans and Societal Wellbeing. 23-24 March 2016. The Magellan Sutera Harbour Resort, Kota Kinabalu, Sabah, Malaysia.

Jakobsen, F., Hartstein, N., Frachisse, J. & Golingi, T. (2007). Sabah shoreline management plan (Borneo, Malaysia): ecosystems and pollution. Ocean & Coastal Management, 50(1): 84-102.

Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology, 15(2): 173-190.

Keough, M.J., Quinn, G.P. & King, A. (1993). Correlations between human collecting and intertidal mollusc populations on rocky shores. Conservation Biology, 7(2): 378-390.

Khanam, S. & Saher, N.U. (2018). Zonal diversity and community structure of invertebrate macrofauna in rocky intertidal area of Manora, Karachi, Pakistan. Pakistan Journal of Marine Sciences, 27(2): 93-104.

Knox, G.A. (2001). The ecology of seashores. Florida: CRC Press LLC. Pp 557.

Lavorel, S., Prieur-Richard, A.H. & Grigulis, K. (1999). Invasibility and diversity of plant communities from patterns to processes. Diversity and Distributions, 5(1/2): 41-49.

Laidre, M.E. (2011). Ecological relations between hermit crabs and their shell-supplying gastropods: constrained consumers. Journal of Experimental Marine Biology and Ecology, 397(1): 65-70.

Legendre, P., & Gallagher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271-280.

Malaysia Tide Tables. (2012). Malaysia Tide Tables 2012. Volume 1 and 2. National Hydrographic Centre. Port Klang, Selangor, Malaysia.

Malaysia Tide Tables. (2013). Malaysia Tide Tables 2013. Volume 1 and 2. National Hydrographic Centre. Port Klang, Selangor, Malaysia.

Marshall, D.J., Aminuddin, A. & P. Hj Ahmad, P.S. (2017). Gastropod diversity at Pulau Punyit and the nearby shoreline - a reflection of Brunei's vulnerable rocky intertidal communities. Scientia Bruneiana, 16(2): 34-40.

McMahon, R.F. (1988). Respiratory response to periodic emergence in intertidal molluscs. American Zoologist, 28(1): 97-114.

McMahon, R.F. (1990). Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. Hydrobiologia, 193(1): 241-260.

McMahon, R.F. (2001). Acute thermal tolerance in intertidal gastropods relative to latitude, superfamily, zonation and habitat with special emphasis on the Littorinoidea. Journal of Shellfish Research, 20(1): 459-467.

McMahon, R.F. (2003). Acute hypo- and hypersaline activity responses relative to zonation of intertidal rocky shore and mangrove gastropods from the Burrup Peninsula, Western Australia. In Wells, F.E., Walker, D.I. & Jones, D.S. (eds.) The Marine Flora and Fauna of Dampier, Western Australia. Perth, Western Australia, Western Australia Museum, Pp 144-146.

Menge, B.A. (1983). Components of predation intensity in the low zone of the New-England rocky intertidal region. Oecologia, 58(2): 141-155.

Menge, B.A. & Lubchenco, J. (1981). Community organization in temperate and tropical rocky intertidal habitats: prey refuges in relation to consumer pressure gradients. Ecological Monographs, 51(4): 429-450.

Miloslavich, P., Cruz-Motta, J.J., Klein, E., Iken, K., Weinberger, V., Konar, B., Trott, T., Pohle, G., Bigatti, G., Benedetti-Cecchi, L. Shirayama, Y., Mead, A., Palomo, G., Ortiz, M., Gobin, J., Sardi, A., Díaz, J.M., Knowlton, A., Wong, M. & Peralta, A.C. (2013). Large-scale spatial distribution patterns of gastropod assemblages in rocky shores. PLoS ONE, 8(8): e71396.

Mohd-Long, S., Abg-Abdullah, A.A.F. & Ab-Rahim, S. A. (2014). Marine gastropod and bivalves of Sampadi Island, Lundu, Sarawak. Monograph Aquatic Science Colloquium 2014. Pp 75-87.

Mohd-Hanan, D.S.M., Anwar, W. & Aung, T. (2011). Method to estimate the land loss from sea level rise due to gradual warming in Kota Kinabalu, Sabah. Borneo Science, 28(1): 18-28.

Molina-Montenegro, M.A., Munoz, A., Badano, E.I., Morales, B.W., Fuentes, K.M. & Cavieres, L.A. (2005). Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Marine Ecology Progress Series, 292: 173-180.

Murray, S.N., Denis, T.G., Kido, J.S. & Smith, J.R. (1999). Human visitation and the frequency and potential effects of collecting on rocky intertidal populations in southern California marine reserves. CalCOFI Report, 40: 100-106.

Peterson, C.H. (1991). Intertidal zonation of marine invertebrates in sand and mud. American Scientist, 79(3): 236-249.

Pinn, E.H., Thompson, R.C. & Hawkins, S.J. (2008). Piddocks (Mollusca: Bivalvia: Pholadidae) increase topographical complexity and species diversity in the intertidal. Marine Ecology Progress Series, 355: 173-182.

Presscot, R.C. (2006). An investigation into the impacts of recreational activities of intertidal assemblages at Westward Ho, Devon. Earth & Environment, 2: 211-252.

Raffaelli, D. & Hawkins, S. (1999). Intertidal ecology. Netherlands: Kluwer Academic Publishers. Pp 356.

Ray-Culp, M., Davis, M. & Stoner, A.W. (1999). Predation by xanthid crabs on early post-settlement gastropods: the role of prey size, prey density, and habitat complexity. Journal of Experimental Marine Biology and Ecology, 240(2): 303-321.

Rittschof, D. & McClellan-Green, P. (2005). Molluscs as multidisciplinary models in environment toxicology. Marine Pollution Bulletin, 50(4): 369-373.

Rius, M., Kaehler, S. & McQuaid, C.D. (2006). The relationship between human exploitation pressure and condition of mussel populations along the south coast of South Africa. South African Journal of Science, 102: 130-136.

Roy, K., Collins, A.G., Becker, B.J., Begovic, E. & Engle, J.M. (2003). Anthropogenic impacts and historical decline in body size of rocky intertidal gastropods in southern California. Ecology Letters, 6(3): 205-211.

Ruiz, G.M., Fofonoff, P.W., Carlton, J.T., Wonham, M.J. & Hines, A.H. (2000). Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annual Review of Ecology and Systematics, 31: 481-531.

Ryu, S.-H., Jang, K-H., Choi, E-H., Kim, S-K., Song, S-J., Cho, H.-J., Ryu, J-S., Kim, Y-M., Sagong, J., Lee, J-H., Yeo, M-Y., Bahn, S-Y., Kim, H-M., Lee, G-S., Lee, D-H., Choo, Y-S., Pak, J-H., Park, J-S., Ryu, J-S., Khim, J-S. & Hwang, U-W. (2012). Biodiversity of marine invertebrates on rocky shores of Dokdo, Korea. Zoological Studies, 51(5): 710-726.

Sabah Tourism. (2002). Sabah Tourism Report 2000/2001. Report by Sabah Tourism Promotion Corporation. Ruj. JPAS 11.18. Kota Kinabalu, Sabah.

Samakraman, S., Williams, G.A. & Ganmanee, M. (2009). Spatial and temporal variability of intertidal rocky shore bivalves and gastropods in Sichang Island, east coast of Thailand. Publication of the Seto Marine Biological Laboratory, 10: 35-46.

Savini, D. & Occhipinti-Ambrogi, A. (2006). Consumption rates and prey preference of the invasive gastropod Rapana venosain the Northern Adriatic Sea. Helgoland Marine Research, 60(2): 153-159.

Scrosati, R.A., Knox, A.S., Valdivia, N. & Molis, M. (2011). Species richness and diversity across rocky intertidal elevation gradients in Helgoland: testing predictions from an environmental stress model. Helgoland Marine Research, 65(2): 91-102.

Siti-Balkhis, A.B., Yaman, I.C., Siti-Hasmah, I., Khalil, M.Z., Muhammad-Shukri, M.Y., Zulfigar, Y. & Aileen-Tan, S.H. (2014). A survey of the marine intertidal macrogastropoda in the northern Straits of Malacca. ASM Science Journal, 8(2): 159-164.

Smith, J.R. & Murray, S.N. (2005). The effects of experimental bait collection and trampling on a Mytilus californianus mussel bed in southern California. Marine Biology, 147(3): 699-706.

Sokolova, I.M., Granovitch, A.I., Berger, V.J.A. & Johannesson, K. (2000). Intraspecific physiological variability of the gastropod Littorina saxatilis related to the vertical shore gradient in the White and North Seas. Marine Biology, 137(2): 297-308.

Stachowicz, J.J., Fried, H., Osman, R.W. & Whitlatch, R.B. (2002). Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology, 83(9): 2575-2590.[2575:BIRAME]2.0.CO;2

Sutherland, J.P. (1990). Recruitment regulates demographic variation in a tropical intertidal barnacle. Ecology, 71(3): 955-972.

Tan, K.S. & Kastoro, W.W. (2004). A small collection of gastropods and bivalves from the Anambas and Natuna Islands, South China Sea. The Raffles Bulletin of Zoology, 11: 47-54.

Teoh, H.W., Syed-Hussein, M.A. & Chong, V.C. (2014). Influence of habitat heterogeneity on the assemblages and shell use of hermit crabs (Anomura: Diogenidae). Zoological Studies, 53(67): 1-9.

Ter Braak, C.J.F. & Verdonschot, P. (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences, 57: 255-289.

Thompson, R.C., Crowe, T.P. & Hawkins, S.J. (2002). Rocky intertidal communities: past environmental changes, present status and predictions for the next 25 years. Environmental Conservation, 29(2): 168-191

Thompson, R.C., Johnson, L.E. & Hawkins, S.J. (1997). A method for spatial and temporal assessment of gastropod grazing intensity in the field: the use of radula scrapes on wax surfaces. Journal of Experimental Marine Biology and Ecology, 218(1): 63-76.

Underwood, A.J. & Chapman, M.G. (1989). Experimental analyses of the influences of topography of the substratum on movements and density of an intertidal snail, Littorina unifasciata. Journal of Experimental Marine Biology and Ecology, 134(3): 175-196.

Underwood, A.J. & Denley. E.J. (1984). Paradigms, explanations and generalizations in models for the structure of intertidal communities on rocky shores. In Strong Jr, D.R., Simberloff, D., Abele, L.G. & Thistle, A.B. (eds.) Ecological Communities: Conceptual Issues and the Evidence, New Jersey, Princeton University Press. Pp 151-180.

Van De Werfhost, L.C. & Pearse, J.S. (2007). Trampling in the rocky intertidal of central California: a follow-up study. Bulletin of Marine Science, 81(2): 245-254.

Wai, T.C. & Williams, G.A. (2006). Monitoring spatio-temporal variation in molluscan grazing pressure in seasonal, tropical rock pools. Marine Biology, 149: 1139-1147.

Wong, P.P. (1981). Beach changes on a monsoon coast, Peninsular Malaysia. Geological Society of Malaysia Bulletin, 14: 59-74.

How to Cite
MADIN, J., VENMATHI MARAN, B.-A., & HO , S.-M. (2021). Gastropods in the Intertidal Shore of Kota Kinabalu, Sabah (Malaysian Borneo). Borneo Journal of Resource Science and Technology, 11(1), 9-23.